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Structure and Evolution of Stars
C. A. Tout

[For Examples class 1.30-3.30pm Tuesday 28th November] Michaelmas Term, 2023

Examples Sheet III

1. In solar-like stars nuclear burning is dominated by the ppI and ppII chains

1H(1H, e+ν)2H(1H, γ)3He(3He, 21H)4He

|
3He(4He, γ)7Be(e−, ν)7Li(1H,4 He)4He.

The reaction rate between species i and j is

λijninj

1 + δij
, (∗)

where ni is the number density of species i, δij is the Kronecker delta and λij ∝ η2e−η

with η = 42.48(AZ2
i Z

2
j T

−1
6 )1/3, A = AiAj/(Ai + Aj) is the reduced atomic mass of the

two reacting nuclei, Zi is the atomic number of species i and T6 is related to temperature
T by T6 = T/106 K.

The beta decay of 7Be is fast compared to all other reactions so that 7Li is the predominant
species of atomic mass 7 and all major species can be identified by i ≈ Ai. Show that the
temperature dependence of the rate r11 at the centre of the Sun, where T6 ≈ 15, of the
reaction 1H(1H, e+ν)2H can be written as r11 ∝ Tα, where α = 1

3 (η − 2) ≈ 4. Also show
that β and γ are approximately 16 (with γ > β) in the expressions r33 ∝ T β and r34 ∝ T γ .

Show that the rate of change of protons obeys

dn1

dt
= −λ11n

2
1 − λ21n2n1 + λ33n

2
3 − λ17n1n7,

and obtain the equivalent equations for n2, n3 and n4.

At the centre of the Sun the characteristic timescale for 1H(1H, e+ν)2H is about 1010 yr
while that of 2H(1H, γ)3He is about 1 s. The characteristic timescale for n3 to reach
equilibrium is τ ≈ 6× 105 yr. By making an appropriate approximation, to be explained,
show that

dn1

dt
≈ −

3

2
λ11n

2
1 + λ33n

2
3 − λ17n1n7

and
dn3

dt
≈

1

2
λ11n

2
1 − λ33n

2
3 − λ34n3n4

near the centre of the Sun.
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Show further that n3 ≈ n3e where

n3e = −
λ34n4

2λ33
+

√

(

λ34n4

2λ33

)2

+
λ11n2

1

2λ33
.

Consider a small perturbation of the form n3 = n3e+x about this equilibrium and linearise
the evolution equation for n3 to obtain

dx

dt
= −

x

τ
,

where τ = (2λ33n3e + λ34n4)
−1.

Estimate the temperature at which τ is comparable to the age of the Sun.

Sketch the abundances X1 and X3 of 1H and 3He as a function of radius in the Sun today.

2. A set of fully radiative stars has uniform mean molecular weight µ, constant opacity and
energy generation rate ǫ = ǫ0ρ T

16, where ǫ0 is constant. Radiation pressure is negligible.
Use a simple homology argument to show that for this set of stars

L varies as µ4M3,

Tc varies as µ7/19M4/19

and R varies as µ12/19M15/19,

where M is the star’s mass, L its luminosity, R its radius and Tc its central temperature.

Hence show that the slope of the theoretical main sequence for such a set of stars is

−
d logL

d log Teff
= −

76

9
,

where Teff is the effective (surface) temperature.

Consider now two such sets of stars which differ in that one set is composed predominantly
of hydrogen while the other is predominantly helium. By considering the ratio of lumi-
nosities at fixed effective temperature for the two sets of stars, or otherwise, show that
the helium main sequence lies below and to the left of the hydrogen main sequence in a
Hertzsprung–Russell diagram.

3. Indicate why in a fully convective star the equation of state may be taken to be
P = KT 5/2 where K is a constant. Integrations for the atmospheric structure show that
K = AgνT−λ

e where A, ν and λ are constant, g is the surface gravity and Te the effective
temperature. Derive a luminosity–mass-radius relation in the form

L

4πσR2
= CRαMβ ,
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where C, α and β are constant and α and β depend solely on ν and λ. Show that, when
ν = 3/4, Te is constant. In this case show that the time for a fully convective star to
contract to radius Rs radiating its gravitational energy is

t =
GM2

7 (4πR3
sT

4
e )σ

.

[You may quote any properties of polytropes that you need.]

4. A white dwarf may be approximated by a two-zone model. A helium interior is composed
of a non-relativistic fully degenerate electron gas at constant temperature Tc with equation
of state

Pe = Kρ5/3, (∗)

where K is constant and Pe is the electron pressure. The very thin outer layers are
composed of hydrogen gas in radiative equilibrium obeying the perfect-gas equation of
state with negligible radiation pressure and with opacity given by Kramers’ law in the
form

κ = κ0ρT
−3.5.

The transition between the inner and outer zones is defined to be where the total pressure
given by the perfect-gas law is equal to the electron pressure given by equation (∗). Show
that

(i) in the very thin outer layers of the white dwarf

P 2 =
64

51

πacGM

κ0L

(

R

µ

)

T 8.5 ≡ JT 8.5,

where M and L are the mass and luminosity of the white dwarf,

(ii) the temperature at the transition Ttr is

Ttr =

(

R

µ

)10/7

K−6/7J−2/7

and (iii) the luminosity of the white dwarf is

L =
64

51

πacGM

κ0

( µ

R

)4

K3 T 3.5
c .

By taking plausible numerical values, which should be stated, estimate to order of magni-
tude the temperature in the interior of the white dwarf.
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Comment on the source of energy for the white dwarf’s luminosity and estimate, in years,
to order of magnitude, the cooling time scale of the white dwarf.

[K ≈ 1013 dyne cm3g−5/3, κ0 ≈ 4× 1024 cm5g−2K7/2.]

5. A model of a red giant consists of an isothermal degenerate helium core of mass M1 and

radius R1. These are related by the mass-radius relation M
1/3
1 R1 = A = constant. At the

core boundary there is a thin hydrogen-burning shell which generates the entire luminosity
L. Above the shell there is a radiative envelope which contains a negligible amount of mass
and above that is a convective envelope with a significant amount of mass. If the opacity
is given by the power law κ = κ0ρ

n/Tm, with n and m constant, show that, if radiation
pressure is neglected, the relation between P and T in the radiative envelope is

P = C
(

T 4+m+n + T 4+m+n
0

)1/(n+1)
,

where

C =

[

16πacGM1

3κ0L

(

R

µ

)n
(n+ 1)

(n+m+ 4)

]1/(n+1)

and T0 is an appropriate constant of integration. Show that if Tb is the temperature at
the base of the convective envelope, then

T0 = Tb

{(

γ − 1

γ

)(

4 +m+ n

n+ 1

)

− 1

}+1/(4+n+m)

.

Show that in regions near the shell, well below the inner boundary of the convective
envelope where T ≫ Tb and hence T ≫ T0, the dependence of temperature on radius r is
approximately given by

T =
µ

R

GM1(n+ 1)

(4 + n+m)r
.

Use this to show that, for the case in which n = 1, m = 3 and the energy generation rate
is given by ǫ = ǫ0ρT

10 with ǫ0 constant,

L =
4π

13
C2ǫ0

( µ

R

)2
(

µGM1

4R

)16
1

R13
1

.

Hence derive the relation between core mass and luminosity in the form

L ∝ M
32/3
1 .

What happens if mass is removed from the stellar envelope?
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