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Binary Stars
C. A. Tout

[For Examples class 1.30–3.30pm, Tuesday 26th April] Lent Term, 2022

Examples Sheet III

1. For the case of non-dissipative tides in a misaligned binary system show that

ḣ = − M2B

2µablh2
Ω.hΩ× h

when averaged over an orbit. Deduce that both Ω and h precess about the total angular
momentum vector H = µh+ IΩ and find the time to precess once around.

2. From the tidal perturbative force

f = − 9M2
2

M1R2(1−Q)2τdamp

(

R1

r

)10
{

2r(r.ṙ) + r2(ṙ−Ω× r)
}

confirm that, when Ω is parallel to h and changes are on a timescale much longer than
the orbital period,

ḣ = − 2

τtid

{

1 + 15
2
e2 + 45

8
e4 + 5

16
e6

(1− e2)13/2
− Ω

ω

1 + 3e2 + 3
8
e4

(1− e2)5

}

h,

where

τtid =
2

9
τdamp

(

a

R1

)8
M2

1

M2M
(1−Q)2

and a, e and ω are the semi-major axis, eccentricity and mean angular velocity of the orbit.
Show further that

2ω̇

3ω
= − ȧ

a
=

Ė

E
=

2

τtid

{

1 + 31
2
e2 + 255

8
e4 + 185

16
e6 + 25

64
e8

(1− e2)15/2
− Ω

ω

1 + 15
2
e2 + 45

8
e4 + 5

16
e6

(1− e2)6

}

.

Use conservation of angular momentum between stellar spin and orbit to confirm that

Ω̇

Ω
= −µh

IΩ

ḣ

h
,

where I is the moment of inertia of the expanded star spinning at Ω and µh is the moment
of inertia of the orbit of mean angular velocity ω. Thence deduce that when µh ≫ I the
spin of the star pseudosynchronises with the orbit at periastron so that

Ω =
1 + 15

2
e2 + 45

8
e4 + 5

16
e6

(1 + 3e2 + 3
8
e4)(1− e2)3/2

ω

1
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and sketch the ratio of this to the orbital angular velocity at periastron as a function of e.

3*. A star, of radius R, is tidally influenced by a point mass companion at a separation a

with a ≫ R. This generates a fluid flow v(r) at a position r relative to the centre of the
perturbed star that is governed by continuity

∂ρ

∂t
+∇.ρv = 0,

where ρ(r) is the density which must be constant on equipotential surfaces described by

r̄ = r[1 + α(r)P2(cos θ)].

The function α(r) is the solution to Clairaut’s equation for an unperturbed star and θ is
the angle between a and r which lies on the equipotential surface for which r̄ = const.
Show that the velocity field v can be written, to first order in α, as

v = −1

2
β(r)α(R)∇K,

where β(r) depends only on the structure of the unperturbed star and K is the harmonic
function

K =
∂

∂t

{

3

2
r5a3lij(r)lij(a)

}

.

Deduce that

β(r) =
1

ρ(r)

∫ r

R

α(r′)

α(R)

dρ

dr′
dr′,

in which the limits are chosen to ensure that β is not singular at the surface where ρ → 0.

Thence show that

vi =
1

QM1R2

∂qij
∂t

rjβ(r),

where qij is the quadrupole tensor induced by the companion.

The rate of strain tensor

tij = (∇v)ij =
∂vi
∂xj

+
∂vj
∂xi

.

By taking the average of the square of this over equipotential surfaces, which may now be
assumed to be spherical, show that the rate of dissipation of energy is

−dE

dt
=

1

2

∫

V

ρνt2ij dV

=
9M2

2B
2

M2
1R

4Q2

1

a10
∂a

∂t

{

2a

(

a.
∂a

∂t

)

+ a2
∂a

∂t

}
∫ M1

0

νγ(r) dm,

2
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where

γ = β2 +
2

3
rββ′ +

7

30
β′2,

ν is the kinematic viscosity in the fluid and Q and B are properties of the unperturbed
star as defined in the lectures.

Thence show that the dissipation constant σ defined in the lectures is related to the the
tidal lag time τ and the viscous damping timescale defined by,

1

tdamp

=
1

M1R2

∫ M1

0

νγ dm,

by

σ =
Gτ

3B
=

2

M1R2Q2

1

tdamp

.

