[For Examples class 1.30-3.30pm Tuesday 24th October]

Examples Sheet I

1. Sirius A has an apparent visual magnitude $m_{\mathrm{V}}=-1.5$ and a spectral type A0V. Its distance is 2.7 pc . Calculate its luminosity and radius in solar units.

Sirius B is a binary companion to Sirius A. It has the same spectral type and $m_{\mathrm{V}}=8.5$. Calculate its luminosity and radius.

Measurements of the orbits of A and B give a binary period of 50 years, mass ratio M_{A} / $M_{\mathrm{B}}=3$ and a semi major-axis of 8 seconds of arc.

Calculate the masses and mean densities of both components. Which star is the mainsequence star and what is the other?
[For an A0V spectrum you may assume $T_{\text {eff }}=10,000 \mathrm{~K}$ and Bolometric Correction, $m_{\mathrm{bol}}-m_{\mathrm{V}}=-0.4$. An absolute bolometric magnitude M_{bol} of zero corresponds to a luminosity of $3.0 \times 10^{35} \mathrm{erg} \mathrm{s}^{-1}$. For a binary orbit you may use the fact that the semimajor axis a, total mass M and period P are related by Kepler's law,

$$
\left.\left(\frac{a}{\mathrm{au}}\right)^{3}=\frac{M}{M_{\odot}}\left(\frac{P}{\text { years }}\right)^{2} .\right]
$$

2. In any equilibrium configuration prove that

$$
\frac{d}{d r}\left(P+\frac{G m^{2}}{8 \pi r^{4}}\right)<0
$$

where $m(r)=\int_{0}^{r} 4 \pi r^{2} \rho d r$. Deduce a lower limit for the central pressure P_{c} in terms of the stellar mass and radius. Evaluate the limit for the Sun.
3. Show that the gravitational energy of a spherically symmetric star is

$$
\Omega=-4 \pi \int_{0}^{R} \rho \frac{G m}{r} r^{2} d r .
$$

Hence show that a polytrope of index n has

$$
\Omega=-\frac{3}{5-n} \frac{G M^{2}}{R} .
$$

The recombination energy of stellar matter is I per unit mass. Show that if the internal structure of a star corresponds to an $n=\frac{3}{2}$ polytrope total disruption of the star is energetically feasible if

$$
R>\frac{3}{7} \frac{G M}{I}
$$

Given that the ionization energy of a hydrogen atom is 13.6 eV estimate the maximum radius for a star of $1 M_{\odot}$ and explain the existence of red giants.
4. By using the virial theorem, or otherwise, show that the period Π of spherically symmetric pulsations of a star satisfying $I=4 \pi \int_{0}^{R} r^{4} \rho d r=k M R^{2}$ and $\Omega=-\eta G M^{2} / R$, where k and η are constants, is given by

$$
\Pi=\left[\frac{3 \pi k}{(3 \gamma-4) \eta G \bar{\rho}}\right]^{\frac{1}{2}},
$$

where $\bar{\rho}$ is the mean density of the star.
Comment on the relation of Π to the free-fall time and the acoustic travel time from surface to centre.
5. If ρ decreases outwards, show that $m<\frac{4}{3} \pi r^{3} \rho_{\mathrm{c}}$.

Prove that $P_{\mathrm{c}}<\frac{1}{2} G\left(\frac{4}{3} \pi\right)^{\frac{1}{3}} \rho_{\mathrm{c}}^{\frac{4}{3}} M^{\frac{2}{3}}$.
Deduce that if $\beta=P_{\text {gas }} / P$, then

$$
1-\beta_{\mathrm{c}} \leq 1-\beta^{*},
$$

where beta* satisfies Eddington's quartic,

$$
M=\left(\frac{6}{\pi}\right)^{\frac{1}{2}}\left[\left(\frac{R}{\mu_{\mathrm{c}}}\right)^{4} \frac{3}{a}\left(\frac{1-\beta^{*}}{\beta^{* 4}}\right)\right]^{\frac{1}{2}} G^{-\frac{3}{2}}
$$

Evaluate M for $1-\beta^{*}=0.2,0.5,0.8$ and comment on what you find.

