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1 Invitation to cosmological soft theorems

The laws of nature display invariance under a set of transformations that we call sym-

metries. Symmetries range from spacetime transformations, such as rotations and transla-

tions, to internal symmetries that relate different particles to each other. Symmetries make

a physicist’s life easier by generating new solutions from old ones. But they do much more.

Symmetries constrain the form that the answers to our questions can take. Symmetries

also make precise, model independent predictions, which can be directly tested in experi-

ments and observations. These predictions are particularly useful in situations where the

number of models is much larger than the number of data points, such as in inflationary
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cosmology.

There are at least two paths that lead from symmetries to observations. The first one is

exemplified by Effective Field Theory (EFT). When investigating physics beyond the stan-

dard model, we are low-energy observers in search of a high energy theory, which we cannot

probe directly. We are obliged to speculate on possible extensions of our low-energy laws.

Often the new physics is sufficiently far away from the regime of our experiments that we

have a small parameter, such as the ratio of energy or length scales. In this case there is a

very “effective” way proceeding: Begin by organizing high-energy theories in classes that

share the same underlying set of symmetries. In each class, write down the most general

theory that obeys the given symmetries and rank its effect on the low-energy physics using

the small parameter. Finally constrain all free parameters at the appropriate order us-

ing experiments. In this EFT approach, the observational consequences of symmetries are

build-in from the start. In general, once an EFT has been constructed, one can extract pre-

dictions using perturbation theory, which is often the only tool available for a general EFT.

There is a second way to derive the observational consequences of symmetries: obtain

constraints directly for the observables, without computing the observables explicitly. In

cosmology the main observable are so-called “in-in” correlation functions (see Sec. 2.2),

which are simply the expectation values of operators such as curvature or energy pertur-

bations in the quantum state of the universe. This state is usually assumed to be the

vacuum state in the infinite past evolved with the full interacting theory and so it is found

to contain stuff at late times. The consequences for correlators then depend on whether

a given symmetry is linearly (and so necessarily unbroken) or non-linearly realized. For

linearly realized symmetries one finds that correlators are annihilated by some set of linear

operators. These relations take the general schematic form (see Sec 4)

n∑
a=1

La〈O(k1)O(k2) . . .O(kn)〉 = 0 , (1.1)

where La = L(τa, ∂τa ,ka, ∂ka) is some linear, possibly differential operator made of func-

tions and derivatives of time and momenta (or coordinates if working in real space). For

every symmetry generator, there is a different L. A very familiar examples are translations

for which La is just a multiplication by the a-th momentum ka.In this case, the solution

of the above equation is simply that all correlators are proportional to delta functions of

the sum of momenta

〈O(k1)O(k2) . . .O(kn)〉 ≡ (2π)3δ3
D

(
n∑
a=1

ka

)
〈O(k1)O(k2) . . .O(kn)〉′ , (1.2)

where I’ll use primed correlators 〈. . .〉′ to indicate that I’ve stripped away the omnipresent

delta function.

In many cases of interest though, the symmetry is spontaneously broken by the state of the

theory and so the symmetry is necessarily non-linearly realized. In this case, the symmetry
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leads to a soft theorem, i.e. a relation between an (n+ 1)- and an n-point correlation

function in the limit in which one of the momenta is “soft”, i.e. much smaller than any

other scale in the problem. The schematic form of a soft theorem is

lim
q→0

〈O(q)O(k1) . . .O(kn)〉′

〈O(q)O(q)〉′
=

n∑
a=1

La〈O(k1) . . .O(kn)〉′ , (1.3)

where again La are some linear differential operators that depend on the symmetry.

The non-linearly realized symmetries that play an important role in cosmology, and es-

pecially inflation, are associated with the concept of adiabatic modes (see Sec. 5). These

are specific cosmological perturbation that are locally indistinguishible from a change of

coordinates [28] and/or a symmetry transformation [10]. For each adiabatic mode one,

can define a non-linearly realized symmetry of the action of cosmological perturbations

[6, 7, 9, 29]. The symmetry allows one to trade a field in the correlator for a linear opera-

tion on the remaining fields, as happens in (1.3).

There are many different ways of deriving cosmological soft theorems. I will discuss five

of them and provide a few example derivations. The most intuitive and least rigorous

derivations is the background wave method [1, 34]. Perhaps the most familiar approach

for high energy theorists are Ward-Takahashi identities (see e.g. [2, 6]), which are usually

discussed in standard QFT classes and textbooks. Slavnov-Taylor identities can also be

used and emphasize the role of the quantum effective action [41, 42]. A particularly fast

and versatile method uses the Operator Product Expansion (OPE) (see e.g. [3, 5, 10]), also

familiar from advanced QFT courses. Finally, one can use the Schrödinger picture [11, 40]

and adapt the wave functional technique used in much of the holographic literature.

To make the general discussion more transparent, I’ll discuss in detail three main exam-

ples: single field inflation both in the slow-roll and ultra-slow-roll regime and solid inflation.

Single field slow-roll inflation is by far the most well-known and studied case. This is a

great starting point because the algebra and the final results are very simple. But it hides

some of the subtleties of the derivation. These subtleties are highlighted in ultra-slow-

roll inflation, where perturbations do not necessarily become adiabatic and solid inflation,

where the symmetry breaking patters of the theory is very different from standard inflation.

This review would not be completed without a discussion of the late time cosmological

observations of the Cosmic Microwave Background (CMB) and large scale structures. The

relation between soft theorems for primordial correlators and these late time probes con-

tains a few subtleties. First, primordial perturbations start evolving again in the late

universe and their evolution is non-linear. When discussing an n-point correlator, one

needs to keep into account up to and including the (n−1)-th order in perturbation theory.

Second, it is important to carefully consider the choice of coordinates when taking primor-

dial perturbations as initial conditions for the late time evolution. Third, one should be be

mindful of the fact that some soft theorems, by their own nature, imply that some effects
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are locally unobservable. When calculating observables in some gauge, this often leads to

precise and perhaps unexpected cancellations. In this respect, I’ll discuss how (conformal)

Fermi Normal coordinates [52, 54, 55] provide a safe method to check the robustness of a

calculation.

The goal of these notes is to provide a tool kit to extract observational predictions from

symmetries in cosmological setups. The emphasis is on simple examples and basic deriva-

tions, which can work as toy models to understand the main underlying ideas and can

hopefully be easily generalized to other cases of interest. Much more general results can

often also be derived, but I will only mention them briefly and refer the interested reader

to the original literature. I’ll try to derive most results explicitly and provide as many

proofs as possible of the various statements I’ll make. The main target for these notes are

researchers familiar with standard introductory QFT and cosmology courses. These notes

are based on the lectures I gave at the 2019 Asian-Pacific Winter School hosted by the

Yukawa Institute of Theoretical Physics in Kyoto, Japan.

2 Cosmological correlators

In this section, I introduce cosmological correlators, which are the main objects of interest in

cosmology. I begin with comparing and contrasting correlators in cosmology with scattering

amplitudes in particle physics. I then review three perturbative methods to compute

cosmological correlators and present some simple application to the generation of primordial

perturbations during inflation. Finally, I discuss how linearly realized symmetries constrain

their form. As examples, I explicitly discuss spatial rotations and spatial translations

for arbitrary FLRW spacetimes and dilation and special conformal transformations for

correlators in de Sitter spacetime.

2.1 Scattering amplitudes

Perhaps the most effective way we have to study an object is to throw things at it and

study how they bounce off. This describes mundane activities such as looking at things

by scattering photons. But it also applies to more advanced “imaging” techniques such

as X-ray radiography, electron microscopes and particle accelerators, just to name a few.

In the quantum mechanical context the main object of study are scattering amplitudes,

namely quantum mechanical amplitudes for the schematic process

Sαβ ≡ 〈α; +∞|β;−∞〉S = 〈α|S |β〉H (2.1)

where |α〉 and |β〉 are eigenstates of the free Hamiltonian, which is assumed to be the same

in the asymptotic past and future1 and the subscripts S and H refer to the Schrödinger

and Heisenberg pictures, respectively. Notice that S is an operator, while Sαβ is a matrix

with complex entries. In particle physics, which is often studied in Minkowski spacetime

1Because of this, scattering amplitudes are also sometimes called “in-out” correlators, but I’ll reserve

the word “correlator” for the “in-in” correlators we will introduce in Sec 2.2
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ηµν = Diag{−,+,+,+}, the Heisenberg picture is most useful since it keep Lorentz invari-

ance manifest.

One then looks for the largest number of operators that commute with H, i.e. a subset of

the symmetries of theory, and uses their eigenvalues to label the α states. For example, in

particle physics we typically assume invariance under Poincaré (translations and Lorentz

transformations, i.e. ISO(3, 1) = R4 o SO(3, 1)). Free single particles states are then

defined as irreducible representations of the Poincaré group and are classified by their four-

momentum and the representation of the associated little group (see e.g. Chapter 3 of

[12]). For example, given some creation an annihilation operators {ap, a†p} for a certain

particle with four-momentum pµ and mass p2 = −m2, one finds for the scattering of 2 into

(n− 2) particles

Sαβ = 2n/2
√
E1E2 . . . En 〈Ω| ap3(∞) . . . avpn(∞)a†p1

(−∞)a†p2
(−∞) |Ω〉 , (2.2)

where 〈Ω| is the ground state, E(p) =
√

p2 +m2, and I used the relativistic normalization

of states. Probabilities are obtained by squaring amplitudes

Prob ∼ | 〈α|S |β〉 |2 . (2.3)

Since the S operators encodes the effect of unitary evolution, the S-matrix is also unitary∑
γ

Sαγ(S†)γβ = SαγS
∗
βγ = δ(α− β) . (2.4)

For most systems of physical interest, the S-matrix can only be computed in perturbation

theory. There are three popular ways to arrive at a representation of the S-matrix that is

amenable to such an approximation scheme:

• Canonical quantization and the Hamiltonian approach, leading to Dyson’s time-

ordered formula (see e.g. Sec. 7.1 of [13] or Sec. 3.5 of [12]) for the operator

S.