4. In an eccentric binary system star 2 is accreting from the fast wind of star 1. Recall
that the accretion rate averaged over an orbit is

〈

Ṁ2

〉

= − Ṁ1(GM2)
2

v4wa
2
√
1− e2

,

where the wind speed vw ≫ vorb, the relative orbital speed of the stars. By considering
only the momentum gained by star 2 in the material it accretes from the wind show that
Newton’s law for the system becomes

r̈ = −GM

r3
r+

Ṁ2

M2

vw
r

r
.

Use this force to evaluate the changes in specific energy, angular momentum and the
Laplace-Runge-Lenz vector and hence the rate of change of separation a and eccentricity
e when the effects are averaged over an orbit.

5. The red star in a cataclysmic variable has a surface magnetic field B∗. Outside the star
this falls off like a dipole so that

B

B∗

=

(

R

R∗

)−3

at a distance R from the centre of the star which has radius R∗. Approximating the wind
of this star as an equatorial outflow at constant speed v show that the Alfvén radius RA

is given by
(

RA

R∗

)4

=
4πB2

∗R
2
∗

Ṁvµ0

,

3
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where Ṁ is the rate of mass loss in the stellar wind.

The radius of the donor star of mass M2 behaves as

R∗

R⊙

=

(

M2

M⊙

)
13

15

and
RL

a
= 0.462

(

M2

M

)
1

3

,

where a is the separation of the circular orbit and M is the total mass of the system.
Suppose that magnetic braking is the only source of angular momentum loss and −Ṁ ≪
−Ṁ2 ≈ Ṁ1 to show that the rate of steady mass transfer is

Ṁ2 =
15q

19− 15q

M

M1

(

RA

a

)2

Ṁ ∝ Ṁ1/2,

where q = M2/M1.

For a system with M1 = 0.6M⊙ and M2 = 0.3M⊙ in which v is the escape velocity
from star 2 and B∗ = 103 G = 0.1T, what mass-loss rate Ṁ is required to maintain a
mass-transfer rate of Ṁ2 = 10−10 M⊙ yr−1? What is RA/R∗ in this case?

6. A supergiant of C/O core mass Mc and envelope mass Menv, of which the binding
energy may be expressed as

Ebind ≈ −2GM2
env

RG

,

where RG is a fiducial radius defined by

RG

R⊙

≈ 1,000

(

Mc

M⊙

)2 (
Menv

M⊙

)−
1

3

,

is in a binary with a C/O white dwarf of mass Mwd.

The giant fills its Roche lobe and dynamical mass transfer leading to common-envelope
evolution ensues. Show that, if the common envelope efficiency is αce, the final separation
of the cores when the envelope has been lost is af where

af
RG

≈ αce

2

McMwd

M2
env

,

in the limit af ≪ ai, where ai is the initial separation.

The radius of a white dwarf of mass Mwd can be approximated by

Rwd

R⊙

≈ 0.01

(

M⊙

Mwd

)
1

3

4
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and the radius of the hot giant core by

Rc (Mc) ≈ 5Rwd (Mc)

The spiralling cores coalesce if af ≤ 3max (Rwd, Rc). Estimate the minimum envelope mass
Mcrit required for the cores to coalesce if Mc = 0.6M⊙, Mwd = 0.9M⊙ and αce = 1.0.

Suppose the process of coalescence heats the degenerate white dwarf and the supergiant
core to a temperature at which carbon burning 12C+12C →24Mg (13.93MeV per reaction)
can ignite. Estimate the total nuclear energy that can be released and compare it with the
binding energy of the white dwarf which may be modelled as an n = 3/2 polytrope.

Comment on the result for Menv in the range from well below to well above Mcrit.

7. A binary system consists of two stars of masses M1 and M2 in an orbit with eccentricity
e and semi-major axis a. At a point on the orbit when the separation is r, star 1 loses a
fraction 1 − f of the total mass of the system M = M1 + M2 in an isotropic supernova
explosion over a time short compared with the orbital period. After the explosion the total
mass is M ′ = fM . Show that the system is most easily unbound if the explosion takes
place at periastron in which case it unbinds if

f <
1 + e

2

and hence that such a supernova expelling half the mass in a system originally in a circular
orbit unbinds the system.

5


