
1

Galaxies 1

Galaxies
Lecture 6: stellar populations in elliptical
galaxies; cusp/core and clues to formation

• stellar populations in ellipticals
• Implications of old stars in ellipticals
• Correlation of cusp/core with luminosity
• Clues to elliptical galaxy formation
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Stellar populations - overview

• A galaxy may be thought of as a population of
stars.

• The distribution of stars can be visualised on
the Hertzprung-Russell diagram with axes of
either surface temperature versus luminosity
or colour versus magnitude.

• The spectral energy distribution (colour) of
the galaxy may then be computed as the
luminosity weighted integral over the spectral
energy distribution (colour) of its constituent
stars.
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Stellar populations - overview
• Simple stellar populations of single age and chemical

composition are best observed in star clusters.
• One can then observe directly how differing stellar

ages and chemical compositions determine the
integrated properties of a stellar population.

• From this it is a small conceptual leap to understand
that the spread of stellar population ages and
chemical compositions - effectively the galaxy star
formation history - are the principle drivers of the
observed spectral energy distribution.
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Hertzsprung-Russell diagram
from HIPPARCOS satellite
– bright, nearby stars.
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HR diagram: 
stellar evolution = galaxy evolution
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Stellar Populations
•In this sense, we noted that ellipticals are red
and spirals are blue.
•From the above discussion we can now
understand that
1) spirals are composed of younger, actively
forming stellar populations.
2) ellipticals are composed of predominantly old
stars with little ongoing star formation

•Stellar populations in elliptical galaxies are old and
simple
•Combined with the absence of gas and dust in
elliptical galaxies we can make some simple
statements regarding their evolutionary history.
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Evolved versus ‘young’ galaxies

Galaxies 8

Stellar populations in E’s
• The absence of stars of spectral type A or earlier

indicates that typical elliptical galaxies have not
experienced major bursts of star formation within the
last 5 x 10 8 years
– the approximate main sequence lifetime of an A-star.

• (In fact the presence of strong Balmer absorption in
the spectra of elliptical galaxies - the signature of a
significant A-star population - defines the “E+A” or
“k+a galaxy type: a post-starburst elliptical/early-type
galaxy.)

•  This is consistent with the absence of gas and dust
(often correlated with giant molecular clouds and
active star forming regions).
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Stellar populations in Ellipticals
• We have seen that fundamental plane and

colour magnitude diagram arguments applied to
populations of ellipticals point to early, coeval
star formation.

•  In the absence of young, bright OB stars, the
light from ellipticals is dominated by the red
giant population, i.e. L ∝ Nrg .

• The number of red giant stars at some time t will
be equal to the number of stars with main
sequence lifetimes t −  ∆trg < tms < t.
– Where ∆trg is the red giant lifetime (assume constant)
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RGB
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Stellar populations in E’s

• The luminosity-mass relationship for main
sequence stars is L ∝ M α , with α  ≈ 3 for low
mass stars.

• This corresponds to a main sequence lifetime
tms ∝ M/L = M 1−  α  if we assume that a fixed
fraction of the mass of each star is converted
to energy during the main sequence lifetime.

• With this relationship, the range of stellar
ages contributing to the red giant population
becomes a range of stellar masses, i.e. 
M (tms )   to   M (tms −  ∆trg ) = M (tms ) + ∆M .
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Stellar populations in E’s
• Defining the stellar initial mass function (IMF) as

dN/dM ∝ M −1 −x as the number of stars in the mass
range M to M + dM , then the number of red giant
stars can be written as

• Re-writing tms ∝ M −1/θ with θ = 1/(α − 1), the number
of red giant stars becomes Nrg ∝ t−1+θx .
– Note that we assume that the red giant lifetime is constant

and thus acts only as a scaling constant.
• Taking x = −1.35 (the Salpeter IMF) and θ = 1/3, the

luminosity of a galaxy dominated by red giant stars
becomes L ∝ Nrg∝ t-0.6 .

Galaxies 14

Luminosity evolution of E’s
• These arguments were first formulated by

Gunn, Tinsley and Larson in the mid 1970s.
• The 1980s and beyond saw the advent of the

first stellar population synthesis codes for
creating evolutionary tracks for integrated
stellar populations, e.g. Bruzual and Charlot
(1983).

• However, the above analysis approximates
fairly well to the luminosity evolution of bright
ellipticals: L ∝ Nrg∝ t-0.6    (passive evolution: fading)
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The Fundamental Plane
• The FP relation can be reconstructed using the

following arguments

with this second equation being a statement of virial
equilibrium and c denoting a combination of physical
constants.
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The Fundamental Plane
• Dividing these two equations one obtains

which is close to but not exactly equal to the observed FP
relation.

Galaxies 17

The Fundamental Plane
• We conclude that
1. Bright ellipticals are in virial equilibrium.
2. To 1st order M/L ratios and structural parameters are

very similar.
3. Therefore, their stellar populations, ages and DM

properties are very similar.
4. To obtain an exact match to observed FP data requires

M/L ∝ M 0.2 , i.e. massive ellipticals are slightly older than
less massive counterparts.
Ages ~ 10 - 13 Gyr; Z ~ 2-4 Z(solar)

Galaxies 18

Uniformity especially
apparent in clusters of

galaxies
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Back to Profiles: 
more clues to formation

Galaxies 20

Parameterization of the Surface
Brightness Profiles: Sersic profiles

• Sersic law (Sersic 1968):
I(R) = Ieexp(-bn[R/Re)1/n -1])

• Has a number of attractive features for
parameterizing both the small - and large-scale
profiles of E/dE galaxies:
–  Accounts for the profiles’ curvature on kpc-scales
–  Parameters are robust against radial range of data

(Graham et al. 2003)
–  Integrals for r->infinity converge (c.f., Nuker law)
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L. Hernquist (6 Nature papers in 1992 on
simulations of galaxy formation!)

• One of the drawbacks of the de Vaucouleurs surface brightness
distribution is that it does not have an analytic counterpart in 3D
density.

• Various density profiles have been suggested that provide a good
match to observed surface brightness profiles when projected, e.g. the
Hernquist (1990) profile

• The Hernquist model is particularly appealing as it arises from the
numerical simulation of the merger of two equal mass disk galaxies,
each embedded within a dark matter halo.
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Hernquist profile (1990)

Galaxies 23

Hernquist profile (1990)

Galaxies 24

Hernquist profile (1990)
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Hernquist profile (1990)

Galaxies 26

Cuspy versus cored
• Elliptical galaxies display a range of surface brightness

properties from
• luminous, cored galaxies

– show near constant surface brightness within some core radius
• to less luminous cuspy galaxies

–  the central surface brightness continues to rise to a sharp peak at
inner radii.

• Consider next slide comparing the galaxies 
NGC 1399 (a luminous Elliptical galaxy, MV = −21.9) and
NGC 596 (MV = −20.9, about half as luminous).
– Though the inner surface brightness of NGC 1399 is I (R) ∝ R0

i.e. constant, we can see that this corresponds to a mass density
ρ(r) ∝ r -1 (Hernquist or de Vaucouleur profiles).

– NGC 596 displays I (R) ∝ R−0.5 and thus ρ ∝ r-1.5 and possesses
and even steeper central mass density profile - modified Sersic.

Galaxies 27

Cores/Cusps

Lauer et al. 1998
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Cuspy versus cored
• Recall that 1L⊙pc-2 = 26.4 MV arcsec-2 .
• Therefore, the central surface brightness of NGC

1399 of IV(0) = 16 corresponds to a stellar surface
density of dex [(26.4 −  16)/2.5] = 14, or 450 L⊙pc-2 .

• The central stellar density of NGC 596 is
approximately 5 x 10 5 L⊙pc-2 .
– Recall that the central stellar surface density of a spiral

galaxy such as NGC 7331 reaches only 350 L⊙pc-2 .
• These surface brightness trends were first quantified

by Kormendy (1977). Luminous galaxies are
increasingly core dominated according to the relation
µe = 20.2 + 3 log Re or MB = −19.3 − 2 log Re .

• Taking µe = −2.5 log Ie  and  MB = −2.5 log LB , one
obtains Ie ∝ Re -1.2  ∝ L -1.5 and LB ∝ Re

0.8  (and notice
that L ∝ Ie Re

2  as expected).

Galaxies 29 Galaxies 30

Cuspy versus cored
• At this point we emphasize again that this relation holds for

bright elliptical galaxies. As we shall see, faint ellipticals appear
to follow a different linear relation.

• The variation in the central surface brightness properties
certainly points to variations in their evolutionary histories.

• Indeed, the debate as to whether bright, cored ellipticals and
faint, cuspy ellipticals are separate populations or not still
continues actively.

• We will consider this further below. However, at this point we
can note

1)  within the hierarchical view of galaxy formation that sees
massive galaxies constructed from the accretion of smaller sub
units,

2)  the presence of lower surface density cores in bright galaxies
may well arise from the increased energy present in stellar
orbits resulting from past mergers.
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Reconciling bright and faint ellipticals

• Morphological classification and magnitude cuts lead
to the definition of giant and dwarf ellipticals as bulge-
dominated systems with MV < −18 and MV > −18
respectively.

• In addition, dwarf spheroidal galaxies form an ill-
defined class of very faint spheroidal (i.e. not a disk
and not irregular) galaxies with MV > −11 or so.

• Plotting such objects on 2D scaling relation diagrams
(e.g. Kormendy) reinforces the idea that Es, dEs and
dSphs are physically distinct classes of objects.

• As such we need to explain their origins.

Galaxies 32

• Ellipticals, dSphs, and globular star clusters
are not all obviously an extension of the
same spheroid sequence … (dSphs later lecture)

Galaxies 33

Reconciling bright and faint ellipticals
• However, an alternative view is to consider them as

essentially a single class of galaxy with a continuum
of slowly changing physical properties.

• Put another way, if one is to classify them as
separate galaxy class, where should you draw the
line?

• Is an elliptical galaxy with MV = −18.2 physically
distinct from an elliptical with MV = −17.8?

• One manifestation of this continuum of physical
properties is the variation of central (i.e. R ≈ 0.02Re )
surface brightness properties as a function of
magnitude.

Galaxies 34

Reconciling bright and faint ellipticals
Taking a sample of bulge dominated galaxies from

either the Virgo of Fornax clusters one observes that
bright (MV < −18) galaxies display a central
luminosity deficit with respect to a single de
Vaucouleurs/Sersic model, i.e. an approximately
constant surface brightness core.

This core is modeled as a power law of slope α with a
smooth transition to a larger scale Sersic profile --
the so-called core-Sersic model.

Galaxies 35

A Modification of the Sersic Model

Galaxies 36

Motivation for the Core-Sersic
Parameterization: VCC1978 (M60)
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Reconciling bright and faint ellipticals

• At fainter magnitudes (MV > −18), galaxies
display a central luminosity excess with
respect to a single model fit, i.e. a bright
nuclear region fit with an additional Sersic
component (a double Sersic model).

• Viewing the sample of galaxies as a function
of magnitude one observes that the trend
from central deficit to central excess galaxies
is relatively (there is some scatter) smooth
and continuous.

Galaxies 38

Galaxies 39

Reconciling bright and faint ellipticals
• Finally, one can plot all of the parameters normally

considered in 2D scaling relations, e.g. µ0 , Sersic n,
Re , µe , ⟨µ⟩e , as a function of magnitude.

• This reveals a smooth, continuous variation of galaxy
properties from giants, through dwarfs, to dwarf
spheroidals.

• Certainly if one selected any pair of these properties,
e.g. µe and Re (the Kormendy relation), one would
compute different linear relations for dwarfs and
giants and perhaps conclude that they represented
different classes of galaxy.

• Clearly though the changing gradient of quantities
such as µe versus MB do reflect different physical
histories as a function of brightness (mass) and we
consider these below.

Galaxies 40

Scaling Relations of RS Galaxies

Galaxies 41

Mergers
• Although the scaling relations extend continuously

over a factor of 106 in mass, the most massive
galaxies in the Universe appear to be ellipticals or
spheroids. Why should this be the case?

• Stars in an (idealized) equilibrium system should form
in a disk and stay in a relatively disk-like structure.

• At the same time, the stars in mergers (either the pre-
existing ones or those formed during the merger)
should undergo violent relaxation and be
redistributed in spheroidal components.
– violent relaxation: rapid evolution of a stellar system that has

formed out of equilibrium. Orbits can rapidly due to the rapid
changes in the underlying gravitational potential. [See Chap.
4 of Binney & Tremaine 1987.]

Galaxies 42

Mergers

• CDM (cold dark matter) cosmologies are “bottom up”
in the sense that the larger systems are formed
hierarchically from repeated mergers of low-mass
ones.

• Simulations predict that most massive (spheroidal)
galaxies should indeed have experienced many
mergers in their lifetime, including several major
mergers after star formation was largely complete.
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Mergers: stellar disks

Galaxies 44

Mergers: addition of gas

Galaxies 45

Data hadn’t
caught up

with galaxy
formation

predictions!

Galaxies 46

Formation of Elliptical Galaxies

Galaxies 47

Formation of Elliptical Galaxies: basic principles

• How do ellipticals form? In a hierarchical universe
massive galaxies are predicted to be the result of the
successive mergers of less massive galaxies 
(White and Rees 1978).

• The weak dependence of the M/L ratios of bright
ellipticals on their mass indicates that star formation -
potentially associated with the merging/mass
assembly process - occurred earlier in more massive
galaxies.

• This is reasonable insofar that galaxies (or pre-
galactic clumps) in dense regions of the universe
would be expected to merge faster and earlier,
leading to the production of more massive galaxies.

• Merging produces an incoherent mix of stellar orbits.
Galaxies 48

Formation of Elliptical Galaxies: basic principles
• As we have seen, long two-body relaxation times

preserve the memory of individual encounters in the
form of stellar streams, tidal tails and stellar shells.

• However, violent relaxation - stellar encounters in a
rapidly changing potential - results in more complete
orbital mixing.

• The products of N-body simulations recreating the
merger of massive disk dominated galaxies produce
slowly rotating, pressure-supported bulge dominated
galaxies

•  Hernquist-like 3D density distributions indicate that
they would result in de Vaucouleurs-type surface
brightness distributions (Hernquist 1992).
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Formation of Elliptical Galaxies: basic principles

• The central surface brightness profiles of bright
ellipticals are “core-like”, i.e. flattening toward the
centre. This suggests that they formed via “dry” or
gas-poor merging.

• This is a collisionless process - little angular
momentum is lost via two-body encounters - and the
additional orbital angular momentum of the merging
galaxies results in a “puffing up” of the central stellar
distribution.

Galaxies 50

Formation of Elliptical Galaxies: basic principles

• However, as one moves to fainter ellipticals there is a
relatively smooth trend to observe high-surface
brightness stellar nuclei.

• This suggests an increasing importance of “wet” or
gas-rich mergers as one considers lower mass
ellipticals.

• Gas-rich mergers are collisional and the orbital
angular momentum of the merging galaxies can be
dissipated away. This allows the gas to accumulate in
the centres of such systems, potentially triggering
dense, nuclear starbursts.