• Canonical quantization and the Lagrangian approach, passing by the LSZ reduction

formula that relates scattering amplitudes to time-ordered products of fields (a.k.a.

Green’s function) and using the Schwinger-Dyson equations, which are the quantum

equivalent of the classical equations of motion for the fields (see e.g. Section 7.2 of

[13]).

• Path integral quantization (see e.g. Ch. 9 of [12]) .

All of these approaches eventually lead to the derivation of Feynman rules. For simplicity,

I’ll just briefly mention the first approach. For this, we need to introduce the interaction

picture2, labelled by I, where operators evolve with the free Hamiltonian and states evolve

2Recall that in the Schrödinger (S) and Heisenberg (H) pictures

|ψ, t〉S = e−i
∫
Hdt |ψ, ti〉S , OS(t) = OS(ti) ≡ OS , (2.5)

|ψ〉H = |ψ, ti〉S = e+i
∫
Hdt|ψ, t〉S , OH(t) = ei

∫
HdtOS e−i

∫
Hdt . (2.6)

for some reference initial time ti.
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with the interaction Hamiltonian Hint = H −H0:

|ψ, t〉I = UI(t, ti) |ψ〉H = UI(t, ti) |ψ, ti〉S = e+iH0t|ψ, t〉S , (2.7)

OI(t) = UIOH(t)U †I = e+iH0tOSe−iH0t , (2.8)

In the interaction picture, the evolution operator UI obeys UI(t, t) = 1 and

d

dt2
UI(t2, t1) = −iHint(t2)UI(t2, t1) , (2.9)

d

dt1
UI(t2, t1) = iUI(t2, t1)Hint(t1) . (2.10)

For t2 > t1, the solution of these equation is concisely given by Dyson’s formula

UI(t2, t1) = T exp

(
−i
∫ t2

t1

dt′Hint(t
′)

)
, (2.11)

U †I (t2, t1) = T̄ exp

(
−i
∫ t2

t1

dt′Hint(t
′)

)
, (2.12)

where the (anti) time-ordered operator (T̄ ) T arranges the operators from left to right in

order or (increasing) decreasing time. When the arguments are not in the right order, the

solution of (2.9) and (2.10) is instead given by3 (using the shorthand U21 = UI(t2, t1) etc.)

U12 ≡ U †21 = U−1
21 U †12 ≡ U21 , (2.13)

in such a way that

U12U21 = U21U12 = 1 , U32U21 = U31 , (2.14)

for any ordering of t1,2,3. Here I have assumed the free Hamiltonian H0 is time independent,

but not the interaction part Hint. Dyson’s formula then gives us the useful representation

S = UI(+∞,−∞) = T exp

[
−i
∫ +∞

−∞
dt′Hint(t

′)

]
. (2.15)

Notice that Hint and hence UI in the interaction picture are written in terms of free fields,

such as for example

φ(x) =

∫
d3k

(2π)3

1√
2E

[
ape

ipx + a†pe
−ipx

]
, (2.16)

which evolve according to (2.8). (2.9) admits the perturbative expansion

U(t2, t1) = 1− i
∫ t2

t1

dt′Hint(t
′)−

∫ t2

t1

dt′
∫ t′

t1

dt′′Hint(t
′)Hint(t

′′) + . . . . (2.17)

3Notice that U(t1, t2) is not simply given by (2.11), but rather the time order is replaced by an anti-time

order.

– 6 –



2.2 Cosmological correlators

The situation in cosmology is different from that in particle physics in three major respects:

• Broken Poincaré symmetry. The classical background on which cosmological

perturbations propagate has less isometries than Minkowski spacetime where particle

physics operate. In particular, a flat 4 FLRW metric with line element

ds2 = −dt2 + a(t)2dx2 (2.19)

has six space-like Killing vectors corresponding to invariance under rotations a spatial

translations (ISO(3) = R3 o SO(3)). This is four isometries less than the maximally

symmetric5 Minkowski spacetime. In particular, Lorentz boosts and time translations

are spontaneously broken by the background.

• Out of equilibrium There is no asymptotic future in which cosmological pertur-

bations stop interacting and so it is hard to define6 “in-out” observables as we do

for particle physics. In most cosmological models, cosmological perturbations were

sub-Hubble at very early times (i.e. the comoving wavenumber k obeyed k � aH,

where H is the Hubble parameter H ≡ ȧ/a). Then by the equivalence principle, these

perturbations were effectively in flat space and so an “in” state in cosmology could be

defined just as in particle physics. At late times instead cosmological perturbations

can in general evolve and interact with each other, giving rise for example to the

ever evolving Large Scale Structures of the universe. As a result of this difficulty, the

quantities of interest in cosmology are the “in-in” correlators.

• Cosmic variance In an expanding universe with a finite age, causality imposes that

there is only a finite volume that we can access at any given time. If the expan-

sion decelerates, ä < 0, we can wait long enough and observe any other spacetime

point. Instead, the expansion of our universe is currently accelerating ä ∼ (1017sec)−2

(pretty slowly). If this acceleration continues in the future, the largest spatial volume

we can ever observe is of order the Hubble volume today, H−3
0 ∼ (4Gpc)3. Hence

we cannot observe field fluctuations in the whole universe and so our measurements

have an intrinsic sample variance, known in this context as cosmic variance.

4Everything I am discussing in this note can in principle be generalized to open and closed FLRW

spacetimes, which have non-vanishing spatial curvature and the same amount of isometries (6 Killing

vectors) as flat FLRW. In practice though there is relatively little literature on this subject because current

observations are still compatible with a flat universe:

Ωk ≡
K

a2H2

∣∣∣
today

< 0.005 . (2.18)

It would nevertheless be interesting to study cosmological correlators and soft theorems in spatially curved

universe because some amount of spatial curvature at the order Ωk ∼ 10−5 is unavoidable from super-

Hubble perturbations. In addition, many models of inflation with just enough efoldings to explain current

observations do predict that spatial curvature will be observed in the future.
5Recall that the maximum number of isometries a D-dimensional space can have is D(D + 1)/2, which

is 10 in (3 + 1) dimensions.
6For an attempt to build an S-matrix in de Sitter see [14].
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To define cosmological correlators, a few words on cosmological perturbation theory are in

order. One proceeds semi-classically, by postulating a classical background and quantizing

small deviations in perturbation theory. For example, for some matter content with an

energy-momentum tensor Tµν , we define

gµν(x, t) = ḡµν(t) + hµν(x, t) , (2.20)

Tµν(x, t) = T̄µν(t) + δTµν(x, t) , (2.21)

where barred quantities represent the homogenous and isotropic background solutions and

we assume small perturbations |hµν | � |ḡµν |, |δTµν | � |T̄µν |. In particular, ḡµν is the flat

FLRW metric in (2.19), and

T̄µν = Diag {−ρ̄, p̄, p̄, p̄} , T̄µν = Diag
{
ρ̄, a2p̄, a2p̄, a2p̄

}
. (2.22)

The evolution of perturbations is determined by some (explicitly time-dependent) Hamil-

tonian, which we split again in a quadratic or “free” part and the remaining “interaction”

part Hint. We then define an “in-in” correlator as the expectation value of some operator

O on some state α

〈O〉α = 〈α; t| O |α; t〉S = 〈α| O(t) |α〉H . (2.23)

Typically, O is the product of equal-time operators at different space points. Time order-

ing is therefore irrelevant. The reason why equal time correlators play a central role in

cosmology is that variables such as curvature perturbations and gravitons become time-

independent on superHubble scales. As familiar from quantum mechanics, in-in correlators

of Hermitian operators are real quantities since

〈α| O(t) |α〉∗H = 〈α| O†(t) |α〉H = 〈α| O(t) |α〉H . (2.24)

So, in contrast with scattering amplitudes, in-in correlators are already physical observ-

ables. We will be mostly interested in the case in which |α〉H is the “vacuum” of the full

theory in the far past (to be specified later). In this case I will simply keep it implicit in

all subsequent formulae. Explicit calculations are most easily performed in the interaction

picture. Using again Dyson’s formula for the evolution operator acting on states and (2.7),

(2.8), we find

〈α| O(t) |α〉H = 〈α|U †I (−∞, t)O(t)UI(−∞, t) |α〉I , (2.25)

where both O and all the fields in UI are in the interaction picture. Once again, we have

been able to reduce the problem to the calculation of a product of interaction picture fields,

which are just free fields as for example

φ(x) =

∫
d3k

(2π)3

[
akfk(t)e

ik·x + a†kf
∗
k (t)e−ik·x

]
, (2.26)

with fk(t) given by the solution of the classical, linear equations of motion. For more

details see e.g. [15] and references therein. As an aside, there are two other formalisms
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to compute correlators that are useful in different applications. One is the path integral

or Schwinger-Keldysh formalism, in which the correlator is expressed as a path integral

from some initial time to the time at which the operators are evaluated and back to the

initial time. The second is the Schrödinger picture of quantum mechanics, where the wave

function is a functional of the fields and it is ofter referred to as the wave function of the

universe. Here we will not make explicit calculations using these formalisms.

