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Structure and Evolution of Stars
C. A. Tout

[For Examples class 1.30-3.30pm Tuesday 23rd January 2024] Michaelmas Term, 2023

Examples Sheet IV

1. Two stars of equal surface temperatures form an eclipsing binary system. The orbit
is circular. If the stars are spherical and limb-darkening can be ignored, show that both
eclipses are the same depth (in magnitudes) and that this depth cannot exceed a certain
amount.

2. In a single-lined spectroscopic binary with a circular orbit the only measurable param-
eters are the orbital period P and the semi-amplitude K1 of the radial velocity of star 1.
If the (unknown) inclination of the orbit is i, show that the mass function defined as

F (M1,M2, i) =
M3

2 sin3 i

(M1 +M2)
2

can be determined from the observations. Here M1 and M2 are the masses of star 1 and
star 2 respectively. Show that for given i, the observations give a lower limit to M2. How
might we set limits on i?

3. Two stars of masses M1 and M2 move in circular orbits about their centre of gravity.
What is (i) the orbital angular momentum h1 of star 1 and (ii) the total orbital angular
momentum h, in terms of the masses and the orbital period P?

Wind from star 1 reduces M1 at a rate which is steady and slow compared with P . The
wind leaves the stellar surface in a spherically symmetric manner and can be assumed not
to interact with star 2. Justify briefly the equation

ḣ =
h1

M1

Ṁ1

for the evolution of total orbital angular momentum and show that this implies

P ∝ (M1 +M2)
−2

.

Now suppose that (a) a constant fraction f of the mass lost from star 1 is accreted by star
2, (b) the remaining 1− f escapes to infinity with the same specific angular momentum as
before and (c) the intrinsic spin of both components remains negligible compared to the
orbital angular momentum. Show that the variation of P is now given by

P ∝ M−3f
1 M−3

2 (M1 +M2)
−2

.
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Discuss qualitatively the validity of each of assumptions (a) to (c) and in particular their
possible dependence on orbital separation (relative to star size) and on wind velocity
(relative to orbital velocity).

Finally, suppose that the period is so long, perhaps 106 − 107 yr, that the mass loss by
stellar wind takes place in a time which is short compared with the orbital period. Without
detailed calculation, what would you expect the effect on the orbit to be?

4. In a semi-detached binary, with conservative Roche lobe overflow (RLOF), show that
the radius a of the orbit satisfies

a ∝
(1 + q)4

q2
,

where q is the mass ratio of the two components (loser/gainer). In a certain range of mass
ratios, the radius of the Roche lobe around the loser can be approximated by

RL ≈ 0.4aq2/9.

Show that as the loser, of mass m, transfers mass to its companion, its Roche-lobe radius
changes at a rate

d loge RL

dt
= α

d loge m

dt
,

where
α = 20

9

(

q − 4
5

)

.

A star of mass M and age t has a radius R which changes in response to internal nuclear
evolution and to variation in mass (provided the variation is slow), according to

loge R = β loge M + t/tnuc,

where β, the slope of the ZAMS radius-mass relation and tnuc, the nuclear timescale, can
be taken as constant. As long as R < RL the mass m remains constant but once R > RL

mass starts to flow at a rate given by

d loge M

dt
= −

1

tdyn
loge

R

RL

,

where tdyn is the dynamical timescale, also constant (tdyn ≪ tnuc) .

Define f = loge (R/RL). As long as f is negative show that it satisfies the differential
equation

df

dt
=

1

tnuc

and find a corresponding first-order linear differential equation satisfied by f when it is
positive. Show that, as long as β > α, f tends to a small constant positive value,

f →
1

β − α

tdyn
tnuc

,
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with steady mass transfer on a nuclear timescale, but that if β < α then f grows expo-
nentially on a dynamical timescale.

On the lower main sequence β ≈ 1, while on the upper main sequence β ≈ 0.5. Find the
corresponding ranges of initial mass ratio q0 for which mass transfer can proceed steadily,
on a nuclear timescale, once the primary has filled its Roche lobe.

5. For mass ratio q between 0.2 and 2 the ratio of Roche-lobe radius to orbital separation
is given sufficiently accurately by

RL

a
= 0.38q0.25.

When a star transfers mass conservatively to a companion in a close binary show that the
radius of the loser is a minimum when q = 7

9
.

Such a loser is a white dwarf whose radius R∗ is given in terms of its mass M by

R∗

R⊙

= 0.01

(

M

M⊙

)−
1

3

, (†).

Show that Roche-lobe overflow must be on a rapid hydrodynamic timescale if q > 17
27

but
that it can be on a slower timescale otherwise.

A binary system with a period of 0.1 d consists of two white dwarfs of different mass,
both in the range 0.2− 1M⊙, for which you may assume (†) applies. Given that the Sun
would fill its Roche lobe in a binary with period of about 0.3 d, estimate the period at
which the double-white-dwarf binary would fill its Roche lobe. Which component would
reach its lobe first? What physical process or processes might bring about the necessary
decrease in period within the Galactic lifetime? What would you expect to be the outcome
of Roche-lobe overflow if the white dwarfs’ masses are (a) 0.2 + 0.5M⊙, (b) 0.5 + 1.0M⊙

and (c) 0.6 + 0.7M⊙.

6. A supergiant of C/O core mass Mc and envelope mass Menv, for which the binding
energy may be expressed as

Ebind ≈
2GM2

env

RG

,

where RG is a fiducial radius defined by

RG

R⊙

≈ 1,000

(

Mc

M⊙

)2 (
Menv

M⊙

)−
1

3

,

is in a binary with a C/O white dwarf of mass Mwd.
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The giant fills its Roche lobe and dynamical mass transfer leading to common-envelope
evolution ensues. Show that, if the common envelope efficiency is αce, the final separation
of the cores when the envelope has been lost is af , where

af
RG

≈
αce

2

McMwd

M2
env

in the limit af ≪ ai, the initial separation.

The radius of a white dwarf of mass Mwd can be approximated by

Rwd

R⊙

≈ 0.01

(

M⊙

Mwd

)
1

3

and the radius of the hot giant core by

Rc (Mc) ≈ 5Rwd (Mc) .

The spiralling cores coalesce if af ≤ 3max (Rwd, Rc). Estimate the minimum envelope mass
Mcrit required for the cores to coalesce if Mc = 0.6M⊙, Mwd = 0.9M⊙ and αce = 1.0.

Suppose the process of coalescence heats the degenerate white dwarf and the supergiant
core to a temperature at which carbon burning 12C+12C →24Mg, (13.93MeV per reaction)
can ignite. Estimate the total nuclear energy that can be released and compare it with the
binding energy of the white dwarf which may be modelled as an n = 3/2 polytrope.

Comment on the result for Menv in the range from well below to well above Mcrit.
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