Galaxies 51

Formation of Elliptical Galaxies: basic principles

• Bright ellipticals and faint ellipticals form
a single family; they are not
fundamentally different objects. This
can be seen from plots (previous slides)
showing the continuity of scaling
relations of red-sequence selected
galaxies (ellipticals).

Galaxies 52

Formation of Elliptical Galaxies: basic principles

• The relations linking bright and faint ellipticals are not
linear. Put another way, if you tried to define linear
scaling relations (e.g. the Kormendy relation) for
bright and faint ellipticals you would compute
different gradients and assume that the ob jects are
different.

• However, it is clear that different physical effects
have played a role in the evolution of bright and faint
ellipticals and that there appears to have been a
relatively smooth transition between competing
effects as a function of luminosity (mass).

Galaxies 53

Formation of Elliptical Galaxies: basic principles

• Elliptical galaxies dominate the galaxy
populations in the centres of rich clusters.
However, the Butcher-Oemler effect indicates
that the ellipticals we observe in rich clusters
today have undergone relatively recent
transformation.

• This suggests that merging/interactions,
accentuated by ram pressure stripping, have
played a role in their formation.

Galaxies 54
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 Elliptical Galaxies
Lectures 7: the isothermal sphere, King

profile

• Collisionless Boltzmann Equation
• Isothermal sphere and King model
• M/L ratios and DM

Galaxies 2

Myths of Elliptical Galaxies?

• Our view of Elliptical galaxies has changed
greatly : In the 1970s, Ellipticals were thought
to be :

• Diskless bulges with deVaucouleurs (R1/4)
profiles and constant density (King) cores.

• Oblate spheroids flattened by rotation
• Void of gas and dust
• Contain a single ancient population of stars
• Relaxed dynamically quiescent systems
• To a large extent, all of the above are now

thought to be wrong.

Galaxies 3

Profiles
• Early (pre-1975) work suggested that I(R)

turned over in a flat core of constant density 
• This was naturally understood in terms of

isothermal and King models (see below) 
• However, the serious influence of

atmospheric seeing, had not been
appreciated. 

• For all but the most luminous ellipticals, the
existence of flat cores was shown to be
incorrect using Hubble Space Telescope
imaging.

Galaxies 4

Isothermal and King Profiles
• Historically, isothermal and King models were

used to understand "flat cores":
• Because they yield simple physical results, it

is worth looking at them.
• They assume a self-gravitating spherical

system with isotropic velocity dispersion.
• They have a Boltzmann distribution in star

energy (potential + kinetic)

Galaxies 5

Isothermal and King Profiles
• Their projected light, I(R), turns over in a flat core,

with known dynamical properties:
– Within 3r0 it approximates the modified Hubble law: I(R) =

I(0) / [ 1 + (R/r0)2]
– It has a central density ρ(0) = 9 σ(0)2/4 πGro

2

– It has core M/L ratio = ρ(0)/j(0) where j(0)=0.495 I(0)/ro

• At large R, isothermal models have j(r) ~ R-2 with
divergent mass.

• King models introduce a cutoff in energy that
truncates the outer profile yielding finite mass.

• Important Note: These models in general do not
make good fits to Elliptical galaxies.

• However, they yield quick estimates of ρ(0) and M/L.

Galaxies 6

Isothermal profiles
• Isothermal profiles,

showing both space
and projected density
(= luminosity for
constant M/L).

• The inner regions
(r < 3r0) closely match
the modified Hubble
profile (dashed line).
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King profiles
• A series of King

profiles with different
concentrations
(specified here by the
central potential).

• The central regions
are similar to the
isothermal sphere.

Galaxies 8

Collisionless Boltzmann Equation

• We first consider collisionless
dynamics: "Collision", here, means star-
star deflection, not direct impact

• For the collisionless case, stars are
assumed to move in a completely
smooth potential

• For galaxies this is almost always a
very good approximation

Galaxies 9

The Distribution Function (DF) : f(r, v, t)
• A system is fully described by its distribution function

(DF) or phase space density :  f(r, v, t)d3rd3v   =
number of stars at r with v at time t in range d3r and d3v

• Knowledge of the DF is a holy grail, since it yields
complete information about the system  In practice,
however, we only observe certain projections of the DF
(eg Σ(R), Vp(R), σp(R) )

• Recovering the DF directly from observations is
essentially impossible.  

• To proceed, we need to introduce further constraints
on the DF

• an obvious example is f(r, v, t) > 0 everywhere and
always, ie we cannot have -ve # stars!
– However, there are other constraints :

Galaxies 10

Collisionless Boltzmann Equation

• Look for a continuity equation, since
• no stars created/destroyed : flow conserves

stars
• stars do not jump across the phase space (ie

no deflective encounters)
• View the DF as a moving fluid of stars in 6-D

space (r, v),   ie x,y,z,vx,vy,vz  stars move/flow
through the region as their positions and
velocities change

Galaxies 11

CBE

• Consider a 1-D
example using 

x and vx

• recall f is a number
density  

• focus on a small
element of phase
space at x and vx
with size dx by dvx  

Galaxies 12

CBE
• In interval dt, net flow in x is :

• the net flow due to the velocity gradient is

• the sum of these equals the net change to f in the
region, ie, at x, vx of size dx dvx
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CBE
• dividing by dx dvx dt, we get

• but since

• we have

• adding the y and z dimensions, which are
independent, we finally have

The CBE!
Galaxies 14

CBE
• The CBE describes how the DF changes in

time.  It is a direct consequence of :

1  conservation of stars
2  stars follow smooth orbits
3  flow of stars through r defines implicitly
the location v   (= dr/dt)
4  flow of stars through v is given
explicitly by -grad(Φ)

Galaxies 15

CBE
• What we observe are :

– mean velocities   :   < v >
– velocity dispersions   :   (which is related to < v2 > )
– stellar densities   :   n   (also ρ for mass density, or   j for

luminosity denisty)

• 0th moment in v:     f(r, v) d3v   = n(r) = ρ(r)  

 which could, in principle, define Φ  (impose this cdt later)

• 1st moment in v: mean velocity  = <vi(r, t)>
=  (1/n)     vi f(r, v) d3v

• These first two moments of CBE give us the Jeans
equation … Galaxies 16

Jeans equation
• Using the 1-D x axis as example, simply integrate the

CBE over all vx.   We obtain (0th moment in vx) :

• (term in Φ  goes to 0 with integral of f as v->infinity)
• where n = n(x,t) is the space density and <vx> is the

mean drift velocity along x  
• This is a simple continuity equation for the number of

stars along the x axis.

Galaxies 17

Jeans Equation
• Now multiply the CBE through by vx and again

integrate over all vx
•  on rearranging and using 0th moment  above, we

obtain (1st moment in vx) :

• where σx
2 is the velocity dispersion about the mean

velocity,  it arises from <vx
2>   =   <vx>2 + σx

2

Galaxies 18

Applications of Jeans Equation

The Jeans equation, when combined with observations,
has a number of applications (some of which we’ll
examine next week in context of the Milky Way and
Local Group of galaxies, including dSph’s):

• deriving M/L profiles in spherical galaxies
• deriving the flattening of a rotating spheroid with isotropic

velocity dispersion
• analysis of asymmetric drift
• surface density (and volume density) in the galactic disk
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Profile Analysis
• Taking moments of the CBE lost almost all

detailed information from the DF
• Rather than working with the full DF, the Jeans

equation works with just n, <v> and <v2>
• Can we reintroduce the full DF and regain a

more complete description of a system ?
• yes, by introducing two new powerful

constraints :  
– demand that the system is in steady state  

(in equilibrium, independent of time) 
– demand that the DF generate the full potential   --

via Poisson’s equation (ie: not just act as a tracer
population)

Galaxies 20

Self-Consistency -> profile analysis
• an important step is to require that the DF also yields

the potential Φ(r)

• In spherical form: (eg for a DF of the form f (E, |L|)

• This is now a fundamental equation describing spherical equilibrium
systems. 

• Solutions not only have self consistent Φ and f, but f also satisfies
the steady state CBE.  

• Such a solution now describes a self-consistent, physically
plausible stellar dynamical system.

(*)

Poisson’s equation

Galaxies 21

Spherical Isotropic Systems : DF = f(Er)

Take f = f(Er)  adopting the following variables
• relative potential : Ψ   =   Φo - Φ

• relative energy : Er   =   -E + Φo   = Ψ  - 1/2 v2

• note : both Ψ and Er are more +ve for more bound
stars deeper in the system (smaller r)

• choose Φo so that f > 0 for Er > 0 (bound)

Galaxies 22

Spherical Isotropic Systems : DF = f(Er)

•  (*) takes the form [recall d3v = 4v2 dv]

• These now describe a spherical, non-rotating, isotropic velocity
dispersion system.  

• They will be our starting point in constructing specific spherical
models below

Galaxies 23

Model building with distribution functions (DFs)

• begin with the simplest cases : equilibrium, non-rotating,
spherical systems, ie, DF = f(Er)

• (1)   Choose   a DF which is a function of energy : 
f(Er) = f(Ψ - 1/2v2)
– Can show that f(Er) is already a solution to the steady state CBE,
– so our solutions will naturally satisfy the basic phase space

continuity condition
• (2)   Integrate   the DF over v to find ρ(Ψ)
• (3)   Solve   Poisson's equation to find Ψ(r)
• (4)   Combine   ρ(Ψ) and Ψ(r) to give the mass

distribution   :   ρ(r)

Galaxies 24

Isothermal Sphere
• Consider an exponential or isothermal (Boltzmann) DF as

first guess at representing spherical stellar system

• Recall, more +ve Ψ & Er means more bound.  
• Also, note f(Er) > 0 for Er < 0: there are unbound stars! ....

we anticipate problems at large radii.
• substituting Ψ - 1/2v2 for Er and integrating f(Er) over v gives

ρ = ρ1 exp (Ψ / σ2)
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Isothermal Sphere

• Plugging this into Poisson's equation gives :

• This is, in fact, the equation for a hydrostatic
sphere of isothermal gas, with σ2 = kT/m

• consider the solutions …
Galaxies 26

Singular Isothermal Sphere

• For the central boundary condition ρ(0) =
infinity,    we have ρ(r)   =   σ2 / (2π G r2)  

• this is the singular isothermal sphere:
ρ ∼ r-2

• Circular velocity :   Vc = const = σ sq(2)
• Dispersion velocity : <v2> = 3σ2   everywhere

(isothermal);   1-D   :   <vr
2> = σ2

• But the model has infinite density at r = 0, and
has infinite mass as r  goes to infinity!

Galaxies 27

Density; potential; rotation & image for SIS :

Galaxies 28

General Isothermal Sphere
• Choose as central boundary conditions at r = 0 :
• ρ(0) = ρo             finite central density
• (dρ/dr )r=0 = 0     flat central density profile
• Integration of Poisson’s equation with these

boundary conditions yields ρ(r)

Galaxies 29

General isothermal sphere

• We find a constant near-nuclear density : ρ(r)
~ ρo within a radius ro = 3 σ / (4 π G ρo)1/2  

• This is a core and ro is called the King (or
core) radius  I(ro) = 0.5013 I(0), so ro is
appropriately defined  

• ro is also the scale length of the r-2 envelope
(see below): big cores are in big galaxies  

• Circular velocity : Vc = - σ (d ln ρ / d ln r)1/2

Galaxies 30

General isothermal sphere

• When plotted as log (ρ / ρ o) vs log (r / ro), there is only one
isothermal profile

• At small radii (e.g. r < few ro)  the density law resembles
the Hubble density law : ρ(r) ~ (1 + (r / ro)2)-3/2 = ρH(r)  
I(R) fits ~OK to the centers of many Elliptical galaxies

• At large radii (e.g. r > 15 ro)  the system resembles the
SIS : ρ(r) ~ (r / ro)-2   and   Vc = σ sqrt(2)

•  this is different from the Hubble density Law:  
– projected light profile does not fit Ellipticals well in the outer parts

(too flat)
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Galaxies 31

General Isothermal Sphere
• The scale length and central density together define

the dispersion : σ2 ~ ρo ro
2  

• for a given central density, hotter galaxies are larger  
• for a given core radius, hotter galaxies are denser  
• basically, stars are bound and must not escape
• Quantitatively : σ2 = (4/9) π G ρo ro

2  
– To simplify calculations, use G = 4.5 x 10-3 in units of pc, km/s,

and Msun  
• Eg: for σ = 100 km/s, ro = 100 pc

we have ρo = 159 Msun pc-3

Galaxies 32

General Isothermal Sphere
• A good isothermal core match to the centers of

Ellipticals can be used to estimate central M/L  
• obtain ro and I(0) from isothermal fits to I(R), and

measure σ  
– (express I(0) in units of Lsun  pc-2 to allow simplified

calculations with G = 4.5 x 10-3)
– j(0) = 0.5 I(0) / ro
– ρ(0) = 9 σ2/ (4π G ro

2)
– M/L = ρ(0) / j(0)
This method is called "core fitting" or "King's method"  
Typical values for ellipticals cores are  ~10-20 solar M/ L

suggesting minimal/no dark matter

Galaxies 33

General Isothermal Sphere
• There is a problem with all isothermal models: they

have infinite total mass  
• It is easy to see why the system is at least infinite in

extent :
– at any given radius, stars have isotropic dispersion
– at this radius at least some stars are therefore moving

outward
– but further out the dispersion is still σ, and stars are moving

outward
• the system must have infinite extent
• Ultimately, this arises because f(Er) > 0 for negative Er,

  i.e. the model includes unbound stars.
• To rectify this problem, we attempt to modify things

slightly by removing the unbound stars:
Galaxies 34

King model

• Suppress stars at large radius (ie as Er -> 0,   we
want f(Er) -> 0)  modify the exponential DF :

• Repeating the same analysis as before, we get for
Poisson's eqn :

Galaxies 35

King model
• Solve this by integration, choosing boundary conditions at r = 0 :
• Ψ(0) = q σo

2     (q > 0, large q = deep central potential)
• d Ψ / dr = 0   (as before)
• Inner regions : like isothermal, with core (King) radius

~ ro (defined as before)  
• Outer regions : (r) decreases & approaches 0 at rt  
• note : velocity range at Ψ is 0 -> Ψ sqrt(2)
•  so density = int( f d3v) = 0 at rt   = tidal or truncation

radius = edge of sphere  
• larger Ψ(0) (larger q) ->  larger rt & Mtot = M(rt)  
• Alternative parameter to Ψ(0) or q is concentration

c = log10 (rt / ro)  

Galaxies 36

King Profile
• Single sequence of King

models by varying
(equivalently) : Ψ(0); q; c

• Empirically, we find :
• c = 0.75 - 1.75 ( q = 3 - 7)  

fit GCs very well
• c > 2.2 ( q > 10)  

fit some Ellipticals quite well
• c = 1.7 ( q = 8)  

fits Hubble law well
• c = inf  ( q = inf )

is the isothermal sphere  
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Galaxies 37

King profile
• King models are not isothermal :

σ 2 = <v2> = σo
2 within ro but

drops at larger radii
• However, as with isothermal

models, for each c (or q) we
have a range of King models  

• each of different σo, subject to
σo

2  ~ ρo ro
2  

• Eg,  for given ro, high ρ o has
high σ o

Galaxies 38

Galaxies 39 Galaxies 40
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Galaxies 1

Galaxies
Lecture 8: violent relaxation; dark matter

• Violent relaxation and formation of
Ellipticals

• Dark matter
– Basic evidence
– Rotation curves
– DM in Ellipticals?

