Example Sheet 3

1. Integral relations for the shearing box

A homogeneous incompressible fluid in the shearing sheet satisfies the Navier-Stokes equations

$$
\begin{aligned}
& \frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}+2 \boldsymbol{\Omega} \times \mathbf{u}=-\nabla \Phi_{\mathrm{t}}-\frac{1}{\rho} \boldsymbol{\nabla} p+\nu \nabla^{2} \mathbf{u} \\
& \boldsymbol{\nabla} \cdot \mathbf{u}=0
\end{aligned}
$$

where

$$
\mathbf{u}=-S x \mathbf{e}_{y}+\mathbf{v}
$$

is the total velocity, $\boldsymbol{\Omega}=\Omega \mathbf{e}_{z}$ is the angular velocity of the frame of reference, $\Phi_{\mathrm{t}}=-\Omega S x^{2}$ is the tidal potential (neglecting vertical gravity) and ν is the kinematic viscosity. The velocity perturbation \mathbf{v} therefore satisfies

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}-S x \frac{\partial}{\partial y}\right) \mathbf{v}-S v_{x} \mathbf{e}_{y}+\mathbf{v} \cdot \boldsymbol{\nabla} \mathbf{v}+2 \boldsymbol{\Omega} \times \mathbf{v}=-\boldsymbol{\nabla} \psi+\nu \nabla^{2} \mathbf{v} \\
& \boldsymbol{\nabla} \cdot \mathbf{v}=0
\end{aligned}
$$

where $\psi=p / \rho$.
The shearing box is a rectangular domain

$$
0<x<L_{x}, \quad 0<y<L_{y}, \quad 0<z<L_{z}
$$

on which the following boundary conditions are applied, where f stands for ψ or any component of \mathbf{v} :

$$
\begin{align*}
& f(0, y, z, t)=f\left(L_{x},\left(y-S L_{x} t\right) \bmod L_{y}, z, t\right), \\
& f(x, 0, z, t)=f\left(x, L_{y}, z, t\right) \tag{1}\\
& f(x, y, 0, t)=f\left(x, y, L_{z}, t\right)
\end{align*}
$$

Interpret these boundary conditions, and show that they are compatible with solutions in the form of shearing waves in which

$$
f=\operatorname{Re}\{\tilde{f}(t) \exp [i \mathbf{k}(t) \cdot \mathbf{x}]\}
$$

provided that the wavevector lies on the shearing lattice

$$
k_{x}=\frac{2 \pi n_{x}}{L_{x}}+S k_{y} t, \quad k_{y}=\frac{2 \pi n_{y}}{L_{y}}, \quad k_{z}=\frac{2 \pi n_{z}}{L_{z}}
$$

where n_{x}, n_{y} and n_{z} are integers.
Let $\langle\cdot\rangle$ denote a volume average over the box. Show that

$$
\left\langle\frac{\partial f}{\partial x}\right\rangle=\left\langle\frac{\partial f}{\partial y}\right\rangle=\left\langle\frac{\partial f}{\partial z}\right\rangle=0
$$

where f is any quantity satisfying the boundary conditions (1), but not necessarily a shearing wave; this result is useful for integration by parts.

Show that

$$
\frac{d}{d t}\langle\mathbf{v}\rangle=S\left\langle v_{x}\right\rangle \mathbf{e}_{y}-2 \boldsymbol{\Omega} \times\langle\mathbf{v}\rangle
$$

and deduce that the mean velocity executes an epicyclic oscillation, but if initially zero will remain so.