The (time-ordered) correlators are related to the S-matrix by the celebrated LSZ reduction

formula (see e.g. Sec. 6.1 of [13] or Sec. 10.3 of [12]):

〈p1, . . . , pn|S |pn+1, . . . , pn+m〉 =

n+m∏
a=1

[
i

∫
d4xae

ipaxa
(
�−m2

)]
〈T{φ(x1) . . . φ(xn+m)}〉 .

Since the left-hand side momenta are all on-shell, i.e. p2 = −m2, the right-hand contains

only a subset of all possible correlators, namely only the on-shell ones.

3 Symmetries

Recall that symmetries in field theory are transformations ∆φ of the fields7 φ that leave

the action invariant, or equivalently change the Lagrangian by to a total derivative

∆L = ∂µF
µ . (3.1)

What symmetries do for a living is to take some solution φsol of the dynamics and generate

another, different one φ′sol = φsol + ∆φsol. If one imposes that two states that differ by

a symmetry transformation are the same physical state, i.e. all observables give precisely

the same values in both states, then the symmetry is called a gauge symmetry. A familiar

example is electrodynamics, where Aµ and Aµ + ∂µα represent the same physical state8

(with appropriate boundary conditions on α). If φsol and φ′sol are physically distinguish-

able, the transformation is called a global symmetry. In the following I’ll focus on global

symmetries unless otherwise stated.

The fact that Q generates new solutions is equivalent to saying that symmetries commute

with the Hamiltonian [Q,H] = 0 and so the diagram in Fig. 1 commutes. By Nöther

theorem there exist a conserved current

Jµ =
δL
δ∂µφ

∆φ− Fµ with ∂µJ
µ = 0 . (3.2)

If you wish, you can make things look more covariant by defining J̃µ ≡ Jµ(−g)−1/2 so then

∇µJ̃µ = (∂µJ
µ) (−g)−1/2 = 0. If the current vanishes sufficiently fast at spatial infinity,

7Here φ is used as a collective symbol to indicate all fields in theory, irrespectively of their spin.
8Often gauge symmetries have parameters that are functions of spacetime as e.g. α(x) in electrodynam-

ics. But this does not have to be the case in general. For example, consider a quantum mechanical particle

on a circle of length L. I can describe the system using x ∈ {0, L} but it is sometimes convenient to use the

variable x ∈ {−∞,+∞} with the identification x ≈ x+ nL with n ∈ N. The transformation x→ x+ nL is

a gauge symmetry even if n is not time dependent.
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Figure 1. The diagram shows the equivalence of two definitions of symmetries: transformations

that generate new solutions and transformations that commute with the Hamiltonian H. Some

solution A at time t1 can be evolved to time t2 and then transformed by Q into B(t2). This gives

the same result as first transforming to B(t1) and then evolving because [Q,H] = 0. By doing this

process at every time t from a solution A(t) one can the generate a new solution B(t). Notice that

we will be always talking about symmetries of the laws of nature, not symmetries of the solutions

of those laws (i.e. in general A 6= B).

then one can define a conserved current Q by

Q ≡
∫ √

hJµnµd
3x , (3.3)

where nµ is a time-like vector field that defines some “constant-time” hypersurface over

which we integrate. The conservation of Jµ implies Q̇ ≡ nµ∂µQ = 0. What Q does for a

living is to generate the transformations of the fields from which it originally was derived

through Nöther theorem:

i[Q,φ] = ∆φ . (3.4)

Since Q is Hermitian, Q = Q†, we can exponentiate this generator to define a unitary

symmetry operator

Finite unitary transformation: U ≡ eiαQ , (3.5)

for some parameter α of the transformation.

3.1 Unbroken, linearly realized symmetries

Now let us quantize the theory and promote Q and φ to operators. We say that the

symmetry generated by Q is unbroken in the state |Ω〉 iff

〈Ω| [Q,φ] |Ω〉 = 0 , (3.6)

Notice that a sufficient condition for this equation to be satisfied is that Q annihilates

|Ω〉, namely Q |Ω〉 = 0, so that U |Ω〉 = |Ω〉. Notice that this condition implies that in an

expansion in φ, ∆φ cannot contain a constant term, but needs to start at least linear in φ.

Assume now that ∆φ is exactly linear in φ, namely

Linearly realized symmetry: ∆φa = Dabφb , (3.7)
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with Dab a set of matrices forming the representation of the symmetry group (recall φ

represent some vector of fields). All linearly realized symmetries map “single-excited”

states into single-excited states, where by “single-excited” I mean combinations of states

of the form a |0〉. In particle physics these are “single-particle” states but in cosmology

“single-excited” is perhaps more appropriate. For example, if |0〉 is the vacuum, the one-

particle state φa(x) |0〉 is mapped into

Qφa(x) |0〉 = [Q,φa(x)] |0〉 = −iDabφb(x) |0〉 , (3.8)

which is also a linear combination of single-excited states. By definition of symmetry, Q

must commute with the Hamiltonian, [H,Q] = 0, and so the new single-excited state must

have the same energy as the original one: single-excited states come in multiples, just like

particles do (e.g. the three pions).

If Dab have entries that are (usually complex) numbers, then Q is said to be an internal

symmetry. If instead it contains functions or derivatives of spacetime, then Q is a space-

time symmetry. More generally and more precisely, if Pµ and Mµν are the generators of

spacetime translations (R4) and Lorentz transformations (SO(3,1)), then Q is an internal

symmetry if and only if it commutes with Pµ and Mµν :

Internal symmetry: [Pµ, Q] = [Mµν , Q] = 0 . (3.9)

All symmetries that do not respect this condition are called spacetime symmetries.

3.2 Spontaneous symmetry breaking and non-linearly realized symmetries

In Quantum Field Theory (QFT), it is indeed possible that the vacuum state |Ω〉 satisfies9

Spontaneously broken symmetry: 〈Ω| [Q,φ] |Ω〉 6= 0 . (3.10)

Notice that in particular |Ω〉 is not invariant under Q namely Q |Ω〉 6= 0. Also, by perform-

ing a field redefinition φ → φ − 〈φ〉, we can always work with fields that have vanishing

expectation values 〈φ〉 = 0. These are indeed the fields we use to perturbatively quan-

tize the theory. Then, for (3.10) to be true, a broken symmetry transformation in terms

of these fields must contain a constant (i.e. field independent) term. So a spontaneously

broken symmetry must always be non-linearly realized10:

Non-linearly realized symmetry: i[Q,φ] = ∆φ = const +O(φ) . (3.11)

9This cannot happen in ordinary quantum mechanics. The hand-wavy argument is that in quantum

mechanics one can always define a linear superposition of states corresponding to all possible images of a

given ground state under the symmetry, and this gives a symmetric ground state. In QFT these states

are mutually orthogonal because of the large volume limit and therefore belong to different super-selection

sectors. See e.g. Sec. 19.1 of [12] or [16] for more details.
10To avoid confusion, let us stress that the commutator is a linear operation on φ and so [Q,λφ] = λ∆φ

for any constant λ. By “non-linearly realized” we mean that the transformation acts non-linearly on the

solutions of the theory, namely given two solutions φsol,1 = λφsol,2 one finds ∆φsol,1 6= ∆φsol,2.
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Then there must exist degenerate vacua since the state |α〉 ≡ U(α) |Ω〉 has the same energy

as |Ω〉

H |α〉 = H (U(α) |Ω〉) = U(α)H |Ω〉 = EΩ |α〉 . (3.12)

In words, the laws of nature are invariant under a given symmetry (i.e. [Q,H] = 0), but

the solution of those laws is not (U |Ω〉 6= |Ω〉). This should not be confused with explicit

symmetry breaking, which describes a situation in which the transformation is just not a

symmetry anymore. Explicit breaking happens when, given a theory with Hamiltonian H

and symmetry Q, we add some interaction H̃ that does not commute with the symmetry,

[Q, H̃] 6= 0. In this case, any implication of Q being a symmetry is at best only approximate

and corrections arise from H̃. We learn something interesting only when H̃ is appropriately

small. Spontaneous breaking on the contrary has exact and precise physical implications,

without invoking any approximation.

A theorem due to Fabri and Picasso [17] shows that, if the theory is also translational

invariant, then Q is divergent:

|Q |Ω〉 |2 = 〈Ω|QQ |Ω〉 =

∫
d3x 〈Ω| J0(x)Q |Ω〉 =

∫
d3x 〈Ω| J0(0)Q |Ω〉 =∞ , (3.13)

where in the penultimate step I used translation invariance and in the last step that Q |Ω〉 6=
0. Despite this subtlety, one can still use Q in commutators to generate a symmetry

transformation as the commutator produces a delta function that soaks up the integral.