Galaxies 2

Violent Relaxation

•  Recall that collisional relaxation timescales
for galaxies are >>H0

• We will see that simulations of galaxy
formation suggest gas quickly forms a disk as
it collapses and cools in a dark matter halo

• Form elliptical galaxies from merging disks
• Merger involves ‘violent relaxation’ of the

potential, and most of the signatures of
rotating stars/gas in the disks can be erased

Galaxies 3

Violent Relaxation

• Our previous discussion focussed on static
systems, since they are relatively tractable.

• Varying potentials are usually intractable and
require a numerical approach.  

• There are, however, a few situations which
can be treated semi-analytically  

• Paradoxically, one of these is when the
potential is maximally fluctuating  

• This is the case of violent relaxation

Galaxies 4

Violent Relaxation
• For galaxies, 2-body encounters are negligible and

evolution is determined by the CBE (Lec 7)  
• For a static potential, energy (E) of a star is

conserved and the DF doesn't change  
• Isolated galaxies in steady state do not, therefore,

evolve dynamically  (we're ignoring gas & 2-body
processes here)

• For a galaxy to change, there needs to be a
changing potential  

• For each star, dE / dt   = dφ/ dt   at the star  

Galaxies 5

Violent Relaxation

! 
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 +   v $ &% =
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• Collapse of collisionless system accompanied with
changes of the gravitational potential φ(x,t), giving rise to
an additional relaxation process.
• Let ε = 1/2 v2 + φ be the specific energy for a given star

   where dv/dt = -grad(φ)
• Thus a time-dependent potential of a collisionless
system can induce a change in the energies of the stars
involved.

Galaxies 6

Violent relaxation

• The DF evolves and the structure of the galaxy
changes  

• This occurs during (i) inhomogeneous collapse,
and (ii) encounters (collisional relaxation time)  

• These are brief traumatic times :  "galaxy
changes are by revolution rather than by
evolution"  (Binney & Tremaine)
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Galaxies 7

Violent Relaxation
• In collapse of large cold system, φ changes rapidly  
• stars gain and lose energy, which broadens f(E)  
• energy is redistributed via collective interactions  
• this acts like a relaxation process
• Note : the total energy remains constant : this is a

non-dissipational process  
• energy is not radiated away, as with dissipational

(gaseous) collapse  
• If the total energy is initially zero (eg, diffuse system

at rest), then following collapse:  some stars will be
strongly bound, but some must also have been
ejected.

Galaxies 8

Violent Relaxation
• Note : scattering is independent of the star's mass
•  fundamentally different from 2-body (collisional)

relaxation  
• no segregation by mass (eg, heavy stars don't sink

to center, as in Globular Clusters)  
• Phase mixing (later slides) helps smooth out lumps

fairly quickly  
• distribution is ~smooth after ~few collapse times  
• violent relaxation timescale is ~few x dynamical

(collapse) timescale
tff = (3π/32Gρ)1/2

Galaxies 9

Quick derivation of tff

! 

For particles at radius r = R;  

1

2
mv

2
=
GmM

R
   "    v _esc = 2GM /R

# dyn $
R

v
=

R
3

2GM

noting that average density % = 3M /4&R3

# dyn $
1

3 G% 

Galaxies 10

Violent Relaxation

• If relaxation is complete, then fully random
scattering occurs  

• results in isotropic velocity field and
Boltzmann-like f(E)  

• Usually, however, the density distribution
becomes smooth before scattering is
complete  

• relaxation ceases and is incomplete
• residual anisotropies & phase-space

substructures remain (some memory of  ICs)  

Galaxies 11

Violent Relaxation
• N-Body example : van Albada 1982

• start with ~ homogeneous sphere with low σ   
• 1st infall  ->    dense centre  
• settles into ~ R1/4 law  
• σ drops with radius  
• β (anisotropy) is 0 at nucleus,  ->  1 at edge  

(most scattering occurred at small radius on 1st infall
     most stars have low angular momentum)  

• N(E) dE spreads out, most stars have E ~ 0, few are
deeply bound  

Galaxies 12

Violent
relaxation
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Galaxies 13

Violent
relaxation

Galaxies 14

Violent
relaxation

Galaxies 15

Violent
relaxation

Galaxies 16

Violent
relaxation

Galaxies 17

Violent Relaxation

• If the initial distribution is hotter  
->   less concentrated  

• If the initial distribution is rotating slowly  
->   less concentrated & rotating oblate figure

• If the initial distribution is rotating faster   ->
even less concentrated & prolate/bar figure  

• If the initial distribution is ellipsoidal    ->
rotating ellipsoid, anisotropic everywhere

Galaxies 18

Dark Matter in galaxies
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Galaxies 19

Dark Matter

• Dark matter in galaxies was first revealed by
the study of their rotation curves,
–  i.e. a resolved measurement of circular velocity as a

function of radius.
• The rotation curve provides a dynamical

measurement of the projected galaxy mass.
• Observed rotation curves were flat at large radii

- a result inconsistent with a mass profile
obtained by scaling the galaxy light profile by a
suitable stellar mass to light ratio.

Galaxies 20

Dark Matter for Ellipticals?

• More obvious from extended rotating disk (eg, in spiral
galaxies).

• Typical values for ellipticals cores are  ~10-20
solar M/ L suggested minimal/no dark matter

• Best evidence for DM in ellipticals actually comes
from gravitational lensing rather than direct stellar
velocity measurements

Galaxies 21

DM

Galaxies 22

DM revealed by rotation curves

Galaxies 23

DM revealed by gravitational lensing

Galaxies 24

structural outline of a galaxy
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Galaxies 25

DM in general
• The data called for large amounts (up to 40x

more than the stellar mass) of dark matter at
large galactic radii - the dark matter halo.

• The incidence of flat rotation curves is
ubiquitous across spiral galaxies of differing
morphological type.

• This indicates that the presence of a dark
matter halo is common to all spiral galaxies.

• Elliptical galaxies also exist in dark matter
haloes. The clearest evidence for dark matter
in elliptical galaxies is provided by
gravitational lensing whereby the dark halo
distorts the light from a background galaxy.

Galaxies 26

DM - Mass to light ratios
• The B-band luminosity of the Sun is 

L⊙,B = 4.7 x 10 25 W. The mass of the Sun is
M⊙ = 2 x 10 30 kg.

• Therefore the B-band mass-to-light ratio of
the Sun is M⊙/ L⊙,B ≈ 4.25 x 10 4 kg W−1 .

• The mass-to-light ratio of the Sun provides a
basic unit, i.e. one solar mass of stars
liberating one solar mass of B-band
luminosity possesses ⟨M/LB⟩ = 1.

Galaxies 27

DM
• Over the spectral sequence of stars (OBAFGKM) the

mass-to-light ratio varies from ⟨M/LB ⟩ ∼ 10−  3 for the
bright, massive O stars to ⟨M/LB ⟩ ∼ 10 3 for faint, low
mass M stars.

• The average value of the stellar mass-to-light ratio
within 1 kpc of the Sun (the Solar neighbourbood) is

⟨M/LB ⟩ = 4.
• From the earlier LF analysis the total luminosity density

of stars is j⋆,B = LB /Vol = 1.2 x 108 L⊙,B Mpc−  3 .
• Assuming that the mean stellar mass-to-light ratio in

the solar neighbourhood is representative of this larger
volume then the mean stellar mass density is 

ρ⋆ = ⟨M/L⟩ j⋆,B ≈ 5 x 10 8 M⊙ Mpc− 3 .

Galaxies 28

DM
• If we go further and assume that the stellar mass

density in the local volume is representative of the
universe as a whole then the normalised stellar mass
density of the universe is

• So normal stars make up only 0.5% of the density
required to generate a spatially flat universe.

Galaxies 29

DM
• Consideration of BBN and CMB analyses indicates

that Ωb = 0.04
•  we immediately confront the fact that most of the

baryons in the universe do not exist in the form of
“normal” stars.

•  additional baryons in galaxies exist as
– low-mass stars such as brown dwarfs,
– stellar remnants such as faint white dwarfs
– diffuse clouds of hot gas: the warm/hot interstellar medium

(WHISM).
• On the scale of galaxy clusters, the dominant

structures in the universe, most of the baryons exist
in the form of a X-ray emitting plasma.

Galaxies 30

Rotation Curves: Spiral galaxies;
(disky Ellipticals)

• The Milky Way galaxy is a spiral galaxy. The Sun moves around
the Galactic centre on an approximately circular orbit of radius R
= 8.5 kpc and velocity v = 220 kms−1 .

• If the orbit is stable then the outward centripetal acceleration is
balanced by the inward acceleration due to gravity, i.e.

where M (R) is the mass of the galaxy contained within a radius R.
• A flat rotation curve indicates M (<R) ∝ R.
• What density profile does this imply?



6

Galaxies 31

DM

Galaxies 32

DM revealed by rotation curves

theory

Galaxies 33

Rotation curves
•  one can write the mass enclosed within a sphere of

radius R as

where the values scale the mass enclosed to that within
the Sunʼs location within the Galaxy.

• If we assume
– a maximum radius for the halo of matter surrounding the Galaxy
– a assymptotic velocity value

we can determine the halo mass,
• i.e. taking v = 220 kms−1 and Rhalo = 100 kpc we obtain

Mhalo = 1.1 x 10 12 M⊙   (all other estimates agree) Galaxies 34

structural outline of a galaxy

Galaxies 35

Rotation curves
• For an exponential, thin disk, one can show that :

• Where In and Kn are modified Bessel functions of the
first and second kind.  

• This rotation curve has peak: Vmax at Rmax ~ 2.2 Rd  
• for R   >   3 Rmax   Vc(R) falls ~ R-1/2   (Keplerian)

Galaxies 36

Rotation curves
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Galaxies 37

Rotation curves

• The B-band luminosity of the Galaxy is
LMW,B = 2.3 x10 10 L⊙,B and therefore

• So how big is the halo of the Milky
Way?

Galaxies 38

History
• 1970s & 80s (Rubin et al):

~flat out to ~ 2 - 3 Rd
concluded dark matter 
(careful : exponential disk
still ~flat here)

• Kent (1986) images same
galaxies and derives rotation
curves directly from light
profile  
– they match the observed

rotation curves !  
– dark matter not required; bulge

+ disk with normal M/L suffices

Galaxies 39

Large HI (neutral Hydrogen) disks

• Fortunately, HI extends well beyond
the optical disk

•  while Hα goes to 2-3 Rd (~0.75 R25),
HI often goes to > 5 Rd

Galaxies 40

HI (neutral Hydrogen) gas
• Vrot rarely declines; still flat or rising well beyond the disk
• It is necessary to invoke an invisible halo
• Since  φ= φ d + φ h and Vc

2 = r dφ /dr, then: Vc
2 = Vd

2 + Vh
2

• Use the observed rotation, Vc, and the (predicted) disk
rotation, Vd, to   infer the halo contribution, Vh, and its
potential.

• Typically, bulge + disk accounts for inner rotation curve with
reasonable M/LB ~ 3 - 5  

• If this is forced to fit the inner rotation, it is a called "maximum
disk" model 

• Dark matter halo needed at larger radii, giving total M/LB ~ 30
–   ~5 times more dark matter than normal matter in stars + gas  
– This is a lower limit since Vrot still constant/rising!

Galaxies 41 Galaxies 42

• Historically important paper: van Albada
et al (1985) analysis of NGC 3198 :
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Galaxies 43

Rotation curves

• So how big is the halo of the Milky Way?
• Assume the outermost globular clusters and

satellites such as the Large and Small
Magellanic Clouds are bound to the Milky
Way then the halo extends to ~75 kpc

• then     ⟨M/LB ⟩MW ≈ 40 ⟨M/LB ⟩⊙.

Galaxies 44

Rotation curves
• If the Milky Way extends some four times further, i.e. to

300 kpc, almost halfway to M31,
…. then we obtain ⟨M/LB⟩MW ≈ 150⟨M/LB⟩⊙.

• This implies that the Milky Way contains some 10 to 40
times more mass than can be accounted for by its
visible stars.

• Should the Milky Way be typical in this respect then we
can write the normalised mass density in galaxies as

• Ωgal = (10 → 40)Ω⋆ ≈ 0.04 → 0.16.
• Although this simple prediction contains many

assumptions we are therefore forced to contemplate the
fact that some fraction of the dark halos surrounding
galaxies is composed of non-baryonic dark matter.

Galaxies 45

DM
• It is now generally accepted that galaxies reside within large

halos of dark matter.
• Two sketches of a galaxy with its associated dark matter halo,

with optical galaxy superimposed at correct scale.
• Left: simple picture, of a smooth dark matter distribution --

possibly mildly oblate or triaxial.
• Right: n-body simulation of a more realistic halo, with significant

substructure. It is still unclear whether the substructure is
present in real halos -- certainly, if it is, then not all sub-clumps
contain dwarf galaxies …

Galaxies 46

DM in ellipticals
• Recall, that typical values for ellipticals cores are

~10-20 solar M/L  from isothermal sphere modeling
• suggests minimal/no dark matter
• However, note that if σr increases at large R, we

know σθ is increasing  
– in this case Dark Matter is clearly present.

• In practice, the most distant tracers of the potential
are GCs and PN  

• They do suggest DM halos are present (next slide)
• However, better methods exist: gravitational

lensing

Galaxies 47 Galaxies 48

DM revealed by gravitational lensing
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Galaxies 49

Dark Matter Halo Structure
• At largest measured radii Vrot is ~flat, so (r)~ r-2 in this region  
• Unknown beyond this, but must drop faster to keep total mass finite.
• Difficult to constrain the inner parts  Bulge + "maximum disk" fits

yield plausible M/L (~ 3-5), suggesting DM not important here  
• Halo contribution clearly drops at small radii, but functional form not

well constrained.
• N-body codes which follow hierarchical assembly of DM halos yield a

particular form:  The Navarro-Frenk-White (NFW) 2-parameter
broken power-law profile:

• This has ρ(r) ~ r-1 in the center and ρ(r) ~ r-3 at r >> a.

Galaxies 50

Galaxies 51

DM halo profile
• Or a slightly better 3-parameter fit is the "Einasto Profile":

• This is identical to the Sersic profile for projected light. In
this case, dn ~ 3n - 1/3 + 0.0079/n, ensures that re
contains half the total mass.  n ~ 7 -> 4, decreasing
systematically with halo mass (cluster -> galaxy halos).

• Both these give rotation curves that rise to a peak and
slowly decline  

• They are approximately flat in the regions measured by
optical or HI rotation curves.

