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Binary Stars
C. A. Tout

[For Examples class 1.30-3.30pm, Tuesday 8th March] Lent Term, 2022

Examples Sheet II

1. A binary star system consists of two centrally condensed stars of masses M1 and M2

synchronous in a circular orbit of radius a. Star 1 is just overfilling its Roche lobe so
that material flows through a nozzle around the inner Lagrangian point at (xL, 0, 0), in a
Cartesian coordinate system with star 1 at the origin and star 2 at (a, 0, 0) rotating about
the z-axis, where it passes through a sonic surface S. Show that the rate at which mass
flows from star 1 towards star 2 is

|Ṁ1| =
2πa3

GM [β(β − 1)]1/2

∫ 0

ΦL

ρcs dΦ,

where

β =
M1a

3

Mx3
L

+
M2a

3

M(a− xL)
,

ρ is the density, cs is the sound speed, ΦL is the potential at the inner Lagrangian point
and M = M1 +M2.

The overflowing material remains adiabatic on streamlines with P = Kργ . Show that
along a streamline

1

2
v2 + h+Φ = const,

where h = u+ P/ρ is the specific enthalpy of material with specific internal energy u and
v is the flow speed in the rotating frame.

Assume that streamlines flow along equipotential surfaces from far away in the star where
the density and pressure are ρ0 and P0 and deduce that

|Ṁ1| =
2πa3

GM [β(β − 1)]1/2
γ1/2

(

2

γ + 1

)

γ+1
2(γ−1)

∫ 0

ΦL

(ρ0P0)
1/2 dΦ.

2. A white dwarf behaves as an n = 3/2 polytrope with radius R = γM−1/3 and isotropic
moment of inertia I = Mk2R2, where M is its mass and k and γ are constants. It accretes
from a main-sequence companion via an accretion disc so that material is accreted with
the specific angular momentum of a Keplerian orbit at the surface of the star. Show that
the total angular momentum accreted along with a mass ∆M is

∆J = C
{

(M0 +∆M)4/3 −M
4/3
0

}

,
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where C is a constant to be determined.

Suppose that before it accretes the spin of the white dwarf is negligible and that it maintains
a uniform angular velocity Ω(t) while it accretes. From models of white dwarfs γ =

0.0126R⊙M
1/3
⊙ and k2 = 0.205. How much material can a white dwarf of 0.5M⊙ accrete

before it is spun up to its break up velocity?

3. Main-sequence stars with mass M > 1.5M⊙ have a convective core of mass Mc ≈
1
4
M

at zero age when the uniform hydrogen abundance by mass is X = 0.7. The size of the core
falls linearly with X as the star evolves until, at the end of the main sequence when X ≈ 0,
Mc ≈ 1

10
M . Assuming that such stars burn hydrogen at a constant luminosity L ∝ M3

find Mc/M as a function of t/τMS, where t is the age and τMS is the total main-sequence
lifetime.

At t = 9
21
τMS a star of 2M⊙ accretes 3M⊙ of unprocessed material from a binary com-

panion in a time that is short compared with the nuclear burning timescale. The material
accretes on to the surface of the star without mixing into its core. Once the star has
regained equilibrium find its effective age in the form t = ατMS, that is as a fraction of the
main-sequence lifetime of what is now a 5M⊙ star.

Its evolution then continues unaffected by the companion until it exhausts its central
hydrogen. What would be the mass of an isolated star that would have evolved to the
same point in its evolution at this time?

Comment on this in relation to blue stragglers in middle-aged star clusters.

4. Two stars of masses M1 and M2 move in circular orbits about their centre of mass.
What is (i) the orbital angular momentum J1 of star 1 and (ii) the total orbital angular
momentum J , in terms of the masses and the orbital period P?

Wind from star 1 reduces M1 at a rate which is steady and slow compared with P . The
wind leaves the stellar surface in a spherically symmetric manner and can be assumed not
to interact with star 2. Justify briefly the equation

J̇ =
J1
M1

Ṁ1

for the evolution of total orbital angular momentum and show that this implies

P ∝ (M1 +M2)
−2

.

Now suppose that (a) a constant fraction f of the mass lost from star 1 is accreted by
star 2, (b) the remaining 1−f escapes to infinity with the same specific angular momentum
as before and (c) the intrinsic spin of both components remains negligible compared to the
orbital angular momentum. Show that the variation of P is now given by

P ∝ M−3f
1 M−3

2 (M1 +M2)
−2

.
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Discuss qualitatively the validity of each of assumptions (a) to (c) and in particular their
possible dependence on orbital separation (relative to star size) and on wind velocity
(relative to orbital velocity).

Finally, suppose that the period is so long, perhaps 106 − 107 yr, that the mass loss by
stellar wind takes place in a time which is short compared with the orbital period. Without
detailed calculation, what would you expect the effect on the orbit to be?