For example for the archetypal generator of φ translations

Q =

∫
d3yΠ(y) , (3.14)

with Π the conjugate momentum of φ, one finds

i[Q,φ(x)] = i

∫
d3y[Π(y), φ(x)] =

∫
d3yδ3

D(x− y) = 1 , (3.15)

which is not divergent. Spontaneously broken symmetries do not send one-particle states

into one-particle states because

Qφa(x) |0〉 = ([Q,φa(x)] + φQ) |0〉 = −iDabφb(x) |0〉+ φQ |0〉 , (3.16)

and the last term in the last expression is not a one-particle state (it is not of the form

φa |0〉). If we break an internal symmetry, by Goldstone theorem we get one massless

particle per broken generator with the same quantum numbers. This is called a Nambu-

Goldstone boson (NGB), or a “goldstino” if we break a supersymmetry charge and the

particle is a fermion. Notice that the masslessness of a NGB is a rare and precious fully

non-perturbative result in QFT. The symmetry current “interpolates” between the vacuum

and a one NGB particle state |π(p)〉 with four-momentum pµ in the sense that

〈0| Jµ(x) |π(p)〉 = Fpµeipx , (3.17)

where F is called the decay constant of the NGB and has dimension of mass. In typical

models of internal symmetry breaking it is related to the symmetry breaking vev of some

field F ∼ 〈φ〉.
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4 Cosmological correlators and linearly realized symmetries

In this section, I will discuss the observational consequences of linearly realized symmetries

in cosmology. I will focus on spacetime symmetries and discuss in details translations

and rotations, the isometries of all cosmological backgrounds (i.e. of the FLRW spacetime)

and then dilations and special conformal transformations, the additional isometries of de

Sitter spacetime (with similar results applying to Anti-de-Sitter). Internal symmetries,

which change one type of field into another do not play much of a role in cosmology

(exceptions are e.g. symmetric multifield models). To the best of my knowledge it is still

an open question whether the above list of linearly realized symmetries is actually complete.

For Lorentz invariant amplitudes, we have the celebrated Coleman-Mandula theorem [18],

which dictates that the most general algebra of symmetries of the flat-space S-matrix is

the direct product of Poincaré transformations and internal symmetries (i.e. symmetries

that commute with Poincaré generators). But for correlators we don’t have an analogous

theorem, nor do I know of a counterexample.

4.1 FLRW spacetime: Homogeneity and isotropy

If we assume a Lorentz invariant theory and expand around a flat FLRW background,

(2.19), which is homogeneous and isotropic, we find that all primordial correlators must be

left invariant by the generators of spatial translations and rotations. The argument goes as

follows. Consider the generators of spatial translations P i and spatial rotations Li, acting

on scalar11 operators of the theory as

i[P i,OS(x)] = −∂iOS(x) , (4.2)

i[Li,OS(x)] = −εijkxj∂kOS(x) . (4.3)

If these generators commute with the Hamiltonian then the same expressions hold for the

Heisenberg operators at any time. These generators exponentiate to finite translations and

rotations as in

U−1(~α, ~ω)O(x)U(~α, ~ω) = O(Rijxj + αi) , (4.4)

with

Rij = exp
(
εijkω

k
)
, U(~α, ~ω) = exp

(
iP iαi

)
exp

(
iLiωi

)
. (4.5)

and U †U = 1. Then we see that

〈Ω|
∏
a

O(xa) |Ω〉 = 〈Ω|UU−1O(x1)UU−1O(x2) . . .O(xn)UU−1 |Ω〉 (4.6)

= 〈Ω|U−1O(x1)UU−1O(x2) . . .O(xn)U |Ω〉 (4.7)

= 〈Ω|
∏
a

O(ta, Rxa + ~α) |Ω〉 , (4.8)

11For generic operators with spin, the action or rotations is simply replaced by

i[Li,OAS (x)] = −D(L)ABε
ijkxj∂kOBS (x) , (4.1)

where D(L)AB is the representation of the algebra so(3) relevant for O.
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where in the second step I used the invariance of the vacuum and in the last that U

commutes with the Hamiltonian. It is useful to re-write this expression as an operator

annihilating the correlation function. To this end, we expand (5.14) to linear order in ~α

and ~ω and cancel the zeroth order piece with the left hand side. The remaining term is

n∑
a=1

∂

∂xa
〈O(x1)O(x2) . . .O(xn)〉 !

= 0 , (4.9)

n∑
a=1

(
xia

∂

∂xja
− xja

∂

∂xia

)
〈O(x1)O(x2) . . .O(xn)〉 !

= 0 . (4.10)

These relations must be obeyed by all cosmological correlators. The general solution of the

first condition is that the correlator only depends on the distance among points, i.e. only

on n − 1 of the n point appearing. For example, this can be chosen to be xa − x1 for

a = 2, . . . n. The second condition implies that the correlator must be a function of scalar

products xa · xb. The full n-correlator then depends on 3n− 3− 3 variables.

It is easier to deal with translation invariance in Fourier space

O(t,k) ≡
∫
d3xe−ik·xO(t,x) , O(t,x) ≡

∫
d3k

(2π)3
eik·xO(t,k) . (4.11)

The generators acting on Fourier space correlators are then (Exercise)

Pi : −iki and Rij : −i (ki∂j − kj∂i) , (4.12)

and therefore

n∑
a=1

ka〈O(k1)O(k2) . . .O(kn)〉 !
= 0 , (4.13)

n∑
a=1

(
kia

∂

∂kja
− kja

∂

∂kia

)
〈O(k1)O(k2) . . .O(kn)〉 !

= 0 . (4.14)

The first condition is satisfied if the correlator is proportional to a Dirac delta function of

the sum of all momenta

〈O(k1)O(k2) . . .O(kn)〉 ≡ (2π)3δ3
D

(∑
a

ka

)
〈O(k1)O(k2) . . .O(kn)〉′ , (4.15)

where the prime denotes the stripped correlator, i.e. with the delta function and (2π)3

removed. The second condition implies again that the correlator only depends on the

rotational invariant contractions ka · kb.

4.2 De Sitter spacetime: dilations and special conformal transformations

Cosmological observations tell us that primordial perturbations are not only translation

and rotation invariant, but also scale invariant. This can be seen for example in the

large scale behavior of the CMB temperature anisotropy angular power spectrum CTTl ,

– 14 –



where the transfer function is just approximately constant for l� 50 (the so-called Sachs-

Wolfe approximation). On these large scales one finds CTTl ∝ l−2, which in angular space

implies that the correlation of anisotropies is approximately independent of angle. The

leading paradigm to explain such scale invariance is to postulate a phase of quasi-de Sitter

expansion in the very early universe. De Sitter spacetime in flat slicing is given by

ds2 = −dt2 + e2Htdx2 =
−dτ2 + dx2

τ2H2
, (4.16)

for some constant Hubble parameter H and with τ = −e−Ht/H. This is a maximally

symmetric spacetime with ten isometries, arranged according to the group SO(4,1) (the

Lorentz group in (4+1)-dimensions or equivalently the conformal group in 3 euclidean

dimension). Besides spatial rotations and translations, de Sitter is also invariant under

dilations and special conformal transformations (SCT):

dilation: τ → τ (1 + λ) , x → x(1 + λ) , (4.17)

SCT: τ → τ(1− 2b .x) , x → x− 2(b .x) x + (x2 − τ2)b , (4.18)

If all other non-gravitation background quantities also respect this symmetry, as it is the

case for example in the limit of Ḣ � H2, then these additional isometries lead to new

symmetry that further constrain cosmological correlators (see e.g. [19–22]).

By following the same procedure as in the previous section, we can again compute the

operators that must annihilate correlation functions as consequence of the full de Sitter

isometry group. In real space, these generators are found to be12

D : −τ∂τ − xi∂i (dilation) , (4.20)

b ·K : −2b · x
(
τ∂τ − xi∂i

)
−
(
τ2 − |x|2

)
bi∂i (SCT) , (4.21)

for an arbitrary constant three-vector b. As before, the sum of D and K acting on each

operator in the correlator must vanish by symmetry:

n∑
a=1

Da〈O(τ1,x1)O(τ2,x2) . . .O(τn,xn)〉 !
= 0 , (4.22)

n∑
a=1

b ·Ka〈O(τ1,x1)O(τ2,x2) . . .O(τn,xn)〉 !
= 0 . (4.23)

The solutions of these equations have been studied for half a century in an attempt to better

understand Conformal Field Theories (see e.g. online reviews [23–25]). For example, the 2

and 3 point functions are completely fixed up to an overall multiplicative constant, while

higher n-point functions can only depends on specific invariants called cross ratios.

12Check that indeed εµ = {−τ,−xi} is a Killing vector for the dS metric in (4.16), namely it solves

Lεgµν = − (∇µεµ −∇µεµ) = 0 . (4.19)

where L is the Lie derivative.
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When acting on a single Fourier-space operator O(τ,k), the generators become (Exercise)

D : (3− τ∂τ ) + ki∂ki , (4.24)

b ·K : (3− τ∂τ ) 2bi∂ki − b · k∂ki∂ki + 2ki∂kib
j∂kj . (4.25)

It is the combination −3 +
∑

aDa and
∑

a b ·Ka that annihilates the stripped correlators[
−3 +

n∑
a=1

Da

]
〈O(τ1,k1)O(τ2,k2) . . .O(τn,kn)〉′ !

= 0 , (4.26)[
n∑
a=1

b ·Ka

]
〈O(τ1,k1)O(τ2,k2) . . .O(τn,kn)〉′ !

= 0 . (4.27)

The primordial scalar spectral tilt We can use the above formal results to re-derive

the well-known spectral tilt of the primordial curvature perturbation power spectrum PR
from single field slow-roll inflation

1− ns ≡ −
∂ ln

(
k3PR

)
∂ ln k

= 2εV − 2ηV , (4.28)

where I introduced the potential slow-roll parameters

εV ≡M2
Pl

(
V ′

V

)2

ηV ≡M2
Pl

V ′′

V
. (4.29)

Since we have assumed exact de Sitter spacetime so far, we will be able to recover this

result only in the limit

ε ≡ Ḣ

H2
' εV → 0 , (4.30)

where the Hubble parameter is approximately constant.

To compute ns, first notice that unlike for translations and rotations, now we have deriva-

tives acting also on the time dependence of the fields. While these constraints are valid at

any time, it is particularly simple to evaluate them after Hubble crossing of all the modes,

ka � aH. For example, consider an inflaton φ of mass m in quasi-de Sitter spacetime.