ρ(r)

Galaxies 52

• The density of a NFW dark matter
halo is shown color coded, along
with its circular rotation curve.

• This results from fits to n-body
codes that follow the
cosmological evolution of dark
matter, and its hierarchical
merging to form dark matter
halos.

• Perhaps surprisingly, no matter
what the size of the halo, roughly
the same universal density law
arises, from dwarf galaxy mass,
through galaxy mass, to cluster
mass.

• Although the rotation curves
ultimately decline, they appear
flat over a large region which is
sampled by the HI disks.

Galaxies 53

Disc-halo conspiracy
• There is an intriguing property of these rotation

curves:
• After a rapid rise, most rotation curves are ~flat at all

radii :     in regions where Vc is determined by disk
matter, and     in regions where Vc is determined by
dark matter◦How do these two different regions
know they should have the same rotation amplitude
??

• This is not currently understood, but indicates
something important about galaxy formation ◦Notice
that a related puzzle also underlies the Tully-Fisher
relation

• Vmax is set by the halo, while MI is set by the luminous
matter◦Indeed, the theoretical origin of the TF
relation is not yet fully understood.
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Galaxies 1

Spiral Galaxies
Lecture 9: disks, spirals (thick disks)

• Disk galaxies in detail
• Formation and physical explanation come

later: hydrodynamics of gas

Galaxies 2

Disk galaxies appear to be more
complex than ellipticals

• Wide range in morphological appearance:
• eg classification bins : simple E0-6 compared with all the spiral types
• not just smooth, considerable fine-scale details

• Wide range in stellar populations:
• old, intermediate, young and currently forming
•    ongoing chemical enrichment

• Wide range in stellar dynamics:
• "cold" rotationally supported disk stars
• "hot" mainly dispersion supported bulge and halo stars

• Significant cold ISM:
• note : the cold and warm components are dissipative, and therefore :
•  influences dynamical evolution (eg helps spiral formation)
•  influences stellar density distribution (eg creates dense cores & black

holes)

Galaxies 3

Basic Components
• Disks :

– Metal rich stars and ISM
– Nearly circular orbits with little (~5%) random

motion & spiral patterns
– Both thin and thick components

• Bulge :
– Metal poor to super-rich stars
– High stellar densities with steep profile
– V(rot)/σ ~ 1, so dispersion support important.

• Bar :
– Flat, linear distribution of stars
– Associated rings and spiral pattern

Galaxies 4

Basic Components
• Nucleus :

– Central (< 10pc) region of very high density (~106

Mpc-3)
– Dense ISM &/or starburst &/or star cluster
– Massive black hole

• Stellar Halo :
– Very low SB; ~few % total light; little/no rotation
– Metal poor stars; GCs, dwarfs; low-density hot gas

• Dark Halo :
– Dark matter dominates mass (and potential)

outside ~10 kpc
– Mildly flattened &/or triaxial

Galaxies 5 Galaxies 6

3-D Shapes - Disks
• Distribution of (projected) b/a :

– Approximately flat over wide range, from 0.3 to 0.8
– Rapid rise at b/a ~ 0.1 - 0.3; and rapid fall at b/a > 0.8

• Interpretation :
– Randomly oriented thin circular disks give N(b/a) =

const  ->  observed N(b/a) consistent with mostly flat
circular disks

– Drop at low b/a due to bulge. Note: slower rise for big
bulge S0s, and faster rise for small bulge Scs.

– Minimum b/a ~ 0.05 - 0.1 for ~bulgeless Sdm  -> disks
can be highly flattened

– drop at high b/a ~ 0.8 caused by non-circular disks 
-> dark matter potentials slightly oblate/triaxial
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Galaxies 7

• Distribution of axial ratios, q = b/a, for 4800 S0s (left) and 13,500
spirals (right) from the APM southern survey.

• Note that random orientations of circular flat disks would have a flat
distribution in q = b/a.

• Deviations at low b/a are due to the presence of a bulge (boosting the
minor axis) and at the high end because many spiral disks are slightly
oval, not circular. (B&M Fig 4.46)

Galaxies 8

3-D Shapes - Disks
• Warps: starlight almost always flat (if undisturbed)
• however, HI is often warped, with warp starting beyond D25

• 180 degree symmetry: "integral sign" when seen edge-on.
• 75% of warped galaxies have no significant companion

(isolated system): stationary feature, probably a response to
gas orbiting in non-spherical dark matter halo potential
misaligned with disk

Galaxies 9

• (left) As with NGC 4013 this galaxy is isolated (though it does
have a faint tidal stream), and yet it's neutral hydrogen shows
an integral sign warp (the main disk HI has been removed for
clarity).

• (right) It is thought that the warp in this disk is a transitory
response to a merger - a gas rich galaxy has recently merged
with the more massive spheroidal galaxy, and the gas is in
the process of settling down into a steady flat disk

Galaxies 10

3-D Shapes - Bulges

• Not as easy as ellipticals because of
other components

• Study edge-on spirals to minimise
contamination

• Results :
– oblate spheroids, flattened by rotation  ->

probably similar to low-luminosity ellipticals

Galaxies 11

3-D Shapes - Bars
• Axis ratios from 2.5 to 5.
• Probably flat, since they aren't visible in

edge-on spirals
• However, "peanut" bulges thought to be

thickened (unstable) bars seen edge-on

NGC 5746 is a nearly
edge on spiral with a
"boxy" or "peanut"

shaped bar.
Galaxies 12

Bars and Associated Structures
(Buta et al 1996, Barred Galaxies, ASP Conf Ser, Vol 91)

• strong bars observed in ~1/3 of spirals, weak bars in ~1/3
•  fraction of total luminosity in bar typically 10-30%
•  isophotes typically “boxy”, profiles can be fitted by power

laws or exponential functions
•  inner, outer rings closely associated with presence of bar
•  some bars contain bulges or bars within bars
•  bars rotate in rigid pattern with pattern (precession) speed

co-rotating with disc at end of bar (density wave)
•  bars appear to fall into two distinct classes, strong and

weak
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Galaxies 13

Bars in spirals

Galaxies 14

Bars in
spirals

Galaxies 15

Bars: molecular gas in spiral galaxy centres

Galaxies 16

NGC5850 (wozniak et al. 1995, A&AS, 111, 115)

Bars in bars

Galaxies 17

Peanut
Bars

• HST image of NGC 128 with
its contour diagram clearly
showing the "peanut" shape
of the bulge.

• Three galaxies with peanut
bulges, with major axis long-
slit spectra showing the gas
velocities below (from the
[NII] 6584 emission line).
This study by (Bureau &
Freeman 1999) confirms
that ~all the peanut bulge
objects in their sample are
caused by bars that have
undergone vertical
instabilities and buckled.

Galaxies 18

Disk Surface Photometry

• Model as two components:
bulge and disk

• 1d fits to elliptically-
azimuthally averaged light
profile

• 2-D fits to full image: better,
since bulge & disk have
different ellipticities
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Galaxies 19

• Full 2-D bulge-disk separation for NGC 214. Left is a B image of the
galaxy. Center is the best-fitting combination of bulge (deVaucouleurs)
and disk (exponential) components, projected by the same inclination
angle. Right shows the residual image, which shows non-
axisymmetric feature, such as spiral arms. The oval is the region over
which the fit was done. Tick marks are 10 arcseconds. [Fig 4.49 in
BM, data from R. de Jong].

• In principle, 2D fits are better since the disk and bulge have different
intrinsic shapes and so project differently. In practice both 1D and 2D
decomposition is often rather uncertain.

Galaxies 20

Radial Profiles - disk

• Exponential fits well
• Rd is the disk scale length, ie I(Rd) = 1/e I(0)
• Typically, Rd ~ 0.25 R25 ~ 2 - 5 kpc   (R25 is 25th mag/ss

isophote)
• wavelength dependent, reflecting radial trends in color

(metal abundance and/or age)
• In practice, disk light falls sharply beyond 3 - 5 Rd

• Rd > Re always (eg MW : Rd ~ 5 kpc, Re ~ 2.7 kpc)
• Integrating to infinity: Ltot = 2 π Rd

2 I(0)
• µB(0) ~ 21.65 +- 0.3 mag/ss (Freeman 1970 "Law" of

~const µ(0) for normal spirals)  
• However, a few Low Surface Brightness (LSB) galaxies

have much fainter µ (0)

Galaxies 21

Disc Truncations, Transitions

Pohlen 2007 Galaxies 22

Radial Profiles - bulge

• deVaucouleurs R1/4 Law, in flux or mag units
• Effective radius, Re, contains half the light; [Note:

I(Re) = Ie, etc ]
• Re ~ 0.5 - 4 kpc (larger for early Hubble types)
• I(0) = 2140 I(Re)
• Integrating to infinity: Ltot = 7.22 π  Re

2 Ie

I(r)

µ(r)

Galaxies 23

Bulges of spiral galaxies

Galaxies 24
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Galaxies 25 Galaxies 26

Bulge/disc properties
• B/D ratio correlates with galaxy type (as

expected!), but with a large dispersion
•  interpretation:  SFR, arm structure, etc only

loosely correlated with spheroid/disk fraction

de Jong 1996, A&A, 313, 45

Galaxies 27

Radial Profiles - stellar halo
• MilkyWay and M31 have resolved halos with metal poor

stars, and globular clusters
• Both of these systems contain significant substructure -> 

tidally stripped dwarf galaxies and globular clusters. 
• However, M33 does not have a significant stellar halo 

(? D.Trethewey thesis)
• Extremely difficult to see as integrated light in other galaxies  
• Stacking ~1000 SDSS edge on galaxies shows extended red

light out to µi ~ 29 mag/ss:
– Implied density: ρ(r) ~ r-α   with  α~ 3.
– Consistent with moderately flattened spheroid: c/a ~ 0.6

• Overall, still unclear yet:
– How much of stellar halo is in form of tidal streams
– How many galaxies have stellar halos .

Galaxies 28

• 165 pointings of the Wide Field Camera on the INT in V and i yield 7
million stars with photometry that identifies RGB stars in M31 halo -- out
to 80kpc (6 degrees). As for the MW, the M31 halo seems to have
significant substructure.  (Irwin et al. 2005)

• The result of stacking (after first scaling by Rd) 1047 edge on spirals
galaxies from the SDSS (Zibetti et al 2005). The i-band contours in
surface brightness are 29.5, 28.5, 27.5, 25.5, 23.5, 21.5 mag/ss. The
excess light reveal a stellar halo. Data fro the other bands suggest it is
quite red in color. These authors conclude that the data support the early
formation of halos by the merger of dwarfs.

Galaxies 29 Galaxies 30

Vertical Disk Structure

• Studies of edge on disks suggests
exponential distribution

• Where zo is the scale height of the disk, ie
I(zo) = I(0) / e  

• At large z0, excess light sometimes reveals a
second "Thick Disk" of larger z0 (see below
for further discussion of vertical disk
structure)
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• Light profiles perpendicular to the disk of IC 2531 in
UBVRI at several distances from the nucleus (from
Wainscoat, Freeman & Hyland 1989).

• Note the straight lines on these magnitude-distance plots,
showing an exponential brightness profile.

Galaxies 32

Galaxies 33 Galaxies 34

Examples (Barteldrees & Dettmar 1994, A&AS, 103, 475)

Galaxies 35

Newly discovered thick disc in Andromeda (M31)
http://www.ast.cam.ac.uk/~mlmc2/M31thickdisc.html

Galaxies 36

Structure of the Milky Way
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Galaxies 37

Best constraints come from modeling of near-IR
all-sky data (DIRBE instrument on COBE )

Freudenreich 1998, ApJ, 492, 495
Galaxies 38

Galaxies 39 Galaxies 40

Galaxies 41

Stellar Velocities in the Disk
• Already looked at gas velocities in disk in context of

dark matter and mass
• Disks are faint - stellar LOSVD (Line Of Sight

Velocity Dispersion) is difficult to measure
• Also, brighter central regions are confused by bulge

component
• Nevertheless, some results are emerging.

(1) Rotation
• For disk stars, Vlos >> σ los so stars are cold and have

~ circular orbits
• Usually, Vstars follows Vgas which is close to Vc

Galaxies 42

• Typically, star orbital rotation
velocity can be slower than the gas

• this is called asymmetric drift and
indicates a higher stellar dispersion
– support beginning to be shared with

dispersion  
– stars at r likely to be at apogee, so

have V < Vc

• In S0s, ~30% have counter-
rotating gas disks  
– A few spirals even have two counter-

rotating stellar disks  
– both indicate external origin postdating

primary disk formation
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Vertical Stellar Dispersion
• Face-on galaxies yield σz : the vertical stellar dispersion
• As a function of radius, σz decreases exponentially, with

scale length 2Rd  
• This agrees with simple stellar dynamics theory:  
• An isothermal disk gives σz

2 = 2 π G zo ΣM  where ΣM is the
surface mass density and zo is the scale height  

• Hence σz   ~   ΣM
1/2 ~  I(r)1/2  ~  exp(-R/2Rd), as found.  

• Consider the Milky Way disk: observations near the solar
neighborhood: The inferred mass density within the disk
suggests dark matter does not dominate the disk.

Galaxies 44

Vertical Stellar Dispersion
• So it turns out there are several components of different

zo and σz
– gas and dust,     zo ~   50 pc ;  σz ~ 10 km/s
– young thin disk, zo ~ 200 pc ;   σz ~ 25 km/s
– old thick disk,     zo ~ 1.5 kpc ; σz ~ 50 km/s

• The astrophysical origin of this is thought to be σz
increasing with age
– stars born "cold" from molecular clouds with σz ~ sound speed,

and corresponding small z0

– stars gradually "heated" by scattering off DM clumps and spiral
arms, and/or

– heating of the disk over time by satellite passage and/or minor
mergers

Galaxies 45

2-D Velocity Fields: Spider Diagrams
• A circular disk tilted by angle i (0 = pole on) projects to an ellipse.
• The photometric major axis (PMA) of this ellipse is called the line of

nodes
• Contours of projected velocity, Vlos, give a spider diagram

– Kinematic Major Axis (KMA): line through nucleus perpendicular to
velocity contours

– Kinematic Minor Axis (KMI): Vlos contour at Vsys through the nucleus

Galaxies 46

These spider diagrams reveal much about the detailed form of the disk
velocity field:

• Circular velocity in an inclined circular disk:
– KMA aligned with photometric major axis (PMA)
– KMI aligned with photometric minor axis (PMI)

• Flat V(r) (beyond initial rise) gives:
– Vlos contours are approximately radial at large R
– If V(r) declines past Vmax, then Vlos contours close in a loop.

