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Part III Stellar and Planetary Magnetic Fields
Lent 2011

Examples I

1. A uniform magnetic field B0 = (0, 0, B0) in cartesian coordinates (x, y, z) is perturbed
by the velocity field u = (U0sech

2kz, 0, 0). Find

(i) the form of the initial perturbation to B, neglecting diffusion

(ii) the final steady state.

What is the characteristic time for diffusion to become important?

2. Now repeat the calculation (i) above when B0 is replaced by B1 = (0, 0, B1 cos ℓx), and
Rm = U0/kη is large. By estimating the relative size of the diffusion term to the other
terms in the equation, when the diffusionless solution is used, give an estimate of the
time that elapses before diffusion becomes important in this case?

3. Consider the action of an axisymmetric stagnation point flow u = (−Ur/2a, 0, Uz/a
( in cylindrical polar coordinates (r, φ, z)) on a magnetic field B that only has a z-
component B(r, t). Write down the equation satisfied by B, verify that no other
components of B are induced by the flow, and show that there is a solution of the form

B(r, t) = g(t) exp(−f(t)s2)),

and find the equations satisfied by f and g. Verify that the total magnetic flux is
conserved, and determine the final steady state of the system. Comment on the fact
that the radial scale of this state is proportional to R

−1/2
m , where Rm = Ua/η.

4. Consider the action of a stagnation point flow u = Ax, where the trace of the matrix
A is zero.

Show that the induction equation has a solution of the form B = B̂(t)eik(t)·x. Write
down the equations for B, k,and use them to describe the subsequent evolution of B.

5. Alfvén waves. Consider perturbations u(x, t), b(x, t) to a state with no velocity and
uniform magnetic field B. For an incompressible fluid the equations of motion and
induction are

(
∂

∂t
+ u · ∇)u = −∇p + (ρµ0)

−1∇× b × (B + b) + ν∇2u

(
∂

∂t
+ u · ∇)b = (B + b) · ∇b + η∇2b

∇ · u = ∇ · b = 0

(i) Linearize the equations for small u,b and seek spatially periodic solutions of the
form u, b ∝ exp(σt + ik · x). Find the decay rate σ of such disturbances, and show
that when the Lundqvist number L = |B|/(√µ0ρνη|k|) is sufficiently large then σ is
complex, corresponding to (damped) waves. Find approximations to the roots when
the Magnetic Prandtl number Pm = ν/η is very large or very small.

(ii) Now ignore the diffusion terms, but retain the nonlinear terms. Show that the
equations have exact solutions in the form of waves that travel at the Alfvén velocity

V = B/
√

µ0ρ.
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6. A solid circular cylinder of radius a rotates about the z-axis with angular velocity Ω.
Far from the cylinder there is a uniform magnetic field B in the x direction. Outside the
cylinder the material is insulating, while the cylinder itself is conducting with magnetic
diffusivity η. The magnetic Reynolds number Rm = Ωa2/η is very large.

Assuming that the resulting steady magnetic field is two-dimensional (no z component,
independent of z), and that B = ∇× (0, 0, A) in cylindrical polar coordinates (r, φ, z),
show that A = ReÂ(r)eiφ and that

iΩÂ = η

(

Ârr +
1

r
Âr −

1

r2
Â

)

, r < a; Ârr+
1

r
Âr−

1

r2
Â = 0, r > a; Â ∼ Br, r → ∞.

Give the boundary conditions satisfied by Â at r = a. Show that when Rm is large
the magnetic field in the cylinder is confined to a thin boundary layer near r = a, of

thickness aR
−

1

2

m .

7. Consider the simple “One-dimensional” mean-field dynamo equations for a steady α2-
dynamo:

0 = α0f(z)B + η
d2A

dz2
, 0 = −α0

(

f(z)
dA

dz

)

z

+ η
d2B

dz2
,

where B = A = 0 at z = ±1. Suppose that f(z) is an odd function of z. Then we can
find dipole modes with A even and B odd in z, and quadrupole modes with B even, A
odd. Solve the equations and show that the critical values of α0 are the same for each
parity.