Neglecting all terms or order ε, φ must obey the equation of motion

0 = (−� +m2)φ ∝ φ′′ − 2

τ
φ′ +

(
k2 +

m2

τ2H2

)
φ , (4.31)

where a prime indicates a derivative with respect to conformal time and H ≡ a′/a = aH.

In the far future −kτ � 1 (recall a ∝ eHt) and so I can solve

φ′′ − 2

τ
φ′ +

m2

τ2H2
φ ' 0 . (4.32)

The time dependence of φ then is given by two power law solutions

O(τ,x) = τ∆O∆(x) + τ ∆̃O∆̃(x) , (4.33)
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where

∆ =
3

2
−
√

9

4
− m2

H2
, ∆̃ =

3

2
+

√
9

4
− m2

H2
. (4.34)

For small mass m � 3H/2, the ∆̃ solution decays with time much more quickly than the

∆ solution and can therefore be neglected, while

∆ ' m2

3H2
' ηV +O (ε) . (4.35)

Then, to compute φ correlators I can substitute τ∂τ = ∆ everywhere in (4.26) and (4.27).

For the equal-time two-point function, from (4.26) one finds the superHubble solution

(Exercise)

〈φ(τ,k)φ(τ,−k)〉′ = A
(−kτ)2ηV

k3
, (4.36)

for some unknown normalization A. We can now compute the power spectrum of curvature

perturbations R ≡ φ/(MPl

√
2ε) simply by evaluating the φ power spectrum at some fixed

constant τ = τ∗ hypersurface such that −kτ∗ � 1. From this the spectral tilt follows

1− ns ≡ −
∂ ln

(
k3PR

)
∂ ln k

= k∂k ln(−kτ)2ηV = 2ηV . (4.37)

More generally, this argument fixes the overall scaling with k any n-point function. To

zeroth order in ε and ηV one finds ∆ ' 0 and the time dependence can be completely

neglected. Then (4.26) becomes[
3(n− 1) +

n∑
a=1

ka
∂

∂ka

]
〈R(k1)R(k2) . . .R(kn)〉′ !

= 0 , (4.38)

with solution

〈R(k1)R(k2) . . .R(kn)〉′ =
S
(
k1
kn
, . . . , kn−1

kn

)
k

3(n−1)
n

, (4.39)

for some model dependent “shape” function S, which depends only on the displayed ratios.

The solutions of the SCT constraint in Fourier space are more difficult to discuss, see e.g.

[22, 26, 27].

5 Adiabatic modes

It is time to move on to study non-linearly realized symmetries. By definition, broken

symmetries have field transformations that contain a constant term and so are non-linearly

realized as in (3.11). Note that linear vs non-linear realization depends on the physical

state of the theory and not on the symmetry itself. In other words, the same symmetry

can be linearly realized on some states and non-linearly realized on others.
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In this section, I discuss a large class of non-linearly realized symmetries that play a crucial

role for correlators in presence of dynamical gravity and in particular in cosmology. These

symmetries are a special subset of large diffeomorphisms (diffs) that are continuously con-

nected to physical perturbations. When acting on an unperturbed FLRW spacetime, they

generate new solutions called adiabatic modes. Adiabatic modes are physical perturba-

tions that are locally equivalent to a change of coordinates and possible a global symmetry

transformation [28]. In the following, after reviewing gauge transformations in cosmologi-

cal perturbation theory, I introduce adiabatic modes in the simplest case of a single fluid

cosmology (see [6, 7, 9, 29], which is relevant of applications to single field inflation. Then I

discuss other, less standard case where adiabatic modes arise, namely theories with a shift

symmetry and solids. This section focuses on the classical properties of adiabatic modes,

while the quantum properties are discussed in the next section in the form of soft theorems.

5.1 Gauge transformations

In cosmology we have an exact, non-linear solution that describes a homogeneous and

isotropic background and we expand in small perturbations as in (2.20). By the rotational

invariance of the background, it is convenient to decompose the metric and the matter

sectors into scalar, transverse vectors and transverse traceless tensors, or simply vectors and

tensors. These are the lowest dimensional representation of SO(2), which is the little group

of ISO(3) with respect to some non-vanishing spatial momentum k. These perturbations

are the cosmological equivalent of single particle states in particle physics, which are the

irreps of the Poincaré symmetry group. Scalar, vectors and tensors have helicity13 zero,

one and two respectively. We parameterize the metric as (in the notation of [28, 30])

ds2 = −(1 + E)dt2 + 2a(∂iF +Gi)dtdx
i + a2

[
(1 +A)δij + ∂i∂jB + 2∂(iCj) + γij

]
, (5.1)

where {E,F,A,B} are four scalars, {Gi, Ci} two vectors and γij a tensor satisfying

γii = ∂iγij = ∂iCi = ∂iGi = 0 . (5.2)

To streamline the presentation I will systematically neglect vector modes, Ci = Gi = 0.

We assume a single perfect fluid, with energy-momentum tensor

Tµν = (ρ+ p)uµuν + pgµν , (5.3)

with normalized velocity uµu
µ = −1, p pressure and ρ energy density. Generalizations to

the multiple fluids case are straightforward. For the we assume the fluid has vanishing

anisotropic stresses, but we’ll relax this assumption later. The fluid velocity is decomposed

into a scalar δu and vector δuiV as

uµ = (u0, ui) , ui = ∂iδu+ δuVi , ∂iδu
V
i = 0 , (5.4)

13This is distinct from spin, which refers to the representations of SO(3), rather than SO(2). For example,

a spin one particle has three states m = −1, 0, 1, while an helicity one particle is transverse i.e. it has only

m = −1, 1 for rotations around its momentum k.
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and again we set the vector to zero δuVi = 0. By the covariance of general relativity,

changes of coordinates

xµ → x′µ = xµ + εµ(x) , (5.5)

are symmetries of the theory. In cosmological perturbation theory, this is most conveniently

expressed in terms of so called gauge transformations. For any tensor T (t,x) = T̄ (t) +

δT (t, vx), with implicit indices, any change of coordinates ε(x) can be expressed as the

gauge transformations ∆ of the perturbations δT by

∆ (δT ) ≡ T ′(x)− T (x) , (5.6)

where T ′ is the tensor T in x′ coordinates. For example, for tensors with zero and two

Lorentz indices one finds

φ′(x′) = φ(x) , g′µ′ν′ =
∂xµ

∂x′µ′
∂xν

∂x′ν′
gµν . (5.7)

To linear order in ε and in perturbations, the gauge transformations of these perturbations

are then found to be14

∆δφ = −ε0 ˙̄φ = ε0
˙̄φ , (5.9)

∆hµν(x) = −∇µεν −∇νεµ . (5.10)

More explicitly, and separating time and space components15:

∆hij = 2a2Hδijε0 − 2ε(i,j) , (5.12)

∆h0i = −ε̇i − ∂iε0 + 2Hεi , ∆h00 = −2ε̇0 , (5.13)

∆δρ

ρ̇
=

∆δp

ṗ
= ε0 , ∆ui = −∂iε0 . (5.14)

States of the theory that differ by a gauge transformation are physically indistinguishable.

To ensure that we find physically distinct solutions of our theory, rather than gauge trans-

formations of some single solution, it is easiest to compute some gauge invariant variables

in some convenient gauge. To fix the gauge consider small gauge transformations, which

are defined by the property

Small gauge transformations: lim
|x|→∞

εµ(t,x) = 0 . (5.15)

14The differential geometric reader will have recognize these as (minus) the Lie derivative Lε in the εµ

direction. This is true in general (always to linear order in ε and perturbations δT )

∆δTensor = −LεTensor = −LεTensor . (5.8)

15Spatial indices are lowered and raised with the background metric, ḡ00 = −1 and ḡij = a2δij so

εi =
1

a2
εi and ε0 = −ε0 . (5.11)
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Then the SVT components of the metric and Tµν transform as

∆A = 2Hε0 , ∆B = − 2

a2
εS , (5.16)

∆Ci = − 1

a2
εVi , ∆γij = 0 , ∆E = 2ε̇0 , (5.17)

∆F =
1

a

(
−ε0 − ε̇S + 2HεS

)
, ∆Gi =

1

a

(
−ε̇Vi + 2HεVi

)
, (5.18)

∆δρ = ˙̄ρε0 , ∆δp = ˙̄pε0 ∆δu = −ε0 , (5.19)

∆πS = ∆πVi = ∆πTij = ∆δuVi = 0 ,

where I used the SVT-decomposition of the gauge parameter

εµ = {ε0, ∂iεS + εiV } . (5.20)

Gauge invariant perturbations are now easy to build and there are many possible choices in

the literature. The most commonly used variables are curvature perturbations on comoving

(R) and constant density (ζ) hypersurfaces, defined respectively by

R ≡ A

2
+Hδu , (5.21)

ζ ≡ A

2
−Hδρ

ρ̇
. (5.22)

Note that these variables are gauge invariant only to linear order, and additional terms

must be added for second and higher order. We’ll address this in Sec. 7.1. Also, as we

will now see, these variables are not invariant under large gauge transformations, with

εµ(∞) 6= 0.

5.2 Perfect fluids

In this section I discuss the most generic scalar and tensor adiabatic modes. The algebra

is simple but a bit tedious. This discussion is based on [9]. The reader interested in the

result can skip directly to Sec. 5.2.2.