• Solid body i.e. Vc(r) ~ r in near-nuclear regions, gives:
– equally spaced contours across nuclear KMA, with spacing  1/slope

• Warped disks have:
– Twisted Vlos contours in outer parts

• Note: model galaxies as a set of rings with different V(r), PA(r), i(r)
• Bars often show:

– evidence of radial motion over bar region
• Oval disks (e.g. arising from non-axisymmetric halo)

– KMI and KMA not perpendicular
– KMA not aligned with PMA, and KMI not aligned with PMI

• Spiral arms yield:
– small perturbations to Vlos contours near arm positions

Galaxies 47 Galaxies 48

Disk Scaling Relations
• There are a number of correlations, "Scaling Relations”,

between the global parameters of galaxies:
– Luminosity; Size; Surface Brightness; Rotation Velocity;

• They are important for several reasons:
– They reveal the internal properties of galaxies
– They must arise naturally in theories of galaxy formation.

• In the case of disk galaxies, the most important is between
Vrot and Luminosity:

Vmax and the Tully-Fisher Relation
• Vmax = maximum rotation velocity (inclination corrected),

derived from:
– Major axis optical (often Hα) rotation curves (half the full amplitude)
– HI 21 cm integrated (single dish) profile width, W20: W20 / sin i   =

2Vmax
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• Rotation amplitudes, Vmax are usually
measured in one of two ways.

• Long slit optical spectra aligned with the
galaxy major axis trace out the rotation curve,
allowing the amplitude to be measured.

Galaxies 50

Disk Scaling Relations
• Tully & Fisher (1977) recognised that Vmax correlates with galaxy

luminosity
• L  ~  Vmax

 α     α ~ 3 - 4
• As for the Faber-Jackson relation, the T-F relation stems from virial

equilibrium: Vc
2 ~ M/R     and     L ~ I(0) R2

 L ~ (M/L)-2 I(0)-1 Vc
4

• T-F relation holds if (M/L)-2 I(0)-1 ~ const     (roughly true)
• Usually, choose longer wavelengths (eg I & H bands rather than B & V):

– smaller scatter on the T-F relation, and slightly steeper gradient  (α larger)
• This is because, at ~1-2microns :

– L is less sensitive to star formation and dust
– L tracks older population which dominates mass and has a more

homogeneous M/L ratio

Galaxies 51

TF with
wavelength

• A sample of edge on galaxies with
luminosities measured in 4 bands:
B I J H.

• Both the slope and scatter of the
relation decreases to the longer
wavelengths (the y-range is different in
the four plots).

• The B images are sensitive to different
amounts of star formation and
reddening,

•  near-IR images are relatively
insensitive to reddening and track the
old population which dominates the
mass (i.e. it has a much more
consistent mass-to-light ratio).

Galaxies 52

Disk Scaling Relations
• The T-F relation is one of the key methods of distance

determination
– First calibrate on nearby galaxies with Cepheid distances
– this yields the following relations :

Galaxies 53

Cepheid calibration of TF
• The zero-point of the Tully Fisher

relation needs to be calibrated
using galaxies with accurate known
distances

• namely, those with measured
Cepheid's.

• This was one of the tasks for the
HST Key Project to measure H0.

• The relations shown here in 4
bands also exhibit the systematic
decrease in scatter and slope from
blue to red bands. But here, the y-
axis -- the luminosities -- are now
properly calibrated.

Galaxies 54

Ex-gal distance
scale

• The now famous culminating
figure from the HST Key
Project to measure H0.

• Cepheids were used to
measure the distance to
nearby calibrator galaxies,

• which in turn calibrated the
Tully Fisher relation.

• This is one of the primary
methods for constructing the
more distant Hubble
diagram (which also
includes distance
measurements using the
Fundamental Plane, Surface
brightness fluctuations, and
supernovae type Ia).

• (see lecture on ex-gal
distance scale)
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Galaxies
Lecture 10: the interstellar medium

Galaxies 2

ISM

• Like the Earth, galaxies have an atmosphere
->  a gaseous component held "down" by gravity  

• this atmosphere fills the space between stars,
hence:   interstellar medium (ISM)  

• by mass, the ISM is usually not very important:
MISM ~ 1% Mstars  

• The average midplane density is ~1 cm-3

columns ~3x1021cm-2/kpc (~0.005 gm cm-2/kpc)

Galaxies 3

ISM
• The ISM contains:

– starlight; gas; dust; cosmic rays; magnetic fields  
– Near the sun they all have similar energy density  pressure

  1 eV cm-3

• The element mix is the usual:
– H/He/others:   74/24/2   (% by mass);
–                       90/10/0.01   (% by number)  

• Of the "others", ~10-50% have condensed out as
solid particles: "dust".

Galaxies 4

ISM
• Despite its low mass, the ISM is ultimately very important, for

several reasons:
• It plays a crucial role in the star <-> gas cycle

– in spirals and irregulars, it facilitates ongoing (& current) star formation
– it is a repository for element buildup and is therefore integral to

chemical evolution
• Because it can cool, its collapse is dissipational (lose

energy over time - lost energy converts to heat - radiation
mechanisms allow cooling)
– stars can form !!     hot gas -> cold gas -> stars
– new generations of stars "cool" spiral disks, allowing arm formation
– globally, gas can migrate inwards to smaller radii, which implies:  

• galaxies are smaller than dark matter halos !  
• galaxies have steep density gradients  
• galaxy nuclei can have very high densities, including a SMBH

Galaxies 5

ISM
• Being atomic/molecular, its emission & absorption provides enormous

diagnostic information. For example:
– Doppler motions reveal galaxy dynamics
– abundance measurements allow study of chemical evolution
– physical conditions: density; temp; pressure; turbulence; columns; mass,

can all be derived
– some emission lines can be seen (relatively) easily at cosmological

distances (e.g., nebular lines line Hα, [OII])
– high redshift QSO absorption lines reveal halo & disk evolution.

• The ISM can dominate a galaxy's integrated SED (spectral energy
distribution):  starlight dominates the UV-NIR; but the ISM dominates
outside this range.
– Mid-IR to Sub-mm is dominated by emission from dust
– Soft X-rays come from the hot ISM phase (though X ray binaries can be

important)
– cm-radio comes either from HII regions or a relativistic magneto-ionic

plasma
– certain emission lines (eg Lyα; [CII]158um) can be major coolants

Galaxies 6
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ISM
• The ISM is energized primarily by stars (starlight, winds, supernovae)  

– UV starlight photoionizes atoms & dissociates molecules; photo-ejected
electrons heat gas  

– SN shocks heat/ionize/accelerate gas & are largely responsible for the ISM's
complexity.

• The ISM can be highly inhomogeneous, with several phases  
– These phases are (roughly): hot/warm/cold, with low/medium/high density  
– In a wide range of conditions these phases have similar pressures 

 ->  P/k = nT ~ 104 ~ 1 eV cm-3.  
– However, in dynamic situations, pressure balance is no longer applicable.

• The ISM contains cloud and intercloud components with density
contrast ~ 102-105  
– these clouds are not like terrestrial clouds; by analogy, more like blocks of

wood or lead hanging in the air.

Galaxies 8

ISM
• The ISM is a dynamic environment, with 

mass exchange between phases
• cooling facilitates: hot -> warm -> cold -> stars.
• Supernovae explosions inject energy which accelerates

the gas and continuously rearranges the geometry  
– e.g. a disk ISM will "boil" & "bubble" with gas cycling out & back

above the disk.
• sporadically, tidal encounters & their resulting starbursts

can:
– add fresh, unenriched (low metallicity) gas
– energize and evacuate large regions
– cycle gas out into the halo, some of which may return later.
– radically alter the ISM, e.g. spiral + spiral  ->  elliptical.

Galaxies 9

ISM
• What about the distribution of ISM (particularly in spiral disks)?
• Globally the scale height depends on the phase's temperature/velocity

dispersion and    φ 
• colder phases are confined closer to the plane  
• hotter &/or more turbulent phases are thicker  
• in disks, the ISM flares at large radii and is thinner at small radii

– However, high local energy density can affect this distribution by
driving vertical blow-out.

• Locally: the ISM is highly complex & "foamy" 
– SN evacuate complex interconnected "superbubbles"  
– between are sheets & clouds of denser colder gas.

• The Milky Way can act as a template for studying other galaxy ISMs  
– As usual, the proximity of the MW's ISM offers important insights  
– Hence, MW ISM studies are now extensive & comprise a major area

within astronomy

Δ

Galaxies 10

ISM Components & Their Observational Signatures
• While ultimately ISM gas spans all conditions, in practice much resides in one of

several components
• These components are distinguished by their phase (n,T,Xe) and their location
• Note that overall, the intercloud/cloud fraction by mass is ~50 : 50,  but by

volume it is ~98 : 2

Galaxies 11

ISM Components & Their Observational Signatures
• Three other important components add to the mix :
• Dust: 1nm - 1um solid particles found in essentially all phases

• ~50% heavy elements are in dust (~100% of the refractories)  

• Magnetic fields:  generally a few µGauss in both ordered and
random components  
– energy density: B2/8π~10-12 erg cm-3~1 eV cm-3  
– field compression in superbubble expansion: effects on ISM structure

• Cosmic Rays:  relativistic electrons & protons, created in SN shocks  
– these diffuse throughout the galaxy and permeate all phases (some

even hit the earth) 
– they are a primary heating source in dark molecular cloud cores (which

are otherwise shielded).  
– the most energetic electrons + magnetic fields -> radio synchrotron  
– proton collisions with nuclei -> diffuse gamma emission  
– equipartition with B field likely, so suspect ~1 eV cm-3

Galaxies 12

ISM Components & Their Observational Signatures
• All observations involve either emission or

absorption
• these, in turn, depend on Emission Measure (EM)

and column density (N)
– Emission processes are usually collisional, so are  ~  n2

– surface brightness is therefore ~     <n2> dl   (pc cm-3)-2

  Emission Measure (EM).
– Absorption processes, in contrast, are ~      <n> dl   cm-2

     Column Density (N).
• For ionized gas, the relevant density is usually ne

 The table shows EM & ne for various systems:
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• Note, for a typical crossection ~ aBohr ~ 10-16 cm-2,
 N ~ 1014 cm-2 gives τ ~ 1%  with  

• This is easily measurable with suitable background source  
• low density gas invisible in emission can often be studied in absorption.

Galaxies 14

Planetary Nebula -- brief (~10,000 yrs),
but spectacular, fate of giant stars which 
become unstable & throw off significant 
fraction of their mass

Can see them with a small telescope!

Bipolar examples: may form because of streams
of material ejected along the axis of the poles.

M87
Expanding for 610 yrs
Diameter of 1.3 lyr

Twin jet nebula, M2-9

Galaxies 15

Planetary Nebula
(PN).

The intricacy of the
“Catʼs Eye Nebula”
structure may be
caused in part by
material ejected from
a binary central star.

Galaxies 16

• Note some useful conversions: EeV ~ 1240/λnm ~ TK / 7740
  per particle.  

• so @ T > 105K,   H & He are fully ionized, 
and kT ~ EUV - soft X-ray  

Galaxies 17

Warm Ionized Gas
• This gas has T ~ 8000K and resides in:

– star forming HII regions   (ne ~ 1 - 100+ cm-3)
– diffuse ionized gas   (ne ~ 0.01 - 1 cm-3)

• In both cases, equilibrium occurs when:
– ionization rate = recombination rate   (ionization balance)
– heating = cooling   (thermal balance)

• ionization is from stellar UV photons;   recombination
occurs naturally  heating is from photo-ejected electrons;
cooling is via emission lines

• Note that in these circumstances the ionization degree does
not reflect the temperature  
– e.g. at 8000K,   O->O+->O2+ cannot occur by collisions (it is too cold)  
– but a weak radiation field ~50eV (250A) photons can ionize up to O2+.

Galaxies 18

Warm Ionized ISM
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Examples of WISM

Galaxies 20

A starbursting ‘disc’ galaxy

Galaxies 21

Hα equivalent width variation with
Hubble T-type

Ratio of
recent to
past star
formation

Kennicutt 1998, ARAA, 36, 189

Galaxies 22

Hydrogen Recombination Radiation
• electrons are captured by protons and the

resulting cascade emits photons.  
– the rate is  α nenp cm-3 s-1,   where α is a

recombination coefficient (units are cm3 s-1).
• Usually, the gas is optically thick to Ly-α,

which is trapped, termed case B:
– every Lyman line photon is scattered locally many

times, ultimately being converted to Ly-α and a
higher-series photon, while all of the higher-series
photons are emitted with no further scattering. 

– the total recombination rate is then αB = 4.52 &
2.58 x 10-13 cm3s-1 (for 5000 & 10,000 K)  

– While for just Hβ it is αHβ = 5.38 & 3.01 x 10-14

cm3s-1 (for 5000 & 10,000 K)

Galaxies 23

• The table gives some useful Hydrogen line wavelengths
and relative strengths (Case B; T = 104 K):

• Note that the Lyα- flux is often difficult to predict:  
– it is resonantly scattered and absorbed by dust,

Galaxies 24

Atomic (neutral) Gas
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Galaxies 27

M81 Group HI (VLA)

Yun et al. 1994, Nature, 372, 530
Galaxies 28

Galaxies 29 Galaxies 30

Trends with galaxy type -  HI
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Molecular Gas

Galaxies 32

CO distribution

Galaxies 33 Galaxies 34

Galaxies 35

Radial distribution of gas in the (MW) Galaxy

Galaxies 36

Trends with galaxy type: CO



7

Galaxies 37

M-gas versus
M-dynamical

Young & Scoville 1991, 
ARAA, 29, 581

Galaxies 38

Interstellar Dust

Galaxies 39

Dust Emission

Galaxies 40

Dust spectrum

Regan et al. 2004, ApJS, 154, 204

Galaxies 41

Hot Ionized (Coronal) ISM

Galaxies 42
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Galaxies 43

Relativistic Particles, Fields

Galaxies 44

Galaxies 45 Galaxies 46

Interstellar media
• Overview of Milky Way ISM
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Galaxies
Lecture 11: Disc dynamics

• Circular rotation: Oort’s Constants
• Epicyles
• Vertical z motions
• Radial/Azimuthal motions
• Resonances
• Density Waves

Galaxies 2

Circular Rotation: Oort's Constants
• In the 1920s theorist Bertil Lindblad (Swedish) and observer Jan Oort

(Dutch) studied the rotation of the Milky Way disc.
• From the moving sun's location, nearby stars appear to move systematically

as a function of galactic longitude.
• Two parameters, Oort's A & B, help parameterize the local velocity field.
• For the radial and tangential velocities, we find:

• Where Oort's constants A and B are given by (R0 = solar radius):

• Oort's A expresses local shear, while  
• Oort's B expresses local vorticity, ie local rotation:  Ωloc =    x V   (curl V)Δ

Galaxies 3 Galaxies 4

Galaxies 5 Galaxies 6

Oort’s constants
• Current best (Hipparcos) estimates for Oort's A and B are:    

A = 14.8 +- 0.8 km/s/kpc and      B = -12.4 +- 0.6 km/s/kpc
• Note: dimensions are velocity gradients; also frequencies 

• E.g. using psm units: A = 0.0148 km/s/pc  0.014 Myr-1 = 14.8 Gyr-1  
• From definition interesting properties of MW rotation measured:

• The first of these confirms that the rotation curve is fairly flat near the sun
(gently rising).