Show further that

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2}\left\langle v_{x}^{2}\right\rangle\right) & \left.=2 \Omega\left\langle v_{x} v_{y}\right\rangle-\left.\nu\langle | \boldsymbol{\nabla} v_{x}\right|^{2}\right\rangle+\left\langle\psi \frac{\partial v_{x}}{\partial x}\right\rangle \\
\frac{d}{d t}\left(\frac{1}{2}\left\langle v_{y}^{2}\right\rangle\right) & \left.=-(2 \Omega-S)\left\langle v_{x} v_{y}\right\rangle-\left.\nu\langle | \boldsymbol{\nabla} v_{y}\right|^{2}\right\rangle+\left\langle\psi \frac{\partial v_{y}}{\partial y}\right\rangle \\
\frac{d}{d t}\left(\frac{1}{2}\left\langle v_{z}^{2}\right\rangle\right) & \left.=-\left.\nu\langle | \boldsymbol{\nabla} v_{z}\right|^{2}\right\rangle+\left\langle\psi \frac{\partial v_{z}}{\partial z}\right\rangle \\
\left.\frac{d}{d t}\left(\left.\frac{1}{2}\langle | \mathbf{v}\right|^{2}\right\rangle\right) & \left.=S\left\langle v_{x} v_{y}\right\rangle-\nu\langle | \boldsymbol{\nabla} \times\left.\mathbf{v}\right|^{2}\right\rangle
\end{aligned}
$$

Deduce that, if hydrodynamic turbulence is to be maintained (without external forcing) against viscous dissipation in a Keplerian shear flow ($S / \Omega=3 / 2$), then $\left\langle v_{x} v_{y}\right\rangle$ must be positive (corresponding to outward transport of angular momentum) and the pressurestrain correlation $\left\langle\psi \partial v_{i} / \partial x_{j}\right\rangle$ must play an important role.

2. Magnetic fields in the shearing sheet

The induction equation in an incompressible fluid of uniform magnetic diffusivity η is

$$
\frac{\partial \mathbf{B}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{B}=\mathbf{B} \cdot \nabla \mathbf{u}+\eta \nabla^{2} \mathbf{B} .
$$

Supposing that the velocity retains purely the form of a linear shear flow, $\mathbf{u}=-S x \mathbf{e}_{y}$, show that the induction equation has solutions in the form of shearing waves,

$$
\mathbf{B}=\operatorname{Re}\{\tilde{\mathbf{B}}(t) \exp [i \mathbf{k}(t) \cdot \mathbf{x}]\}
$$

provided that the wavevector evolves in time according to

$$
\frac{d \mathbf{k}}{d t}=S k_{y} \mathbf{e}_{x}
$$

Solve for $\mathbf{k}(t)$, and interpret the result geometrically.
Deduce the equations satisfied by the components of the wave amplitude $\tilde{\mathbf{B}}(t)$, and find their general solution. Show that the magnetic energy typically experiences a phase of growth but ultimately decays.

Verify that $\mathbf{B} \cdot \boldsymbol{\nabla} \mathbf{B}=\mathbf{0}$ for this solution, and confirm that the magnetic field has no influence on the flow. Given that any magnetic field can be considered as a superposition of such shearing waves, explain how a non-zero Lorentz force can result.

3. Mechanical analogue of the magnetorotational instability

In the local approximation, the dynamics of two particles of mass m connected by a spring of spring constant $k=\beta m$ is described by the equations

$$
\begin{aligned}
\ddot{x}_{1}-2 \Omega \dot{y}_{1}-2 \Omega S x_{1} & =\beta\left(x_{2}-x_{1}\right), \\
\ddot{y}_{1}+2 \Omega \dot{x}_{1} & =\beta\left(y_{2}-y_{1}\right), \\
\ddot{z}_{1}+\Omega_{z}^{2} z_{1} & =\beta\left(z_{2}-z_{1}\right),
\end{aligned}
$$

together with similar equations in which the suffixes 1 and 2 are interchanged.
Assume that the quantities $\beta, \Omega, S, \Omega_{r}^{2}=2 \Omega(2 \Omega-S)$ and Ω_{z}^{2} are positive. Show that relative motions of the two particles in the (x, y) plane proportional to $\exp (\lambda t)$ are possible, where

$$
\lambda^{4}+\left(\Omega_{r}^{2}+4 \beta\right) \lambda^{2}+4 \beta(\beta-\Omega S)=0
$$

Determine the range of β for which instability occurs. For fixed Ω and S, find the maximum growth rate of the instability and the value of β for which this occurs. Write down the explicit form of $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ for this optimal solution.

Please send any comments and corrections to gio10@cam.ac.uk Answers to questions 2 and 3 may be submitted for marking.