5.2.1 The long story

We will execute the following four steps:

1. Fix the small gauge; in this case I’ll work in comoving gauge.

2. Find residual large diffs that respect the comoving gauge condition.

3. Find the subset of large diffs that “extend to finite momentum”, i.e. that solve Ein-

stein equation non-trivially

4. Acting with these diffs on the unperturbed FLRW metric generate adiabatic modes

Let us see how this works in detail.
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Step 1 Using (5.16)-(5.20), one can find diffs such that working in comoving gauge:

B′ = B + ∆B = 0 δu′ = δu+ ∆δu = 0 , Ci + ∆Ci = 0 . (5.23)

This fixes small diffs completely, i.e. from the above conditions I can solve for small εµ

uniquely. To avoid a pedantic notation, I’ll still denote by R the value of the gauge

invariant R in this gauge

R|comoving ≡ R =
A

2
. (5.24)

The metric then takes the form

ds2 = −(1 + 2N1)dt2 + 2Nidtdx
i + a2 [(1 + 2R)δij + γij ] dx

idxj , (5.25)

where I renamed E = 2N1 and ∂iF +Gi = 1
aNi as standard in the literature.

Step 2 By (5.12)- (5.14), a large gauge transformation on the unperturbed FLRW back-

ground generates the following perturbations (Exercise)

R = Hε0 −
1

3a2
∂kεk , N1 = ε̇0 , (5.26)

Ni = −∂iε0 + 2Hεi − ε̇i
δρ

ρ̇
= ε0 , (5.27)

γij = −2∂<iε
j> δui = −∂iε0 . (5.28)

where < · · · > on indices is shorthand notation for the symmetric traceless part:

T<ij> ≡
1

2
(Tij + Tji)−

1

3
Tkkδij . (5.29)

This set of perturbations is a solution of the equations of motion for any large ε, e.g. of

the form

εµ =
∑
n

aµi1i2...in(t)xi1xi2 . . . xin . (5.30)

In Fourier space, this expression is non-vanishing only at k = 0, since it is just a sum

of derivatives of δ3
D(k). I will then call this profile a zero-momentum solution. But since

they come from a change of coordinates, these zero-momentum solutions are nothing but

FLRW in unusual coordinates! Now comes the crucial point. We demand that these

solutions “extend to finite momentum”, i.e. that they can be interpreted as the k → 0

limit of some perturbation in comoving gauge. For this to be possible we need to impose

∂iγij = γii = 0 ⇒ ∇2εi = −1

3
∂i∂kεk , (5.31)

which is what we mean by a transverse traceless tensor. This in particular implies

∇2∂iε
i = 0. (5.32)
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Step 3 But this is not sufficient. A direct calculation shows that the off-diagonal and ij

parts of the Einstein Equations at linear order take the form

kikj

(
N1 +R+ ψ̇ +Hψ

)
= 0 , (5.33)

kj

(
ṄV
i +HNV

i

)
= 0 , (5.34)

ki

(
HN1 − Ṙ

)
= 0 , (5.35)

where Ni = ∂iψ + NV
i . While these equations are automatically satisfied at k = 0, they

are not in general at k. So to be able to extend them to finite momentum we demand(
N1 +R+ ψ̇ +Hψ

)
!

= 0 , (5.36)(
ṄV
i +HNV

i

)
!

= 0 , (5.37)(
HN1 − Ṙ

)
!

= 0 . (5.38)

Using (5.26) in the constraint (5.38) we find

ε0 =
1

3Ḣ
∂k ε̇

k ⇒ ∇2ε0 = 0 . (5.39)

Integrating the constraint (5.36) I find

ψ = −ε0 +
1

3a

∫ t

dt′a(t′)∂kε
k , (5.40)

where I set to zero an integration function since it only lead to vector adiabatic modes (see

[9] for more details). Using (5.39) and (5.32) we find out that ∇2ψ = 0. Comparing with

the left equation of (5.27)

∂iψ = Ni = −∂iε0 + 2H∂iεi − ∂iε̇i , (5.41)

one finds the solution

εi(t, x) = ε̄i(x)− ∂i∂k ε̄k
∫ t dt′

3a(t′)3

∫ t′

dt′′a(t′′) . (5.42)

Step 4 According to (5.26) these diffs generate the solution (more vector modes can be

found in [9])

R = −1

3
∂k ε̄

k , ψ =
1

3a
∂k ε̄

k

∫ t

dt′a(t′) , (5.43)

γij = −2∂<iε̄
j> + 2∂i∂j∂k ε̄

k

∫ t dt′

3a(t′)3

∫ t′

dt′′a(t′′) . (5.44)
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5.2.2 The short story

Here I discuss only the results for the leading adiabatic mode, for more details see Sec.

5.2.1. Consider the following diff

εµ = {0, ωijxj} . (5.45)

According to (5.12)-(5.14), when acting on the unperturbed FLRW background, the diag-

onal part of this diff, namely ωii, generates the constant curvature mode

Scalar adiabatic mode: R = −ωii
3
, ψ =

ωii
3a

∫
a(t′)dt′ , (5.46)

The anti-symmetric part ω[ij] is just a rotation, which does not generate any perturbation

because FLRW is rotation invariant. Finally, the symmetric traceless part ω<ij> generates

an adiabatic tensor mode. Using again (5.12)-(5.14) we see that

Tensor adiabatic mode: γij = −2ω<ij> . (5.47)

This derivation proves that no matter the ingredient of the universe and the expansion

history, there are always a constant scalar and a constant tensor modes. This can be

derived in several different ways [31], and has been known for a long time and [32]. If

the system has a single active scalar degree of freedom, as in single field inflation, then

(5.46) must be the solution on large scales. This is what makes early universe cosmology

so interesting if you care about high energy physics! Primordial perturbations, produced

in the first fraction of a second after the big bang, at energy probably much larger than

anything we will be ever able to reproduce on earth are conserved during most of the

history of the universe. So, we can measure them at late times in cosmological observables

such as the CMB or Large Scale Structures. Remarkably, it is precisely the scalar adiabatic

mode that generates all cosmological perturbations we have ever measured in our universe.

Anything deviation from this scalar adiabatic mode is constrained to be less than about

a percent [33]. The tensor adiabatic mode on the other hand has not yet measured, but

there is large ongoing experimental effort to detect it in the odd-parity polarization of the

CMB.

Summarizing, in single fluid cosmologies, we have found that residual large diffs lead to non-

linear symmetries of cosmological perturbations. Since these are diff they can be computed

to linear order in ε and in perturbation but allowing for terms order εhµν simply from

∆hµν(x) ≡ −2∇(µεν) = −2∇̄(µεν) − 2δΓαµνεα . (5.48)

The result is (Exercise)

∆R = Hε0 −
1

3
∂iε

i +
1

2
~∂ε0 · ~∂ψ − εµ∂µR , (5.49)

∆γij = −2∂<iεj> − εµ∂µγij , (5.50)

where the first two terms in R and the first in γij are the same non-linear shifts as in

(5.26), indicating that symmetry is non-linearly realized. More explicitly and for further
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reference, the resulting symmetries in real and Fourier space are (Exercise)

γij(t,x)→ γij(t,x)− 2ω<ij> − ω<lm>xm∂lγij(t,x) , (5.51)

γij(t,k)→ γij(t,k)− 2ω<ij>(2π)3δ3(k)− ... , (5.52)

R(t, x)→ R(t,x)− ωii
3
− ωii

3
xi∂iR(t,x) , (5.53)

R(t,k)→ R(t,k)− ωii
3

(2π)3δ3(k) +
ωii
3

(3 + k · ∂k)R(t,k) . (5.54)

Infinitely many other symmetry can be found, that are analogous to this one. See e.g.

[6, 7, 9, 29, 34] for more details.

5.3 Shift symmetric cosmologies

In the previous example, the only symmetry at play were diffs. But adiabatic modes can

be generalized to account for physical perturbations that are locally indistinguishable from

a change of coordinates plus a global symmetry transformation [10]. This is relevant since

in many models additional symmetries besides diffs play an important role. For example,

here I will discuss cosmologies with a single scalar field φ that enjoys a shift symmetry

φ → φ+const. This symmetry is present in almost all attempts to embed inflation in a

UV-finite theory of gravity such as string theory. The reason is, unless an approximate

symmetry is at play, one expects dimension five and six Planck suppressed corrections in

the low-energy effective action, from the coupling to Planck scale modes such as higher

string oscillations. These corrections typically lead to large corrections to the η slow-roll

parameter (the so called η problem), which shorten the duration of inflation to just a few

efoldings.

The following is based on [10]. To next to leading order in derivatives, a scalar shift

symmetry theory must take the form

L = −
M2

Pl

2
R+ P (X) +G(X)�φ , with X ≡ −1

2
(∇Φ)2 , (5.55)

where P and G are arbitrary functions of the canonical kinetic term X. To find adiabatic

modes related to this new symmetry, we will follow the same general procedure as in the

previous section:

1. First, we choose a convenient gauge that fixes small gauge transformations. Let us

again choose comoving gauge, where metric takes the form (5.25) and instead of

δu = 0 as in (5.23) we will impose φ(t,x) = φ̄(t) or in other words δφ = 0.

2. Then, we identify all residual symmetry transformation that preserves the gauge

choice. In addition to the adiabatic mode we found in the previous section, now we

can also consider the diff ε0 = c/ ˙̄φ for any constant c. This does change our gauge

condition δφ = 0 into

δφ→ δφ+ ε0
˙̄φ = δφ− c . (5.56)

But this change can be re-absorbed in a global shift of the field φ→ φ+ c.
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3. Now, we mpose that the resulting zero-momentum modes solves all equations of

motion even finite momentum, q 6= 0. The last step leads the sought-after adia-

batic modes. Inspection of the equations of motion that become trivial at k = 0,

(5.33)-(5.38), shows that this mode does not extend to finite momentum. But we can

“improve” this mode to make it extendable to finite momentum. I skip this calcula-

tion here because it is conceptually the same as in the previous section. Details are

given in [10]. The result is that the right diff is

εµ = {c/ ˙̄Φ, c λ(t)xi} with λ(t) = C1 −
∫ t

dt′

(
Ḣ
˙̄Φ

+ (Θ−H)
¨̄Φ
˙̄Φ2

)
, (5.57)

where Θ depends on the theory as Θ = H + ˙̄Φ3∂XG/2M
2
Pl.