• The second yields an orbital period for the sun:  
P(R0) = 2π / Ω(R0) = 2π / 27.2 Gyr-1 = 0.23 Gyr = 230 Myr
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epicycles
• when coupled with an estimate for the galactocentric

distance, R0, the previous slide yields an orbital
velocity:     Vc(R0) = 218 (R0 / 8 kpc) km/s  
– Which agrees fairly well with radio VLBI measurements of

from proper motion of Sgr A*   
Vc(R0) = 241 (R0 / 8 kpc) km/s  

• This analysis assumes the sun and stars are all on
circular orbits. 
– In truth, this is only approximately true: the stars are in fact

perturbed from circular orbits. 
• This kind of motion can be analyzed using the

concept of epicycles.

Galaxies 8

epicycles
• Disk stars have approximately circular orbits with small deviations :  As with

the Ptolemaic system: star orbits can be described by superposition of:
– Circular orbit along guiding center (= deferent), radius Rg, angular velocity Ωg
– Smaller elliptical epicycle, angular velocity κ, retrograde

An intuitive way to understand the origin of the epicyclic motion:
• Consider star at guiding center (GC) and give it a kick radially outwards
• Conserving AM = mrvφ, since r increases, vφ decreases -> w.r.t. the guiding

center, the star moves backwards
• Consider the new balance between gravity and centrifugal forces:  

Under AM conservation,  Fcentrifugal ~ vφ2/ r ~ r-3   while Fgrav falls more slowly
than r-3  -> at larger radii Fgrav > Fcentrifugal and the star gets pulled back
inwards

• As it falls in, r decreases so v increases and the star moves forward relative
to the GC

• But now Fcentrifugal > Fgrav and the star moves outwards again 
-> the cycle repeats, and we have a small retrograde epicycle

Galaxies 9 Galaxies 10

epicycles
• For a Keplerian potential, the orbit and epicycle frequencies

are the same, κg = Ωg  The full orbit is closed: we have an
off-centred Keplerian ellipse.

• However, in general Ωg and κ are different so orbits don't
close...  Unless they are observed from frame rotating at Ωg - 1/2κ :  
– orbits then appear closed ellipses, centered on galactic centre.

• lets briefly anticipate the relevance of epicycles for spiral
arms:
– For epicycle phases which vary systematically with radius:  nested

elliptical orbits may crowd in a spiral pattern  this is called a kinematic
density wave

– Orbits are in turn perturbed by the spiral density pattern,  this modifies
the simple epicycles

– Self-consistent solution is a density wave  gas reponse causes
shocks and star formation  visible spiral arms

Galaxies 11

Epicycles: characteristics
• Consider a smooth axisymmetric flattened mass

distiribution with potential Φ(R,z)  
• Since we have no azimuthal forces AM is conserved,

and we have :

• Separating the Equations of motion into components
in cylindrical coordinates (R, Φ, z):

Galaxies 12

Epicycles: Vertical z Motions
• Take first the z motion about the plane z = 0;  since the disk is symmetric

about z = 0, then the z-force at z = 0 is zero :

• consider small motion above and below the plane,  we simply expand the
z-force linearly for small z:

• This gives Simple Harmonic Motion (SHM), with frequency ν,   
where ν2 = (δ2Φ / δz2)z=0:

• For Milky Way disk near the sun, ν2 = 4π  G ρo, which gives  ~ 0.096 Myr-1,
  vertical oscillation period 2π /ν  ~ 6.5 x 107 yr ~ 1/3 circular period.
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Epicycles: radial motions
• First consider the circular guiding orbit (R = const) :  it has radius Rg, circular

velocity Vc and angular velocity Ωg defined by

• For non-circular orbits, the radial acceleration is given by (centrifugal - gravity):

• However, since Lz = R2 dφ/dt, then this can also be written as

• Where the effective potential, Φeff, allows us to describe the radial motion in 1-D
form

Galaxies 14

Galaxies 15

Epicycles: radial motions
• Typically, Φeff has a minimum, rising steeply at small R and slowly at large R  
• This inner steep term imposes an angular momentum (or centrifugal) barrier  
• At the minimum in Φeff, we recover the circular guiding orbit of radius Rg

• Other orbits will oscillate in radius, about Rg.  Consider the potential at R = Rg + x

• This gives SHM about the guiding radius

with frequency κ, where

Galaxies 16

Epicycles: azimuthal motions
• Since Lz = Rg

2 Ωg = R2Ω= const, changes in R yield changes in  Ω   (recall
Ω = dφ/dt)

• Integration gives :

• Thus, φ(t) follows the guiding center with small amplitude SHM
superposed. Taking the y-axis in the forward direction with origin on the
guiding center, we have

• the oscillation of frequency κ is the same as in x, but out of phase by 90o

Galaxies 17

Epicycles: azimuthal motions
• Taken together, (and setting the initial

phase φ0 = 0), we have

Some properties of this motion are:
• elliptical epicycle with radial/azimuthal axis ratio = κ / 2Ω
• epicyclic motion is retrograde w.r.t. orbit (c.f. Ptolemy's were prograde)
• For Keplerian potential: Ω∼R-3/2 we get κ= Ω  

– epicycle axis ratio 2:1 (cf Ptolemy's were 1:1 circles)
– full orbit is closed ellipse, centered at the ellipse focus, e.g. (next slide)

• For flat rotation curve: Ω∼R-1 we get  κ= Ωsqrt(2)
• For solid body rotation: Ω= const (harmonic potential):  

– κ= 2Ω  giving circular epicycles and closed oval orbits 
• In general,  Ω < κ < 2Ω   so  κ > Ω   

– epicycle completed before rotation  
– from inertial frame, orbits don't close, but regress

Galaxies 18

epicycles
• In the case of a Keplerian potential, the epicycle has aspect ratio 2:1 with

frequency equal to the orbital frequency.
• Hence the path traced out is closed in a stationary frame, and

approximates an ellipse with focus at the gravitational center.
• This, and the harmonic potential, are the only to central force fields for

which the orbit is closed.
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Values near the solar neighbourhood
• We can express the epicyclic and orbital frequencies at the solar radius,

κ0, Ω0, in terms of Oort's constants:

• The ratio κ0 / Ω0 ~1.3   ->  Solar neighborhood stars make 1.3 epicyclic
rotations per orbit.

• The ratio κ0 / 2 Ω0 ~0.7  
– Epicycles have radial/azimuthal extent of ~0.7 
– Stars with Rg = R0 have velocity dispersions σR / σφ = κ0 / 2Ω0  ~0.7 
– However, at R0, velocity dispersions are in fact σR / σφ = 2Ω0 / κ0   ~1.5 

… because stars found at R0 tend to have Rg < R0 (more stars at smaller radii)
• Epicycle sizes are ~  σ/κ , so for σR ~ 30 km/s, we find ~ 1 kpc

excursions 
• Similarly, for σz ~ 30 km/s and ν ~0.096 Myr-1 we find vertical excursions ~

300 pc. Galaxies 20

epicycles
• Simple simulation of 2.5

orbits of the sun around
the galaxy, with epicyclic
frequency κ = 1.3 Ω

• The epicycle completes
before the orbit, so the
orbit appears to "regress"

• [In this case, the epicycle
is circular (rather than
elongated by ratio 1.3)
and has roughly twice the
size is should.]

Galaxies 21

epicycles
• For the sun, z ~ 40pc and Ω ~ 7 km/s, so we expect modest vertical

excursions. 
• An amusing (speculative) theory is that disk crossings coincide with

terrestrial craterings and/or extinctions -> The higher stellar densities
perturb the Oort comet cloud, causing more impacts (!):

Galaxies 22

Resonances: Rotating patterns
• there can be regions of enhanced stellar density in the disk  
• These can have the shape of spiral and bar patterns
• These patterns are neither stationary nor move with the disk stars,  
• Instead they move at some intermediate angular velocity, Ωp, called

the pattern speed  
• The interaction of these patterns with the epicyclic motion can lead to

resonances:

co-rotation radius:
First consider a star which orbits at the pattern speed  
• we have Ω* = Ωp   or   Ωp - Ω* = 0  
• Such stars experience a persistant non-axisymmetric perturbation,

and their response builds up

Galaxies 23

Linblad resonances (ILR, OLR)
• Consider stars which complete exactly 1 epicycle between the

passage of each arm 
– Their interaction with the spiral arm is resonant  
– Epicyclic amplitude is amplified and wave propagation is strongly

modified
• Where do such resonances occur in the galaxy?  
The angular frequency of the star w.r.t. the pattern is Ωp - Ω*

… There are two cases :
– -ve if Ω* > Ωp ; star moves past arms
– +ve if Ωp > Ω* ; arms move past stars

• The angular frequency of encountering each arm in a 2
armed spiral is 2(Ωp - Ω*)  
So the condition for resonance is:
– 2(Ωp - Ω*) = +-κ    or   Ωp - Ω* = +- κ/2   (+-κ/m for an m-armed spiral)

Galaxies 24

Linblad resonances (ILR, OLR)
• There are two classes of resonance:

– Ωp - Ω* = -κ / 2   :   Inner Lindblad Resonance   (stars move past
pattern)

– Ωp - Ω* = +κ / 2   :  Outer Lindblad Resonance   (pattern moves past
stars)

• To establish the radii of these resonances, one needs to know
(see next slide):
– The pattern speed: Ωp

– The rotation curve, Vc(R), which gives Ω(R) and κ(R)
– E.g., for a ‘Plummer sphere’ often used to model GCs or other

stellar systems

• Depending on Vc(R) and Ωp there may be 0,1,2,....
resonances  (there can also be 0,1,2 inner Lindblad
resonances)
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• For a Plummer sphere, one can calculate the rotation curve, Vc(R) or Ω(R)
and from this κ(R) [ = (R d Ω 2 /d R + 4 Ω 2)1/2 ].

• The figure shows Ω(R) and the two curves Ω+ 1/2 κ and Ω - 1/2 κ. If we
now imagine a pattern speed, with frequency Ω p (which is independent of
radius), then we can ascertain the radii at which the inner and outer
Lindblad radii occur, as well as corotation.

• Notice in this example there are, in fact, two inner Lindblad resonance

Galaxies 26

Importance of resonances - several reasons:
• Density waves: (see below)

– Can only survive in between the ILR and OLR (where we find arms)
– Cannot pass an ILR (they are absorbed, like waves on a beach)
-> Important in allowing/preventing propagation across the disk through

the center

• Orbit shapes change across the resonances:  
– Bars don't extend beyond CR, stop close to it  
– Bars probably rotate with pattern speed Ωp ~ Ω(R=CR)  
– Expect stellar rings to form at CR and OLR (as found)  

• Gas driven inwards to ILR and outwards to ILR  
– often find gas rings/disks/starformation near ILR
– For the Milky Way, estimates are (for m=2):      ILR at ~3kpc, 

CR at ~14kpc, and OLR at ~20kpc, with Ωp ~ 15 km/s/kpc

Galaxies 27

Density Waves
• Kinematic Density Waves: In general, orbits are not closed

(~1-2 epicycles per orbit)
– However, they are closed in a frame which rotates at Ωg - 1/2κ
– In this frame, orbit is closed ellipse with Galactic centre at the centre.

• Consider set of orbits whose epicyclic phases vary
monotonically with radius  (i.e. PA of ellipses rotates with
increasing R)

 Simple orbit crowding
will generate a two arm
spiral pattern. 
This is called a
kinematic density wave

Galaxies 28

• For a set of orbits with epicycles, we have a pattern which rotates with
Ω- 1/2 κ.
– If the phases are all the same, we have the pattern on the left.
– If the phases increase systematically with radius we find a spiral pattern,

where the oval orbits bunch up.
• Density wave theory envisions a situation in which the very density

enhancements caused by the synchronized epicycles perturb the orbits
in just the way needed to maintain these same epicycles.
– Hence the entire system is stable and long-lived.

Galaxies 29

Density Waves
• If  Ω- 1/2 κ is roughly independent of radius (roughly

true for flat rotation curve):  
– the pattern is fixed and rotates at

 Ωp = Ωg - 1/2 κ = pattern speed  
– In fact, for Vc = const, pattern speed varies slowly with R,

so spiral slowly winds up
• However, including self-gravity can yield a different
Ωp which is almost independent of radius
– this is a result from "density wave theory", 

to which we now turn:

Galaxies 30

Lin-Shu (QSSS) Density Wave Theory
Sketch of Approach:
• The generation of kinematic spirals assumes axisymmetric

potential  
– However, orbit crowding yields a non-axisymmetric spiral

perturbation
– Star (and gas) orbits are modified by the spiral perturbation  
– Their new orbits define a new surface density and associated

potential.  
• We need to look for a self consistent solution: response to

input potential gives same potential  The analysis is difficult
(Lin & Shu 1964, 1966 and much subsequent work)
– Considers waves propagating in a differentially rotating disk
– Derive a dispersion relation: ω = f(k), with phase velocity, ω/k, and

group velocity, dω/dk.
– Look for Quasi-Stationary Steady State solution (QSSS).
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Lin-Shu (QSSS) Density Wave Theory
• Results:   Solutions are found with 

Ωp = Ω -  (dω/dk) x 1/2κ
which is ~ independent of R

• Pitch angles ψ(R) ~ const, yielding logarithmic
spirals

• Waves survive between ILR and OLR
• Waves are absorbed at ILR.
• Waves weaker in disks with higher velocity

dispersion
– need cold component to be replenished via star-formation

(c.f. S0 disks don't have arms)

Galaxies 32

Lin-Shu (QSSS) Density Wave Theory
• Gas response:

– Non-linear, leading to
collisions/shocks above a threshold
response

– Gas runs into itself (c.f. traffic jams)
creating narrow gas features (as
observed)

– Predict velocity streaming in
vicinity of arms, roughly as found:

– Geometry of density wave & strength
of shock depend on both central
concentration & Vc 

• explains correlation of pitch angle
with bulge/disk ratio

• explains lack of dwarf-spirals:
need threshold Vc to form disk
and arms.

Galaxies 33

Alternative Sources of Global Density Waves
• It is unclear how often the QSSS density wave theory is applicable: (see

Kormendy & Norman 1979 ApJ 233 539)
• Some galaxies have spiral arms within the region where Vc~ r (solid body):

–      arms don't wind up in this region.
• Many galaxies are flocculent, with no clear density wave pattern
• Many galaxies have an alternative source of density wave:
• There are two other obvious sources of density waves, both are m = 2.
• (i) Tides from companions  

– Tidal field of passing neighbor creates a strong m = 2 perturbation: [image]
– This drives a strong kinematic density wave.
– Self gravity enhances this perturbation.
– However, these spirals are transient.

• (ii) Bars and Oval Distortions
– Bars are another source of m = 2 perturbations
– Sanders & Huntley (1976) find even weak bars can generates strong spiral arms
– However, the mechanism needs viscosity (ie gas dissipation) to work.
– Oval distortions may have a similar (though weaker) effect.

