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Dynamics of Astrophysical Discs Mathematical Tripos, Part III
Professor Gordon Ogilvie Lent Term 2023

Example Sheet 1

1. Revision of Keplerian orbits

The equation of motion of a test particle in the gravitational field of a point mass M is

r̈ = −GMr

|r|3 .

Show that the motion is confined to a plane containing the central mass. Introduce polar
coordinates (r, φ) in the plane and deduce that

r̈ − rφ̇2 = −GM

r2
,

r2φ̇ = h = constant .

Find an equation for the shape r(φ) of the orbit and show that the general solution is

r =
λ

1 + e cos(φ− ω)
,

where e and ω are arbitrary constants, and λ = h2/GM . Sketch the orbit for the cases
e = 0, 0 < e < 1, e = 1 and e > 1.

Show that the orbit of least energy for a given angular momentum is a circular orbit.

2. Precession in Newtonian dynamics

(i) Given an axisymmetric gravitational potential Φ(r, z) with reflectional symmetry in
the midplane z = 0, explain how to determine the angular velocity Ω(r) of circular
orbits in the midplane, as well as the radial (epicyclic) frequency Ωr(r) and the
vertical frequency Ωz(r).

(ii) In regions of space where Φ satisfies Laplace’s equation (i.e. away from the important
sources of the gravitational field), show that the three frequencies are related by

Ω2
r + Ω2

z = 2Ω2 . (1)

What does this relation imply for the directions of apsidal and nodal precession?

(iii) Consider a binary system consisting of two stars of total mass M = M1 +M2 in a
circular orbit of separation a. First consider the case of a circumstellar disc (with
outer radius < a) that surrounds star 1. Using cylindrical polar coordinates (r, φ, z)
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in a non-rotating frame centred on star 1, show that when the gravitational potential
of the binary is averaged, either in time or in azimuth, it has the expansion

− GM1√
r2 + z2

− GM2

a

[

1 +
(r2 − 2z2)

4a2
+O

( |r|4
a4

)]

.

Evaluate Ω2, Ω2
r and Ω2

z to the same order of accuracy for orbits in this potential,
and verify that equation (1) holds. Deduce that the precession frequencies are

Ω− Ωr ≈ +
3

4

M2

M1

r3

a3

√

GM1

r3
, Ω− Ωz ≈ −3

4

M2

M1

r3

a3

√

GM1

r3
.

(iv) Now consider the case of a circumbinary disc (with inner radius > a) that surrounds
the binary system. Using cylindrical polar coordinates (r, φ, z) in a non-rotating
frame centred on the centre of mass of the binary, show that the averaged gravita-
tional potential of the binary has the expansion

− GM√
r2 + z2

[

1 +
M1M2

M2

(r2 − 2z2)a2

4(r2 + z2)2
+O

(

a4

|r|4
)]

.

Evaluate Ω2, Ω2
r and Ω2

z to the same order of accuracy for orbits in this potential,
and verify that equation (1) holds. Deduce that the precession frequencies are

Ω− Ωr ≈ +
3

4

M1M2

M2

a2

r2

√

GM

r3
, Ω− Ωz ≈ −3

4

M1M2

M2

a2

r2

√

GM

r3
.

3. Motion in the Kerr metric

The exterior of a black hole is described by the Kerr metric, which contains two param-
eters: M , the mass of the black hole, and a, the dimensionless spin parameter, which
satisfies −1 < a < 1. A relativistic treatment of test-particle orbits in the equatorial
plane leads to the expressions

Ω =

(

GM

r3

)1/2
1

1 + ax−3/2
,

Ω2
r = Ω2

(

1− 6x−1 + 8ax−3/2 − 3a2x−2
)

,

Ω2
z = Ω2

(

1− 4ax−3/2 + 3a2x−2
)

,

where x = r/(GM/c2) is the orbital radius in gravitational units. [Here r is the Boyer–
Lindquist radial coordinate, and the frequencies are those measured by an observer at
infinity. The event horizon is located at x = 1 +

√
1− a2. Since Ω > 0, choosing a > 0

corresponds to a prograde orbit in the same direction as the spin of the black hole, while
a < 0 corresponds to a retrograde orbit.]

(i) Assuming the above expressions, deduce that circular orbits outside the event hori-
zon, but sufficiently close to it, are unstable.
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(ii) Show that the leading approximations for the apsidal and nodal precession rates far
from the black hole are

Ω− Ωr ≈ 3x−1Ω , Ω− Ωz ≈ 2ax−3/2Ω .

4. Linear diffusion equation

The surface density Σ(r, t) of a Keplerian accretion disc evolves according to the diffusion
equation

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r

(

r1/2ν̄Σ
)

]

, (2)

where ν̄ is the mean effective kinematic viscosity.

Show that, for a particular choice of the function ν̄ = ν̄(r), equation (2) can be reduced
to the classical diffusion equation

∂g

∂t
=

∂2g

∂y2
, (3)

by a suitable transformation of variables.