5. In a semi-detached binary, with conservative Roche lobe overflow (RLOF), show that
the radius a of the orbit satisfies

a ∝
(1 + q)4

q2
,

where q is the mass ratio of the two components (loser/gainer).

In a certain range of mass ratios, the radius of the Roche lobe around the loser can be
approximated by

RL ≈ 0.4aq2/9.

Show that as the loser, of mass M , transfers mass to its companion, its Roche-lobe radius
changes at a rate

d loge RL

dt
= α

d loge M

dt
,

where
α = 20

9

(

q − 4
5

)

.

A star of mass M and age t has a radius R which changes in response to internal nuclear
evolution and to variation in mass (provided the variation is slow), according to

loge(R/R⊙) = β loge(M/M⊙) + t/tnuc,

where β, the slope of the ZAMS radius-mass relation, and tnuc, the nuclear timescale, can
be taken as constant. As long as R < RL the mass M remains constant but once R > RL

mass starts to flow at a rate given by

d loge(M/M⊙)

dt
= −

1

tdyn
log

R

RL

,

where tdyn is the dynamical timescale, also constant (tdyn ≪ tnuc) .

Define f = loge (R/RL). As long as f is negative show that it satisfies the differential
equation

df

dt
=

1

tnuc

and find a corresponding first-order linear differential equation satisfied by f when it is
positive. Show that as long as β > α, f tends to a small constant positive value,

f →
1

β − α

tdyn
tnuc

,
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implying steady mass transfer on a nuclear timescale but that if β < α, f grows exponen-
tially on a dynamical timescale.

On the lower main sequence β ≈ 1, while on the upper main sequence β ≈ 0.5. Find the
corresponding ranges of initial mass ratio q0 for which mass transfer can proceed steadily,
on a nuclear timescale once the primary has filled its Roche lobe.

6. For mass ratio q between 0.2 and 2 the ratio of Roche-lobe radius to orbital separation
is given sufficiently accurately by

RL

a
= 0.38q0.25.

If one star transfers mass conservatively to the other in a close binary, show that the radius
of the loser is a minimum when q = 7

9
.

The loser is a white dwarf whose radius R∗ is given in terms of its mass M by

R∗ = 0.01M−
1
3 , (†)

in solar units. Show that the Roche-lobe overflow would proceed on a rapid (i.e. hydro-
dynamic) timescale if q > 17

27
but that it can be on a slower timescale otherwise.

A binary system with period 0.1 d consists of two white dwarfs of different mass, both in
the range 0.2 − 1M⊙, for which you may assume (†) applies. Given that the Sun would
fill its Roche lobe in a binary with period about 0.3 d, estimate the period at which the
double-white-dwarf binary would fill its Roche lobe. Which component would reach its
lobe first? What physical process or processes might bring about the necessary decrease in
period within the Galactic lifetime? What would you expect to be the outcome of Roche-
lobe overflow if the white dwarfs’ masses are (a) 0.2 + 0.5M⊙, (b) 0.5 + 1.0M⊙ and (c)
0.6 + 0.7M⊙.

7. A binary system has components of mass M1 and M2 in circular orbits about their
common centre of mass with a period P = 2π/Ω. The binary separation is a. Show that
the orbital angular momentum is given by

J =

(

M1M2

M1 +M2

)

a2Ω =
G2/3P 1/3M1M2

(2π)1/3(M1 +M2)1/3
.

The star of mass M1 transfers mass to that of M2 and loses mass to infinity through a
stellar wind. The mass transfer rate is Ṁ2 = −fṀ1 so that the mass loss rate in the wind
is (1− f)Ṁ1. The wind carries away a fraction λ of the specific angular momentum of the
entire binary system. Show that

J̇ =
λ(1− f)JṀ1

M1 +M2

.
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Show further that the orbital period varies as

P ∝ M−3
1 M−3

2 (M1 +M2)
3λ+1.

The radius R of star 1 expands as a result of stellar evolution according to

loge(R/R⊙) = n loge(M1/M⊙) + t/tnuc,

where tnuc is a constant nuclear time scale and n is constant too. The radius of the Roche
lobe of star 1 may be approximated by

RL = 0.46a

(

M1

M1 +M2

)
1
3

.

Stellar evolution proceeds until R slightly exceeds RL at which point mass transfer begins
at a rate

Ṁ2 =
xM1

tdyn
,

where x = loge(R/RL) and tdyn is a the constant dynamical timescale. Deduce that

dx

dt
=

1

tnuc
−

x

ftdyn

{

n+
5

3
− 2fq −

(

2λ+
2

3

)

(1− f)q

1 + q

}

,

where q = M1/M2.

Hence find a condition on the mass ratio q that ensures that the mass transfer proceeds
only on a slow nuclear time scale and indicate briefly what you would expect to happen
otherwise.
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