Galaxies 34

Flyby Creation of
Density Wave

Galaxies 35 Galaxies 36
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Galaxies 1

Galaxies
Lectures 12-13: Spiral galaxy dynamics;
Introduction to the Local Group; further

applications of Jeans equations
• Disk galaxy instabilities and bars.
• Intro to the Local Group of galaxies
• Tidal friction
• Tidal evaporation
• Tidal radius
• Galaxy interactions
• Asymmetric drift
• Mass to light ratios (dSph’s)

Galaxies 2

Disk Instabilities and Their Amplification
• For the significant number of flocculent spirals, a

different mechanism may be at work
• This involves the tendency of stars and gas within a

disk to clump up gravitationally and form stars
• These clumps then get pulled into spiral arm

fragments by differential rotation

NGC2997 NGC5055

Galaxies 3

Local Disk Stability:
Toomre's Q Parameter

• When are self-gravitating disks vulnerable to local
gravitational instabilities ?

• Instabilities can arise from a competition between:
– gravity causing overdense regions to collapse
– stellar dispersion which inhibits the collapse
– angular momentum which inhibits the collapse

• Toomre (1964) found the conditions for instability:
Q < 1 where Q ~ κσ / (3 G Σ)  

– Where σ is the stellar velocity dispersion and Σ is the local
surface density

Galaxies 4

Local Disk Stability:
simplified derivation based on a modified Jeans analysis:  
• Consider overdense region radius R in a non-rotating disk
• The collapse time is tcoll ~ R / V where V ~ gravitational

velocity ~ (G M / R)1/2  
• So tcoll   ~   R / (GM / R)1/2 ~ (R3 / GM)1/2   ~   (R / GΣ )1/2  

(Σ  is surface density) 
• The time for stars to escape the region is : tesc   ~   R /σ  

(σ is dispersion) 
• So collapse occurs if tcoll   <   tesc   ie (R / G Σ)1/2 < R /σ   
• The critical size for stability due to dispersion is therefore:

RJ < σ2 / G Σ

Galaxies 5

Local Disk Stability:
• Now consider a rotating disk:  

– The local angular velocity is Oort's constant B  
– The region is stable if Fcentrifugal   >   Fgravity  
– In this case   R B2   >   GM / R2 = G Σ  

The critical size for stability due to rotation is therefore   :  
Rrot   >   G Σ / B2

• Combining these: the disk is unstable in the range   RJ  <  R  <  Rrot  
• And therefore the disk is locally stable if RJ > Rrot

• ie   σ2 / G Σ > G Σ / B2   or   σ B / G Σ > 1  
• Recall that B = κ2 / 4 Ω and  ~ 1-2  so B ~ κ/3

Galaxies 6

Local Disk Stability:
• The final condition for disk stability is therefore

• [A similar relation for gravitational stability for a gas disk is:
Q = Vs κ / 3 G Σ > 1 ]  

• Factors which promote gravitational instability (i.e. promote
spiral structure) are:
– low stellar velocity dispersion σ
– high surface mass density Σ
– low epicyclic frequencies (and/or low local rotation, i.e. low |B|).

• Solar neighborhood : σ ~ 30 km/s ; Σ ~ 50 M pc-2 ; κ ~ 36 km/s/kpc  
– these give Q ~ 1.4 and so the MW disk is locally stable near the sun
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Swing amplification
• Some circumstances allow a powerful amplification

of spiral patterns (eg Toomre 1981)
(i) The Swing Amplifier  
• If we have a leading spiral density wave, then
• Differential rotation will gradually rotate it into a

trailing spiral wave (see next slide)
• The rotation of the pattern is retrograde
• The timescale for rotation is ~ κ

– Epicyclic motion approximately follows the arm  
– Long perturbation duration so epicycle amplified  
– The emerging trailing pattern is strongly amplified

Galaxies 8

• Sketch of the orbital progression, right to left, of a leading arm-
fragment that becomes a trailing arm-fragment.

• Notice that the rotation of the arm-fragment is retrograde,
which is the same as the direction of the epicycles.

• Hence the epicycles are perturbed for a long period of time,
and respond strongly.

Galaxies 9

• Similar sketch previous slide, although here the orbital
progression (which in reality is right to left) is shown left to right.

• Again, stars whose epicyclic phase place them in the feature
are perturbed for a long time as the epicycle progresses, so
does the arm.

Galaxies 10

• Density contours of a
leading arm unwinding
to become a trailing arm.

• The swing amplifier
boosts the arm strength
considerably.

Galaxies 11

Swing amplification
(ii) Feedback for the Amplifier  

– For this to work, we need a source of leading spiral waves
– However, these are not normally generated in rotating disk
– Instead, look for feedback: trailing waves converted into

leading waves.
• Waves reflected from outer edge experience

180deg phase shift (trailing ->leading)  
– unlikely to operate in real galaxies: edges too soft

• Trailing waves passing through the central regions
emerge as leading waves (see next slide)
– This can only occur when we have no ILR (which blocks

wave passage)

Galaxies 12

Feedback: Swing amplification

• If trailing waves can
pass through the central
regions of a galaxy then
they emerge as leading
waves on the other side.

• These leading waves
are then subject to the
swing amplification.
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Bar Instability and its Suppression
• N-Body simulations of disks seem to form bars

remarkably easily (see next slide)
– Indeed, it is difficult to devise stable disk models 

even with Q > 1  
– Reality of this bar instability has been verified using

analytic methods
• Swing Amplification helps explain the instability:  

– Recall: leading waves are strongly amplified into trailing
ones  

– Nothing happens unless there is a source of leading waves
– Trailing waves pass through center and emerge as leading
– Hence feedback keeps the amplifier going 

-> bar grows quickly.

Galaxies 14

Bar Instability and its Suppression
• Initially axisymmetric disks will develop a strong bar.
• This bar instability is quite severe and is strengthened in part

by the swing amplification feedback of trailing waves passing
through the central regions to become leading waves.

Galaxies 15

Bar Instability and its Suppression
• Early work (Hohl 1971, Ostriker & Peebles 1973) noted the

severity of the bar instability  
– As you might expect, increasing stellar dispersion can calm instability

• found disks were stabilized against bar formation for KE(σ) / KE(rot) > 5  
• Note that for the MW disk near the sun, KE(σ) / KE(rot) ~ 0.15  

-> so our disk should be highly unstable to bar formation!

• What might suppress the bar instability in real galaxies?  …
– Put mass in a dark halo: this acts like a high dispersion component  

• More of historical interest: ~1973, any evidence for dark halo promoted  
• However, dynamics of the inner regions not influenced much by the halo  
• The halo may nevertheless help stabilize disks at larger radii.

– Achieve the same by having a high dispersion bulge or inner disk
 Ingoing waves are damped before they pass though the centre: 

cuts feedback
– An ILR will shield the centre and cut the feedback:  A large central

bulge mass yields an Ω(R) with an ILR

Galaxies 16

The Local Group

Galaxies 17

The Local Group
• The local group (LG) of galaxies is dominated by the

bright spiral galaxies, the Milky Way and Andromeda
(M31).

• The LG may be defined as all galactic systems
bound gravitationally to the MW and M31.

• This can be difficult to demonstrate for all galaxies
out to a radius of 1 Mpc of the MW/M31 barycentre
(observationally)

• Therefore, a purely radial cut of 1 Mpc can also be
applied.

• The LG provides a close up view of galaxy related
physics in action, e.g. interactions, mergers, star
formation and globular cluster formation.

Galaxies 18

The Local Group
Taxonomy of members
• The LG is dominated in terms of luminosity (mass)

by the giant spirals M31 (Andromeda) and the MW.
• Then comes a small gap in the luminosity distribution

before including the spiral M33 (Triangulum) and the
LMC (large magellanic cloud).
– Note that some researchers classify the LMC as a barred

spiral (SBm) and others classify it as an irregular galaxy.
• …  an example of the subjective nature of morphological

classification.
• Dwarf Elliptical/Irregular galaxies can be defined as
−18 < MV < −14.

• Dwarf Spheroidal galaxies range −14 < MV < −4 !
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The Local Group - members

Galaxies 20

The Local Group

Galaxies 21

The Local Group

Galaxies 22

The Local Group

Galaxies 23 Galaxies 24
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Galaxies 27 Galaxies 28

M32 and NGC205: Low-Mass E Galaxies

Galaxies 29

The Local Group
• Dwarf Elliptical/Irregular galaxies can be defined as
−18 < MV < −14.
– Irrespective of where the exact line is drawn the important

consideration is whether such dwarf galaxies are physically
distinct compared to giants.

– Recall, this does appear to be the case with the giant and
dwarf ellipticals.

– dSphʼs are different once again!
– The SB profiles of giant ellipticals are well described by

de Vaucouleurs profiles.
– However, dwarf ellipticals show lower central surface

brightnesses and overall start to be better fit by exponential
profiles.

– dSphʼs well fit by King profiles or exponentials
Galaxies 30

The Local Group
• A more physically continuous description of the SB

profiles is provided by the Sersic profile parametrised
by the effective radius Re and the radial fall-off n.
– Taking n = 4 generates a de Vaucouleurs profile, 

while n = 1 is an exponential profile.
– Furthermore, HST ACS observations indicate that as one

considers fainter ellipticals the rate of occurrence of bright,
central nuclei increases.

– There do appear to be important structural differences,
and thus clues to different formation histories and
formation mechanisms, between giant and dwarf ellipticals,
and dSphs.
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The Local
Group

Galaxies 32

The Local Group

Galaxies 33

Scaling relations for red-seq galaxies

Galaxies 34

1Mpc
distant

Galaxies 35

1Mpc
distant

Galaxies 36

Belokurov et al. 2006

• MW dsph’s found down to Mv < -3.5
• But only ~1/3 of sky covered.

Mv=8 Mv=6 Mv=5 Mv=4
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M31 subgroup dSph galaxies
viewed

‘complete’ for
the first time in

the Local
Group in the

M31 subgroup:
(Irwin+)

However, only
complete down

to Mv<-6

Galaxies 38

GC’s as simple stellar systems
• Difference from dSph galaxies is essentially in

DM content (none versus >100 M/L)

Galaxies 39

Multiple stellar pops in the
Carina dSph  galaxy

Galaxies 40

Sgr dSph (Ibata et al. 1994)

Galaxies 41

Sgr dSph (Ibata et al. 1994)
• Star counts to find a new merging dSph

satellite of the MW!

Galaxies 42

Similarly in M31
• Ibata et al. (2002), Irwin et al. (2005)
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Tidal streams in the MW

Galaxies 44

The Local Group
• L* galaxy stellar halos (MW, M31) could be

built up mostly from ‘tidally evaporated’ dwarf
galaxies, accreted over a Hubble time.

• Need to understand (with help from Jeans
equations):
– Dwarf galaxy M/L and dark matter haloes
– Tidal friction
– Galaxy encounters
– Tidal evaporation

Galaxies 45

The Local Group
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Galaxies
Lectures 13: galaxy interactions

• Different classes of interactions
• Tidal friction
• Tidal evaporation (tidal tails)

Galaxies 2

Galaxy Interactions

• Galaxy-Galaxy interactions are important in
understanding many aspects galaxy evolution:
–  Morphological and dynamical structures
–  Star formation and starburst histories, with associated

chemical enrichment history
–  AGN creation and fuelling
–  Elliptical galaxy formation
–  Formation of all galaxies in the Heirarchical merging

scenario.

Galaxies 3

Galaxy Interactions
several different regimes:
• Strength of interaction:

– Weak and/or distant encounters:  flyby with associated tides  satellite
orbit decay due to dynamical friction  tidal evaporation of orbiting
satellite tidal or gravitational shocks

– Strong and/or close encounters:  can lead to mergers  more global
gravitational effects become important

• Relative size of merging galaxies:
– major mergers: roughly equal sized galaxies
– minor (eg satellite) mergers: one galaxy is significantly smaller than

the other
• Hubble type of interacting/merging galaxies:

– disks: dynamically cold (tend to generate narrow tidal tails)
– spheroids: dynamically hot (tend to generate wider tidal fans)

Galaxies 4

Galaxy Interactions
• Different galaxy constituents:  

– these can respond quite differently during a merger and
can play quite different roles

• stars: a collisionless system
• gas: dissipational; star formation; feedback
• dark matter: extended collisionless reservoire for absorbing

Energy and AM
• Relics:  

– Visible effects can survive long after the main merger (or
interaction) has ended,  particularly at large radii where
relaxation times are very long:

• Polar rings or shells
• HI at large radii, possibly raining back down on the remnant
• Kinematically distinct cores
• Elliptical galaxies (may be merger relics!)

Galaxies 5

Galaxy Interactions: Analytic Tools
• We first consider four regimes which are analytically

tractable as well as dynamically important.
• They also develop our ability to interpret numerical

simulations of more complex regimes.
– (a)   A small system moving through a larger one

(dynamical friction)  
– (b)   Tidally driven evaporation: the Jacobi (Roche) Limit
– (c)   "Slow" encounters, where Vinternal >> ΔVencounter

(adiabatic approximation) 
– (d)   "Fast" encounters, where Vinternal << ΔVencounter

(impulse approximation; tidal shocking)
• Unfortunately, major mergers do not conform to any of these

regimes;  They cannot be treated analytically and require
numerical simulation

Galaxies 6

Dynamical Friction
• Consider a mass M moving at speed V through a population of stars

with uniform space density n.  
• The stars have mass m (<<M) velocity distribution f(v)  

(expressed as # per v)
• Gravitational focussing creates a wake behind the moving mass which

pulls back on it  

• This retarding force is
called dynamical friction
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Galaxy Interactions

Galaxies 8

Dynamical Friction
• The basic idea behind dynamical friction is that a moving mass

attracts objects to it, but because of its motion, the objects tend to
gather behind the mass, pulling it backwards.

• To calculate the retarding force, it is best to think of a single
object passing the mass on a Keplerian hyperbolic trajectory (i.e.
jump to a frame moving with the mass).

• A simple analysis (next slides) approximates the full Keplerian
solution.

• A small deflection angle θ defines the direction of symmetry for
the orbit which is tilted by θ/2 to both incoming and outgoing
asymptote.

• Thus, while momentum transfer occurs throughout the flyby, it
can be approximated by the force at closest approach multiplied
by the flyby time (roughly, 2b/v) in the direction of symmetry.

• Integrating over all encounters, the force perpendicular to the
trajectory averages to zero, while the force parallel to it doesn't.