Formulate the conservation laws of mass and angular momentum in terms of the variables
g and y. What are the appropriate solutions of equation (3) representing the spreading
of an initially very narrow ring subject to the boundary conditions that

(i) mass can be accreted at r = 0, but no torque is exerted there?

(ii) no mass is accreted at r = 0, but a torque is exerted there?

5. Nonlinear diffusion equation

(i) Consider a disc with the viscosity law

ν̄ = Ar2Σ ,

where A is a constant. Show that solutions of equation (2) of the form

Σ = σ(t)

{[

R(t)

r

]a

− 1

}

, r 6 R(t) ,

exist for only two non-zero values of the parameter a, namely a = 1 and a = 5/4.
In each case, solve for σ(t) and R(t), assuming that R(0) = 0.
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(ii) For the solution with a = 1, show that the mean radial velocity in the disc is

ūr = −(R− 5r)

10t
.

Determine the trajectories of fluid elements moving with the mean radial velocity,
and deduce that almost every fluid element is accreted in a finite time. For the
solution with a = 5/4, show that ūr is strictly positive.

(iii) Investigate whether mass and angular momentum are globally conserved in either
of the two solutions. Comment on the likely significance of these special solutions
among solutions of the nonlinear diffusion equation as an initial-value problem with
various initial and boundary conditions.

6. Spreading of a narrow ring

In the local approximation, with r = r0 + x and |x| ≪ r0, equation (2) reduces to

∂Σ

∂t
= 3

∂2

∂x2
(ν̄Σ) .

If ν̄ ∝ Σp, with p > 0, show that algebraic solutions exist that are of the form

Σ = σ(t)

{

1−
[

x

w(t)

]a}b

, |x| 6 w(t) ,

for suitable choices of a and b. Solve for σ(t) and w(t). Comment on how mass and
angular momentum are conserved in these solutions in the local approximation, and on
how the total orbital energy evolves. Discuss the limit p → 0.

7. Vertical structure with radiation pressure

The vertical structure of a thin, Keplerian accretion disc with constant (Thomson) opacity
and a mixture of gas and radiation is governed by the equations

∂p

∂z
= −ρΩ2z ,

∂F

∂z
= ρν

(

r
dΩ

dr

)2

,

F = −16σT 3

3κρ

∂T

∂z
,

p =
RρT

µ
+

4σT 4

3c
.

(i) Show that there is only one possible value of the effective viscosity ρν of an accretion
disc in which the gas pressure is negligible compared to the radiation pressure. How
does this value compare with the viscosity of water?

4



C
op

yr
ig

ht
 ©

 2
02

3 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

(ii) According to one theory, whatever the ratio of gas and radiation pressures, the
effective viscosity is always related to the gas pressure pg by ρν = αpg/Ω, where α
is a constant. Show that the temperature then satisfies an equation of the form

1

ρ

∂

∂z

(

1

ρ

∂T 4

∂z

)

+ AΩT = 0 ,

where A is a constant to be determined.

Adopt a mass-weighted vertical coordinate ζ, defined via dζ ∝ ρ dz with ζ = 0 at
the midplane and ζ = 1 at the upper surface. Hence find an explicit expression for
the mean kinematic viscosity ν̄(r,Σ) of the disc. You may assume that the ‘zero
boundary conditions’ apply, and that there exists a unique non-trivial solution t(ζ)
of the dimensionless boundary-value problem

d2t4

dζ2
+ t = 0, t′(0) = t(1) = 0 .

Your answer may involve an integral of t(ζ), which need not be evaluated.

8. Steady alpha disc

Write down the relation that must hold between ν̄ and Σ in a steady, Keplerian accretion
disc with inner radius rin (at which no torque is exerted) and accretion rate Ṁ . Combine
this with a treatment of the vertical structure of a gas pressure-dominated disc with a
constant viscosity parameter α and a power-law opacity κ = Cκρ

xT y (as in lectures) to
deduce that

H3x−2y+10 =
27

64λ
α−(x+1)Cκ

σ

(

R

µ

)4−y
(

fṀ

3π

)x+2

Ω−(x−2y+7),

where f = 1− (rin/r)
1/2 and λ is the dimensionless cooling rate as defined in lectures.

The Thomson (x = y = 0) and Kramers (x = 1, y = −7/2) opacity laws are approximately
valid in the inner and outer parts, respectively, of accretion discs in interacting binary
stars. Show that, in each case, the aspect ratio H/r is very weakly dependent on the
values of α and Cκ, and that it increases very slowly with r, so that the disc is very
slightly flared.

Estimate the value of H/r in the case of Thomson opacity (Cκ ≈ 0.33 cm2 g−1) for a white
dwarf (M ≈ 1M⊙) accreting at Ṁ ≈ 10−9 M⊙ yr−1.

Please send any comments and corrections to gio10@cam.ac.uk

Answers to questions 2 and 5 may be submitted for marking.
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