4. Finally, we use again the general formula (5.50) to find a new symmetry

Rk → Rk − c λ(t)
(
(2π)3δ3(k)− (3 + k · ∂k)Rk

)
− c

˙̄Φ

(
H(2π)3δ3(k) + Ṙk

)
.

(5.58)

This differs from the previous symmetry we found both because it involves a time-diff

as well and so Ṙ appears, and because now λ is not constant. For tensors there are

no new symmetries.

Let me stress that these symmetries apply to any FLRW solution, not just quasi de Sitter

as relevant for inflation. A complementary perspective on shift-symmetric cosmologies is

provided by the Effective Field Theory approach of [35, 36] specified to this case. This is

beyond the scope of this review, but see [37] for a full treatment.

6 Background-wave method

The background-wave method is the most intuitive and physically transparent was to derive

the soft theorems associated to the non-linearly realized symmetries we derived in the

previous section. The main idea is to separate perturbations into long, OL and short OS
wavelengths according to

OL(q) ≡ Θ(k̄ − q)O(q) OS(q) ≡ Θ(q − k̄)O(q) = O(q)−OL(q) , (6.1)

for some reference comoving scale k̄ and for Θ the Heaviside theta. Then one manipulates

the path integral representation of the correlator to separate the measure into long and

short wavelength modes

〈OL(q)O(k1) . . .O(kn)〉 =

∫
[DO]O(q)O(k1) . . .O(kn)eiS (6.2)

=

∫
[DOLDOS ]O(q)O(k1) . . .O(kn)eiS (6.3)

=

∫
[DO]O(q)O(k1) . . .O(kn)eiS (6.4)

〈O(q)〈O(k1) . . .O(kn)〉O(q′)〉 , (6.5)
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where these objects are most easily defined in the formalism

〈O(q)O(k1) . . .O(kn)〉 (6.6)

One re-absorbs the soft classical perturbation (a.k.a. a “wave”) in the classical background

that the remaining fields in the correlator live on. In formulae

7 Ward Takahashi identities

Let us now discuss a standard method to derive soft-theorems from non-linearly realized

symmetries: Ward-Takahashi (WT) identities. These identities are probably familiar to

many reader from the renormalization of QED. Gauge transformations in fact act non-

linearly on the four-vector potential Aµ → Aµ + ∂µα, for some function of spacetime α(x).

The WT identities are the used to proved non-perturbatively that the gauge invariance

of the theory is preserved by renormalization. Let us review the main idea. The starting

point is indeed just the identity

i〈[Q,O]〉 = 〈∆O〉 . (7.1)

Were O denotes collectively the product of n operators and its variation is

O =
n∏
a=1

O(xa) ⇒ ∆O =
n∑
a=1

O(x1) . . .∆O(xa) . . .O(xn) . (7.2)

If we are interested in late-time cosmological observations, which probe only primordial

correlators that are the equal-time products of fields but not of their conjugate momenta,

which typically decay with time. Then O is Hermitian and we can use

i〈[Q,O]〉 = 2Im〈OQ〉 . (7.3)

The idea is then to compute the left- and right-hand sides of (7.1) separately. I will shortly

present an explicit example for single field slow-roll inflation. One finds that the left-hand

side of (7.1) depends on the non-linear part of the transformation. The reason is as follows.

Using (2.7) and (2.8) to move from the Heisenberg to the interaction picture (see App. B

of [6] for a subtlety in this argument)

QH |Ω〉H = U †IQIUIU
†
int |Ω〉I = U †IQI |Ω〉 . (7.4)

Here QI is the charge written in terms of free fields. The free theory is invariant only

under the non-linear shift in the symmetry transformation and so QI must contain only

that term. On the other hand, the right-hand side of (7.1) depends only on the linear

part. The reason is that we are interested in computing connected diagrams, namely

diagrams that are proportional to an overall delta function. Instead the non-linear shift

only contributes to disconnected ones, that are proportional to the product of two or more

delta functions. Schematically

∆O(x) = C + ∆linO(x) ⇒ ∆O(k) = C(2π)3δ3
D (k) + ∆linO(k) , (7.5)

– 26 –



and so

〈∆O〉 ⊃ C
n∑
a=1

δ3
D(ka)〈O(k1) . . .O(ka−1)O(ka+1) . . .O(kn)〉 ∝ δ3

D(ka)δ
3
D

∑
b6=a

kb

 ,

where we see that the constant part only contributes to disconnected diagrams.

Operator Product Expansion (OPE) The OPE states that, in the limit x→ y, the

product of two operators A(x) and B(y) can be expanded as an infinity sum of operators

C(y) evaluated at a single point (see e.g. Ch. 20 of [43])

A(x)B(y) =
∑
C

fABC (x− y)C(y) , (7.6)

where fABC are numbers that depend on the specific operators and only on the distance

x − y. The word “operator” in OPE reminds us that this relation is valid inside any

correlator, not just on some specific states. By naive dimensional analysis, one expects

fABC to scale as |x − y|dC−dA−dB , where dA,B,C > 0 are the mass dimensions of A, B and

C. Then, the strongest divergence is obtained for the smallest dC and so a truncation of

the infinite sum to the first lowest dimensional operators has a chance to be accurate. In

momentum space we will use the equivalent relation (Exercise)

lim
q�k

A(−k− q/2)B(k− q/2) =
∑
C

fABC (k)C(q) , (7.7)

where k ∼ |x−y|−1 is the momentum associated with the inverse distance between the two

points, which is becoming large, and q ∼ |x + y|−1 is associated with the inverse average,

which is held approximately constant in the OPE limit. The main input needed for using

this method is a basis of operators C that are build out of products of fundamental fields

and their derivatives and a way to rank them in order of increasing mass dimension. For

perturbative theories, the naive or classical mass dimensions of operators, as derived from

dimensional analysis of the free part of the theory (e.g. a canonical scalar or vector has

dimension of mass, a canonical fermion dimension of mass3/2 and so on) usually provides

sufficient guidance to achieve this.

7.1 Slow-roll inflation: Ward-Takahashi identities

As an illustration, let us derive the WT identities for the symmetries in (5.52) and (5.54).

This presentation parallels in spirit that of [6], but instead of the Schrödinger picture of

“wave functionals” I use the more standard interaction picture. We start by defining the

charge

Q =
1

2

∫
d3x{Π,∆R}+ {Πij

γ ,∆γij} , (7.8)

where Π and Πγ are the conjugate momenta of R and γ respectively

[R(t,x),Π(t,y)] = iδ3
D(x− y) [γij(t,x),Πij

γ (t,y)] = iδ3
D(x− y) , (7.9)
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and the parenthesis indicated the anti-commutator and are used to make Q hermitian.

Also, we recall the explicit form of the symmetry transformation was given in (5.54). Since

those transformations are valid for arbitrary ωij , which eventually cancels in the final soft

theorem, in the following I’ll set −ωii/3 = 1 and −2ω[ij] = 1 to simplify the notation. So

our non-linearly realized symmetries are

∆R(k) = (2π)3δ3(k)− (3 + k · ∂k)R(k) , (7.10)

∆γij(k) = (2π)3δ3(k)− .., (7.11)

For example for the part of ∆R that is linear in R in real space

{Π,R}† = {R†,Π†} = {R†,Π†} = {R,Π} = {Π,R} ⇒ Q† = Q . (7.12)

where I used the symmetry of the anti-commutator in the last step. The expression for Q

is chosen so that indeed it generated the transformation upon commutation as in (7.1). I

will focus now on the derivation for R and leave the almost identical calculation for γij as

an exercise.

The left-hand side As argued in (7.3) to compute the left hand side of the WT identity

(7.1) we need the imaginary part of 〈OQ〉 and we can compute Q |Ω〉 in the interaction

picture, where the free R and Π fields are given by

R(x) =

∫
d3k

(2π)3

[
akfk(t)e

ik·x + a†kf
∗
k (t)e−ik·x

]
, (7.13)

Π(x) =

∫
d3k

(2π)3

[
akgk(t)e

ik·x + a†kg
∗
k(t)e

−ik·x
]
, (7.14)

where fk(t) and gk(t) are the solutions of the classical linearized Hamilton equations of

motion and depend only on |k| by virtue of isotropy. In fact, gk(t) = a3ε(t)ḟk(t) with ε

the Hubble slow-roll parameter, but we will not need this relation here. The canonical

quantization (7.9) fixes the so-called wronskian

fkg
∗
k − f∗kgk = i . (7.15)

We can then massage the equation as

QI |0〉 =

∫
d3xΠ(x) |0〉 = g∗0(t)a†0 |0〉 (7.16)

=
g∗0(t)

f∗0 (t)
f∗0 (t)a†0 |0〉 =

g∗0(t)

f∗0 (t)
R(0) |0〉 , (7.17)

where R(0) = R(k = 0) is the Fourier space field and as promised I only used the non-

linear part of ∆R. I can then re-write this in the Heisenberg picture by repeating (7.4)

backwards. So we need to compute

i〈[Q,O]〉 = 2Im

[
〈OR(0)〉 g

∗
0(t)

f∗0 (t)