Galaxies 9

Dynamical Friction

Galaxies 10

Dynamical Friction

Galaxies 11

Derivation of the Retarding Force
• Consider a single star passing with impact parameter b  

– It experiences a force towards M of Fp~GMm/b2 for a time Δt~2b / V
• After passing by, the impulse has imparted a perpendicular

velocity:
Δvp~ Δt Fp/m = 2GM / bV

• The (small) angle of deflection is therefore 
tanθ ∼ θ ∼ Δvp/ V = 2GM / bV2  

– (this approximates the hyperbolic Kepler/Coulomb solution)
• The encounter has symmetry about the vector of closest

approach  i.e. the line 1/2θ backwards from the original
perpendicular impact parameter vector  

• Newton's 3rd law demands that the impulse felt by m is
equal and opposite to the impulse felt by M: mΔv = MΔV

Galaxies 12

Derivation of the Retarding Force
• We are interested in the component of the force parallel

(and backwards) to the motion of M  
– (the perpendicular component will average to zero when summing

over all stars)  
– So, we have for a single star's retarding force:

• ΔFdrag = -mΔv = -m 2GM/bV tan 1/2θ = -2G2M2m / b2V3

• Integrating over all impact parameters (2πb db) and over the encounter
rate nV, we get:

• Here, Λ = bmax / bmin = bmaxV2 / GM   is the usual Coulomb
logarithm, where bmin is defined when Δv~ V   and bmax is the
effective size of the region  

• Note also that nm is simply the total density: ρ
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Derivation of the Retarding Force
• Approximately, we have for ln Λ:  Open clusters (6); Globular Clusters

(11); L* E galaxy (22); Galaxy clusters (7)
• Allowing for an (isotropic) field star velocity distribution, f(v), we get the

 Chandrasekhar (1943) dynamical friction formula:

• Note the approximations used in this derivation:
• M >> m         the object significantly outweighs the field stars
• M << Msys  the responding field distribution is ~symmetric about the object
• the field stars have an isotropic velocity field
• we have ignored the self gravity of the wake

• Despite these approximations, the equation works well in a
wide range of situations.

Galaxies 14

Special Cases
• if M moves slowly compared to the stars: V << v:

 we replace f(v) with f(0) to get:
Fdrag   =   -(16/3) π2G2M2m lnΛ f(0) V

– only stationary stars contribute to the wake, the rest
quickly leave the area  

– Since Fdrag ∼ V, this resembles Stokes's law for motion
through a viscous fluid.

• if M moves fast compared to the stars: V >> v:  the
integral converges, and we recover the simple
equation abo e

Fdrag   =  - (4 π G2M2 ρ ln Λ) / V2

–  all stars contribute to the wake  
– since with Fdrag    ~ V-2, the drag decreases for faster

moving masses

Galaxies 15

Special Cases
• for a Maxwellian f(v), with dispersion σ, we obtain:

• where X = V / σ sqrt(2)   ( y=erf(x)- 2x/sqrt(pi) exp(-x2) : 0 for
X = 0 and 1.0 for X > 2.4) 

• Note that the star masses enter as nm, ie the total mass
density ρ  

• the drag is therefore independent of m, and the equation
works for a spectrum of masses  

• Fdrag ~M2  :   gravitationally focussed mass ~M so force ~M2

 
• Fdrag~V-2  :   fast objects don't experience much drag.

Galaxies 16

Applications of Dynamical Friction
Satellite in Circular Orbit: For an isothermal galaxy with flat rotation curve

Vc = const, we have:   ρ(r) = Vc
2/ 4πG r2 ;   dispersion σ   = Vc/sqrt(2)  

(ie X = 1); giving Fdrag = -0.43 lnΛ GM2/ r2  
– As the satellite spirals inwards, its angular momentum is always:

L = MVcr  so, the rate of change of L is given by the torque:
dL/dt = Fdragr = -0.43 lnΛ GM2/ r

and we get
MVcr dr/dt = -0.43 lnΛ GM2

Solving ODE from initial radius ri (at t=0) down to r=0 at tinfall, we get
1/2 ri

2 = 0.43 lnΛ GM / Vc tinfall
Using as fiducials, numbers appropriate for a Globular cluster orbiting

the MW:
M = 106Msun; Vc = 250 km/s; bmax = ri = 2 kpc; (so lnΛ ~10)
This gives:tinfall ~ 2.6x1011 yr   (ln Λ )-1 r2kpc

2 V250 M6
-1

so although most GCs at large radii have not significantly changed their
orbits,  GCs with initial radii r <1.5 kpc may have already settled to
the MW center.

Galaxies 17

Applications of Dynamical Friction
Massive Galaxy Encounter
•  Although this case is not strictly legitimate (M

~Msystem) it is nevertheless instructive:
• for M ~1010 Msun ; ri~20 kpc; V~Vc

• we get:
• rinfall  ~  2x108 yr  ~  1 orbital period 
• Clearly, massive galaxies entering each other's

halos experience strong dynamical friction.

Galaxies 18

Applications of Dynamical Friction
• Large and Small Magellanic Clouds  

– For LMC, Msun  2~1010 M, r~60 kpc (so lnΛ~ 3) giving  tinfall~3x109

yr, suggesting LMC should have already spiralled inwards
– However: This assumes a circular orbit.  A more thorough analysis

(Murai & Fujimoto '80) requires: 
(a) that LMC & SMC have remained bound to each other in the past  
(b) their orbital plane includes the HI Magellanic stream (next slide) 

• They find:
– the LMC+SMC orbit is elongated with pericenter/apocenter ratio ~0.5
– they are currently near pericenter◦their orbit has decayed by x2 in

radius over the past 1010yr
– the Magellanic stream came from the SMC following a close

encounter with the LMC 2x108 yr ago
– the LMC and SMC will tidally separate when they come within 30 kpc

of the galaxy
– they will finally settle to the galactic center in further 1010 years.
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Galaxy Interactions

Galaxies 20

Tidally Driven Evaporation: 
Trunction and Disruption

• The outer luminosity profiles of globular clusters are
often sharply truncated  

• Naively, this is puzzling since stellar systems don't
naturally have "edges"

• The reason: outer stars become more bound to the
galaxy than to the GC potential  This is an example
of Tidal Stripping or Tidal Truncation
(Similar effects are seen in some cluster galaxies)

Galaxies 21

Tidal Radius • Number counts (with
King profile fit),
showing a steep cutoff
beyond the tidal radius

Galaxies 22

(i) Tidal (Jacobi/Roche) Limit
• How far must a star "wander" from its satellite before it is lost to the

galaxy ?  
– If you answer: "where the r-2 force of the satellite and galaxy are balanced"

you would be wrong  
– You forgot to include the fact that the satellite is also orbiting the galaxy  
– The satellite and galaxy are "fixed" only in a rotating frame, in which

pseudo-forces are also important.
• In this rotating frame, the star's energy   E = 1/2V2 + Φ(r)   is not

conserved  (recall, space probes can use planets to gain energy in a
"gravitational slingshot")  

• Instead, the Jacobi Integral   EJ = 1/2V2 + Φeff(r)   is conserved;
 where we have again introduced the effective potential in a rotating
frame:

Φeff(r)   =   Φ(r) - 1/2 | Ω x r |2
where Ω refers to the satellite's orbit and r has origin at the Centre of
Gravity ( ~ galaxy center)  

Galaxies 23

(i) Tidal (Jacobi/Roche) Limit
• contour plot of Φeff(r) for two point masses:

Galaxies 24

(i) Tidal (Jacobi/Roche) Limit
• Note the 5 Lagrange points: maxima in Φeff where stars are

stationary (in the rotating frame)  
– L1 is the deepest; L1, L2, L3 are unstable; L4, L5 are stable

 (although L4, L5 are maxima, coriolis force keeps objects in a slow
"epicyclic orbit" around them)

• Consider the simplest case:  two point masses: a small
satellite in circular orbit about a massive galaxy (ie m<<M)  
– evaluate Φeff along a line connecting m and M (separation R), with

origin at m:
Φeff(x)   =   - GM / |R - x|   -   Gm / |x|   -   1/2 Ω2(x - R)2

• Now find the turning points  :  
– substitute for Ω2 = GM / R3; differentiate w.r.t. x; set to zero and

solve for x = rJ:
• rJ = R(m / 3M)1/3 is the Jacobi Limit   (also called the tidal

or Roche radius, or Hill radius)
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(i) Tidal (Jacobi/Roche) Limit
• If we re-calculate for the case of a galaxy with

isothermal (flat Vrot) galaxy halo, we get:
rJ = R(m / 2M)1/3

• In general, a useful approximation is that rJ marks
the point at which:
– the orbital period of the satellite about the galaxy is

similar to
– the orbital period of a star about the satellite (in the

absence of the galaxy).
• In practice, measured tidal radii agree only

roughly with our simple expression for rJ.  
– The derivation should be considered as indicative rather

than predictive.
Galaxies 26

(ii) Satellite Evaporation and Possible Destruction
• The value of Φeff at rJ divides stars into those which can

escape from those which cannot  
– Consider a satellite star with EJ moving away from the satellite: V is

decreasing  as the star approaches the contour Φeff = EJ,   V
approaches zero and the star turns around  

– Clearly, if EJ > Φeff(rJ) then the star crosses the critical contour  
– If this happens to be near L1 (or L2), the star proceeds "down hill" and

is lost from the satellite
– Thus, over time we expect to lose all stars with EJ > Φeff(rJ)

• The satellite evaporates, in the sense that it is losing stars
with the highest energy  
– Unlike the slow evaporation of an isolated cluster, when stars scatter

into orbits with V > Vesc  tidal evaporation is independent of scattering
within the cluster:  

–  even bound stars (ie E < 0 for an isolated satellite) can have EJ > Φ
eff(rJ) and can be lost

Galaxies 27

(ii) Satellite Evaporation and Possible Destruction
• For a satellite which is approaching a galaxy, rJ

and Φeff(rJ) continually decrease:  
– the cluster may lose an ever increasing number of stars.  

• Recall from elliptical galaxy lectures that most stars
are marginally bound (ie N(E) peaks near E~0 ):  
– a small decrease in eff(rJ) can result in the loss of many

stars.
• Nice examples of tidal evaporation

–  MW globular cluster Palomar 5: (next slides)
–  simulation of the tidal destruction of a dwarf satellite by

Kathryn Johnston

Galaxies 28

Galaxy Interactions

Galaxies 29

Satellite evaporation

Galaxies 30

Galaxy Interactions
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Galaxy Interactins

Galaxies 32

Adiabatic Approximation (Slow Encounter)
• During a tidal encounter, the orbits of many stars are

significantly affected.  
– However, some orbits are not greatly affected: 

those for which torbit << tencounter  
– As the tidal field slowly changes, the orbit responds slowly and

reversibly  
• cf the response of the moon's orbit during the year as the Earth's distance

to the sun changes  
– This type of response is called adiabatic  

• If the encounter is a "flyby", the tidal field first grows, then
decays  
– the rapid orbits slowly modify, but then return to their original form  
– Thus, stars on rapid orbits near galaxy centers are not greatly

affected by tidal encounters  (unless, of course, the encounter
proceeds to become a merger)

Galaxies 33

Impulse Approximation (Fast Encounter: Tidal Shocks)
• The opposite extreme occurs when torbit >>   tencounter  This

occurs when Vinternal <<   ΔVencounter  
• In this case stars don't move much during the encounter

– no change in PE  :   ΔPE ~  0  
• However, they do feel an impulse, (ie a force acting over a

short time)  
– changes in both global and internal velocities: ΔVCM and ΔVinternal

(B&T p434-435)  
– so internal KE does change: KE ~ 1/2 Σm ΔVint

2   (note: always +ve)
 

– The effect of the tidal shock is to heat the stars  

• We say the system has experienced a tidal shock

Galaxies 34

Impulse Approximation (Fast Encounter: Tidal Shocks)
How does the system respond (relax) after experiencing the tidal shock ?
• Loosely speaking:  the increased KE causes the system to expand and

cool (self gravitating star systems have -ve specific heat: eg, Collapsing
gas cloud radiates energy, collapses further, and heats up.)

• More formally:  using subscripts o="original", i="initially after encounter",
and f="finally after relaxation"  

• Virial theorem applies to the original and final relaxed systems: 
Eo = -KEo and Ef = -KEf

• immediately following the encounter we have: 
KEi = KEo + ΔKE and Ei = Eo + ΔKE = -KEo + ΔKE  

• following relaxation, we have: Ef = Ei  -> -KEf = -KEo + ΔKE  
giving   KEf = KEo - ΔKE  

• from original to final, the system has indeed cooled, by an amount ΔKE  
• since the shock heats the original system by ΔKE, then during relaxation

(i to f) the system cools by   -2ΔKE   (ie KEf   =   KEi - 2ΔKE)  
• of course, the system has also expanded, increasing the final PE by ΔKE

Galaxies 35

Impulse Approximation (Fast Encounter: Tidal Shocks)

Galaxies 36

Impulse Approximation (Fast Encounter: Tidal Shocks)
• Since the stars receive energy, some may become

unbound (E > 0)  
–  these are lost from the system: they evaporate  
– If there are repeated tidal shocks, a cluster may be

disrupted and disintegrate
• Finally, if the encounter is distant, the "tidal

approximation" applies: (B&T p 437-438)  
• eg, a spherical system (mass M, size r) is passed

by a mass m at distance b with speed V  
–  the change in its energy is  ΔE ~ (4 G2M2m r2) / (3 b3V4)  
–   it is left elongated, long axis pointing to the point of

closest approach (cf lunar tides)
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Impulse Approximation (Fast Encounter: Tidal Shocks)
Examples
• Open clusters are shocked by the passage of

Dense Molecular Clouds (DMCs)  
–  there are very few old open clusters  
– most have evaporated from repeated shocks on a

timescale ~5x108 yr.
• Globular Clusters are shocked when they pass

through the MW disk  
– can lead to evaporative disruption (depends on where in

the disk ) 
– eg for GC with σ = 5 km/s, r = 10pc, Vp = 170 km/s

crossing at ~3.5 kpc,  
–  disruption timescale is  6x109 yr

Galaxies 38

Impulse Approximation (Fast Encounter: Tidal Shocks)
• Tidal shocking of galaxies in clusters is termed:

galaxy harassment  
– disks are heated  they get thicker and Toomre's Q

parameter increases (see lecture12)  
– spiral arm formation is therefore suppressed 
– appear to have earlier Hubble types (eg Sb  Sa)

• Also, stars and dark matter expand and are lost to
the galaxy but join the cluster 

• Gas, however, loses AM and goes to the center to
trigger a starburst (next slide shows process in
action):

Galaxies 39

Impulse Approximation
(Fast Encounter: Tidal Shocks)

• Left column shows the path of a single galaxy
through the galaxy cluster.

• As it is subject to tidal shocks passing the
other galaxies, the stars and dark matter are
heated and some are lost to the tidal field of
the entire cluster.

• The evaporated stars and dark matter form a
long tail.  

• Right column zooms in on the gas in the
galaxy, which steadily evolves via shocks and
cooling and gravitational torques, into a
compact nuclear disk.

• This disk likely gives rise to a high star
formation rate.

Galaxies 40

Impulse Approximation (Fast Encounter: Tidal Shocks)
• Ring galaxies are formed from tidal shocks

– Perturber passes rapidly through & close to center of a disk galaxy
(V >> Vc)  

– shock induces ΔVr ~ πVc(Vc / V) radially inwards for all stars  
– this sets up synchronised epicyclic motion  
– (recall, velocity perturbations to orbiting stars yield epicyclic motion)  
– the response is an expanding circular density wave  -> a ring !  
– these density waves can, of course, trigger star formation  …. 

 The most famous is the "cartwheel":

Galaxies 41

Impulse Approximation (Fast Encounter: Tidal Shocks)
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