Dynamics of Astrophysical Discs Professor Gordon Ogilvie Mathematical Tripos, Part III Lent Term 2023

Example Sheet 3

1. Integral relations for the shearing box

A homogeneous incompressible fluid in the shearing sheet satisfies the Navier–Stokes equations

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + 2\mathbf{\Omega} \times \mathbf{u} &= -\nabla \Phi_{t} - \frac{1}{\rho} \nabla p + \nu \nabla^{2} \mathbf{u}, \\ \nabla \cdot \mathbf{u} &= 0, \end{aligned}$$

where

 $\mathbf{u} = -Sx \, \mathbf{e}_u + \mathbf{v}$

is the total velocity, $\mathbf{\Omega} = \Omega \mathbf{e}_z$ is the angular velocity of the frame of reference, $\Phi_t = -\Omega S x^2$ is the tidal potential (neglecting vertical gravity) and ν is the kinematic viscosity. The velocity perturbation **v** therefore satisfies

$$\left(\frac{\partial}{\partial t} - Sx \frac{\partial}{\partial y} \right) \mathbf{v} - Sv_x \, \mathbf{e}_y + \mathbf{v} \cdot \nabla \mathbf{v} + 2\mathbf{\Omega} \times \mathbf{v} = -\nabla \psi + \nu \nabla^2 \mathbf{v} \,,$$
$$\nabla \cdot \mathbf{v} = 0 \,,$$

where $\psi = p/\rho$.

The *shearing box* is a rectangular domain

$$0 < x < L_x$$
, $0 < y < L_y$, $0 < z < L_z$,

on which the following boundary conditions are applied, where f stands for ψ or any component of **v**:

$$f(0, y, z, t) = f(L_x, (y - SL_x t) \mod L_y, z, t),$$

$$f(x, 0, z, t) = f(x, L_y, z, t),$$

$$f(x, y, 0, t) = f(x, y, L_z, t).$$
(1)

Interpret these boundary conditions, and show that they are compatible with solutions in the form of shearing waves in which

$$f = \operatorname{Re}\left\{\tilde{f}(t)\exp[i\mathbf{k}(t)\cdot\mathbf{x}]\right\}\,,$$

provided that the wavevector lies on the shearing lattice

$$k_x = \frac{2\pi n_x}{L_x} + Sk_y t$$
, $k_y = \frac{2\pi n_y}{L_y}$, $k_z = \frac{2\pi n_z}{L_z}$,

where n_x , n_y and n_z are integers.

Let $\langle \cdot \rangle$ denote a volume average over the box. Show that

$$\left\langle \frac{\partial f}{\partial x} \right\rangle = \left\langle \frac{\partial f}{\partial y} \right\rangle = \left\langle \frac{\partial f}{\partial z} \right\rangle = 0,$$

where f is any quantity satisfying the boundary conditions (1), but not necessarily a shearing wave; this result is useful for integration by parts.

Show that

$$\frac{d}{dt} \langle \mathbf{v} \rangle = S \langle v_x \rangle \, \mathbf{e}_y - 2\mathbf{\Omega} \times \langle \mathbf{v} \rangle \,,$$

and deduce that the mean velocity executes an epicyclic oscillation, but if initially zero will remain so.

Show further that

$$\begin{aligned} \frac{d}{dt} \left(\frac{1}{2} \langle v_x^2 \rangle \right) &= 2\Omega \langle v_x v_y \rangle - \nu \langle |\boldsymbol{\nabla} v_x|^2 \rangle + \left\langle \psi \frac{\partial v_x}{\partial x} \right\rangle, \\ \frac{d}{dt} \left(\frac{1}{2} \langle v_y^2 \rangle \right) &= -(2\Omega - S) \langle v_x v_y \rangle - \nu \langle |\boldsymbol{\nabla} v_y|^2 \rangle + \left\langle \psi \frac{\partial v_y}{\partial y} \right\rangle, \\ \frac{d}{dt} \left(\frac{1}{2} \langle v_z^2 \rangle \right) &= -\nu \langle |\boldsymbol{\nabla} v_z|^2 \rangle + \left\langle \psi \frac{\partial v_z}{\partial z} \right\rangle, \\ \frac{d}{dt} \left(\frac{1}{2} \langle |\mathbf{v}|^2 \rangle \right) &= S \langle v_x v_y \rangle - \nu \langle |\boldsymbol{\nabla} \times \mathbf{v}|^2 \rangle. \end{aligned}$$

Deduce that, if hydrodynamic turbulence is to be maintained (without external forcing) against viscous dissipation in a Keplerian shear flow $(S/\Omega = 3/2)$, then $\langle v_x v_y \rangle$ must be positive (corresponding to outward transport of angular momentum) and the pressure-strain correlation $\langle \psi \partial v_i / \partial x_j \rangle$ must play an important role.

2. Magnetic fields in the shearing sheet

The induction equation in an incompressible fluid of uniform magnetic diffusivity η is

$$\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \nabla^2 \mathbf{B}$$
.

Supposing that the velocity retains purely the form of a linear shear flow, $\mathbf{u} = -Sx \, \mathbf{e}_y$, show that the induction equation has solutions in the form of shearing waves,

$$\mathbf{B} = \operatorname{Re}\left\{\tilde{\mathbf{B}}(t) \exp[i\mathbf{k}(t) \cdot \mathbf{x}]\right\},\,$$

provided that the wavevector evolves in time according to

$$\frac{d\mathbf{k}}{dt} = Sk_y \,\mathbf{e}_x \,.$$

Solve for $\mathbf{k}(t)$, and interpret the result geometrically.

Deduce the equations satisfied by the components of the wave amplitude $\mathbf{B}(t)$, and find their general solution. Show that the magnetic energy typically experiences a phase of growth but ultimately decays.

Verify that $\mathbf{B} \cdot \nabla \mathbf{B} = \mathbf{0}$ for this solution, and confirm that the magnetic field has no influence on the flow. Given that any magnetic field can be considered as a superposition of such shearing waves, explain how a non-zero Lorentz force can result.

3. Mechanical analogue of the magnetorotational instability

In the local approximation, the dynamics of two particles of mass m connected by a spring of spring constant $k = \beta m$ is described by the equations

$$\begin{aligned} \ddot{x}_1 - 2\Omega \dot{y}_1 - 2\Omega S x_1 &= \beta (x_2 - x_1) \,, \\ \ddot{y}_1 + 2\Omega \dot{x}_1 &= \beta (y_2 - y_1) \,, \\ \ddot{z}_1 + \Omega_z^2 z_1 &= \beta (z_2 - z_1) \,, \end{aligned}$$

together with similar equations in which the suffixes 1 and 2 are interchanged.

Assume that the quantities β , Ω , S, $\Omega_r^2 = 2\Omega(2\Omega - S)$ and Ω_z^2 are positive. Show that relative motions of the two particles in the (x, y) plane proportional to $\exp(\lambda t)$ are possible, where

$$\lambda^4 + (\Omega_r^2 + 4\beta)\lambda^2 + 4\beta(\beta - \Omega S) = 0.$$

Determine the range of β for which instability occurs. For fixed Ω and S, find the maximum growth rate of the instability and the value of β for which this occurs. Write down the explicit form of $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ for this optimal solution.

Please send any comments and corrections to gio10@cam.ac.uk Answers to questions 2 and 3 may be submitted for marking.