]
. (7.18)
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For concreteness and because it is relevant for observations, let us assume that

O = R(k)R(k′) , (7.19)

where the time argument is τ → 0 so that R is approximately constant and I can keep τ

implicit. By hermiticity one finds that 〈OR〉 is real

〈OR(0)〉∗ = 〈R†(0)O†〉 = 〈R(0)R(−k′)R(−k)〉
= 〈R(0)R(k′)R(k)〉 = 〈R(k)R(k′)R(0)〉 = 〈OR(0)〉 , (7.20)

where I used that R†(k) = R†(−k) which is a consequence of R being hermitian in real

space and that all equal time R commute with each other. For the other factor in (7.18)

we can use the Wronskian condition

Im
g∗0(t)

f∗0 (t)
=

Im [g∗0(t)f0(t)]

|f0(t)|2
= − i

2

[g∗0(t)f0(t)− g0(t)f∗0 (t)]

|f0(t)|2
=

1

2|f0(t)|2
, (7.21)

where we recognize the R power spectrum at zero momentum

〈R(k)R(k′)〉 = (2π)3δ3
D

(
k + k′

)
|fk(t)|2 . (7.22)

Our calculation of the left-hand side is complete

i〈[Q,R(k)R(k′)]〉 =
1

PR(0)
〈R(k)R(k′)R(0)〉 . (7.23)

The right-hand side On the right-hand side of the (7.1), I can just use the linear part

of the transformation in (7.10) and find

〈∆O〉 = −
(
3 + k · ∂k + 3 + k′ · ∂k′

)
〈R(k)R(k′)〉 . (7.24)

One can eliminate the delta function picking up a −3 and express this in terms of the tilt

of the power spectrum

〈∆O〉′ = − (3 + k∂k)PR(k) = (1− ns)PR(k) . (7.25)

We conclude with the WT identity in its final form

lim
q→0
〈R(q)R(k)R(k′)〉′ = (1− ns)PR(k)PR(q) . (7.26)

A few comments are in order:

• This relation is valid for all single field models in which R becomes constant (i.e. adi-

abatic) on superHubble scales, but it is in general violated in multifield models.

Observing any deviation from this relation, e.g. in the CMB temperature anisotropy

bispectrum would rule out the leading class of inflationary models. In comparing with

observations several non-linear effects due to the late evolution need to be computed

and affect the squeezed limit, as e.g. in [44–49]. The exception is the cross correlation

of CMB temperature and CMB spectral distortions [50], which has no such squeezed

late time non-Gaussianity [51].
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• We derived the relation using comoving momentum k. After relating k to the physical

momentum kp using the perturbed metric this result reduces to [52]

lim
qp→0

〈R(qp)R(kp)R(k′p)〉′ = O(q2) . (7.27)

This is to be expected since by definition adiabatic modes are locally equivalent to a

change of coordinates and so cannot affect the physics. A more formal and precise

derivation of this fact uses (conformal) Fermi Coordinates [53–55]. The O(q2) term

is model dependent but has a lower bound of order η [56, 57].

• Many other soft theorems exist, also with soft tensor and vectors [1, 6, 9, 11].

• There is a loophole in the derivation, which I will discuss next.

7.2 Ultra-slow-roll inflation: OPE derivation

It was pointed out in [58, 59] that there are models of single-field inflation in which the soft

theorem (7.26) is violated. The violation is actually small in canonical models, but can be

large in presence of a small speed of sound [60] The loophole is that in these models R
grows on superHubble scales and so it does not asymptote the adiabatic solution (see e.g.

[11, 61]). In the general case this is the end of the story, but in the simplest model, namely

Ultra-Slow-Roll inflation [62], there is an additional shift symmetry in the problem. To

leading order in derivatives, the Lagrangian that of (5.55). In Sec 5.3 we saw that this new

symmetry generates new adiabatic modes. Here we will see that the associated symmetries

lead to a new, corrected soft theorem, which is satisfied by the explicit calculation. This

discussion is based on [10]. Instead of using the WT identities as in the previous section,

I will instead use the OPE.

If we are only interested in scalar modes R, the leading order terms in the OPE are

Rk− 1
2
qR−k− 1

2
q

q→0−−−→h(k)(2π)3δ3(q) + f(k)R−q + g(k)Ṙ−q (7.28)

+ f i(k)∂iR−q + gi(k)∂iṘ−q +O(q2R,R2) . (7.29)

Notice that the q and k dependence has been completely factored between the operators

{R, Ṙ, . . . } and the coefficients {f, g, . . . }. The normalization of the first, constant term

is easily determined by taking the expectation value on each side and using 〈R〉 = 0, then

h(k) = PR(k) . (7.30)

The coefficients fi and gi vanish. To see this notice that by rotational invariance one must

have

fi(k) = F (k)ki , (7.31)

which is an odd function under k → −k. But the left-hand side of (7.29) is even under

this parity transformation (recall that R are at equal time and so commute) and so f i = 0.
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The coefficients f and g are fixed by the symmetries we derived previously

R(k)→ R(k)− λ(2π)3δ3(k) + λ (3 + k · ∂k)R(k) , (7.32)

Rk → Rk − λ(t)
(
(2π)3δ3(k)− (3 + k · ∂k)Rk

)
− 1

˙̄Φ

(
H(2π)3δ3(k) + Ṙk

)
. (7.33)

Let us call Q1,2 the respective charges. By taking the commutator of each side of the OPE

(7.29) with Q1 and then the expectation value we find

〈
[
iQ1,R−k− 1

2
qRk− 1

2
q

]
〉 = (1− ns)P (k)(2π)3δ3(q) , (7.34)

〈
[
iQ1, f(k)R−q + g(k)Ṙ−q

]
〉 = 〈f(k)∆R−q + g(k)∂t∆R−q〉 = f(k)(2π)3δ3(q) , (7.35)

where only the linear part, O(R1) contributed in the first equation and only the non-linear,

constant part O(R0) in the second. Since these two expression need to be equal in the

limit q→ 0 in virtue of the OPE relation, we conclude that

f(k) = (1− ns)P (k) . (7.36)

Plugging this result back into the OPE and performing the same procedure again using Q2

instead of Q1 fixes g to

g(k) =
1

Θ

˙̄Φ
¨̄Φ

[
(1− ns)P (k)H − Ṗ (k)

]
. (7.37)

Now that we know all leading order coefficients appearing in the OPE, all we have to do is

to multiply the OPE equation (7.29) by Rq and take the expectation value. The result is

lim
q→0
〈RqRk− 1

2
qR−k− 1

2
q〉
′ = −

˙̄ΦṖR(q)

2 ¨̄ΦΘ

[
(ns − 1)HPR(k) + ṖR(k)

]
+ (1− ns)P (k)P (q) ,

(7.38)

where I used that

〈RqRk− 1
2
qR−k− 1

2
q〉
′ =

1

2
〈{Rq,Rk− 1

2
qR−k− 1

2
q}〉 . (7.39)

A few comments are in order:

• The new soft theorem (7.38) reduces to Maldacena’s consistency relation (7.26) in

slow roll inflation because then ṖR(q) ' q2τ2PR(q) and so the first term is subleading

as q → 0 and it is of the same order as terms we neglected in the OPE. This is

reassuring.

• In USR inflation instead the first term is actually leading and the second subleading.

To see this, let us consider the simplest model

L = −
M2

Pl

2
R− 1

2
∂µφ∂

µφ . (7.40)
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i.e. (5.55) with P and G the identity function. From the background equations of

motion

¨̄φ+ 3H ˙̄φ = 0 ,R (7.41)

we see that ˙̄φ ∝ a−3 and so

ε = − Ḣ

H2
=

1

2

˙̄φ2

M2
PlH

2
∝ a−6 , (7.42)

which makes ε negligibly small after few efoldings. The power spectrum and bispec-

trum can be computed in the usual in-in formalism and one finds [58]

〈RkR−k〉′ =
H2

4M2
p εk

3
, 〈Rk1Rk2Rk3〉 =

3H4

16M4
p ε

2

∑
i k

3
i∏

i k
3
i

= 3
∑
j>i

P (ki)P (kj) .

(7.43)

The power spectrum is just the usual expression except that now ε is growing fast

with time PR ∝ a6 (equivalently R ∝ a3). The spectral tilt can be computed16 to be

ns − 1 = −2ε− 6− η ' 0. (7.44)

Plugging these explicit results into our soft theorem (7.39) we see that it is perfectly

satisfied.

• The soft theorem (7.39) is not a consistency relation in the sense that the right hand

side depends on Ṗ during inflation, which is a late time observable. So this soft

theorem, unlike Maldacena’s result for slow-roll inflation, unfortunately cannot be

tested with observations.

• The result is still useful. For example is can be straightforwardly generalized to the

n-point correlation function (which have not been computed explicitly)

lim
q→0
〈Rq,

n∏
a=1

Rka−q/n〉
′ = −

˙̄ΦṖ (q)

2 ¨̄ΦΘ

[
HD(n)Bn(ka, t) + Ḃn(ka, t)

]
(7.45)

− P (q)D(n)Bn(ka, t) +O(q) , (7.46)

where

D(n) ≡

[
3(n− 1) +

n∑
a=1

ka · ∂ka

]
, (7.47)

Bn(ka, t) ≡ 〈
n∏
a=1

Rka,t〉 . (7.48)

16To get this result you need to evolve the power spectrum until some fixed, k-independent time τ∗ when

USR stops and a phase of slow-roll inflation starts. Compute ns at horizon exit gives the wrong result

because PR continues to evolve after that.
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