Galaxies

Lectures 22-23: seeds of galaxy formation

- Goal: to fill in the early era of galaxy formation up to the point of gas cooling in DM halos
- Growth of structure
- Spherical collapse
- Press-Schechter

Galaxies

The Friedmann equation

- The Freidmann equation describes the time variation of the scale factor a(t)
- It can be derived by substituting the metric terms described by the RW line element into the Einstein field equation.
- However, we will review the Friedmann equation using a Newtonian analogue:
- Consider a universe with coordinate distances defined by the RW line element.
- The universe is populated with galaxies with a space density ρ and pressure P = 0 (i.e. the galaxies do not interact with each other).
- Consider a spherical volume of the universe of radius I and mass M.
- We further consider the dynamical behaviour of a test particle (a single galaxy if you like) of mass *m* located on the surface of this spherical shell.
- Birkhoff's theorem states that the mass within the sphere will act upon the test particle as if the entire mass M were concentrated at the centre of the sphere.
 Galaxies

The Friedmann equation

- From the Newtonian equation of motion of the test particle we therefore obtain $m \frac{d^2l}{dt^2} = -\frac{GMm}{l^2}$.
- Multiplying the equation by dl/dt: $\frac{d}{dt} \frac{l^2}{2} = \frac{d}{dt} \frac{GM}{l}$

Integrating yields
$$\frac{l^2}{2} - \frac{GM}{l} = E$$

where the integration constant has units of energy.

Galaxies

8

 Note: this equation may be interpreted as a basic energy relation of the form, Kinetic + Potential = Total.

The Friedmann equation• The RW line element indicates that $I(t) = I_0 a(t)$,
where I_0 is independent of time and a(t) is the
time-varying, universal scale factor. Therefore,
we may write $\frac{l^2}{2} - \left(\frac{G}{l}\right) \left(\frac{4\pi l^3 \rho(t)}{3}\right) = E$
 $\frac{a^2}{2} - \frac{4\pi G \rho(t) a^2(t)}{3} = \frac{E}{l_0^2}$
 $a^2 - \frac{8\pi G}{3} \rho(t) a^2(t) = \frac{2E}{l_0^2}$ • The result is one form of Friedmann's equation
and it has three general solutions:

Galaxies

	The Friedmann equation
•	If we divide the Friedmann equation by H(t) ² and use the above identity, we obtain $\frac{kr^2}{kr^2} = \Omega(t) - 1.$
•	This expression has the following consequences
	$ \begin{array}{lll} k=+1 & \Rightarrow & \Omega(t)>1 & & \Omega(t)>1 & \Rightarrow & a \mbox{ closed universe}, \\ k=0 & \Rightarrow & \Omega(t)=1 & \mbox{for all times}, & & \Omega(t)=1 & \Rightarrow & a \mbox{ spatially flat universe}, \\ k=-1 & \Rightarrow & \Omega(t)<1 & & \Omega(t)<1 & \Rightarrow & an \mbox{ open or hyperbolic universe}. \end{array} $
	Therefore, the total matter/energy content of the universe determines the overall spatial geometry, the time variation of a(t) and the ultimate fate of the universe. Importantly, these equations indicate that the universe has a well-defined characteristic matter density that marks the limit of each of the above cases. - the determination of the total matter content of the universe became an immediate challenge for early observational cosmologists. However, to determine this critical density, one requires H(t) or H0 (cosmological distance scale – previous lecture)
	Galaxies 13

The seeds of galaxy formation: The cosmological horizon and Inflation

- The cosmological horizon may be defined as the maximum distance a photon could travel within the lifetime of the universe.
- It is a convenient definition of the largest region of the universe that could exist in causal contact at any particular epoch.
- The horizon is defined by considering a radial null geodesic within the RW line element, i.e. a(t) dr

 $c \, \mathrm{d}t = \frac{a(t) \, \mathrm{d}r}{\sqrt{1 - kr^2}}$

$$\int_0^{t_0}\frac{c\,\mathrm{d}t}{a(t)} = \int_0^{r_H}\frac{\mathrm{d}r}{\sqrt{1-kr^2}},$$

14

- Where t_0 indicates the current age of the universe and r_{H} is the horizon distance.

Galaxies

Short history of early Universe

- 1) The hadron era: $t_{min} < t < \sim 10^{-5}$ sec.
- This marks the earliest Universal epoch where experimental physics can be applied with any confidence.
- Almost all matter, including electrons, protons, neutrons, neutrinos and their associated anti-particles are in thermal equilibrium with the photon radiation field.
- The disparity between particles and anti-particles is thought to be 1 part in > ~10⁷ and is ultimately responsible for all matter in the present day universe.
- The exact physics (e.g. equation of state) of this epoch is not known.
- Thus the dependence of the scale factor a(t) and the temperature T (t) upon cosmic time is not known.

Galaxies

19

Short history of early Universe

- 2. The lepton era: 10^{-5} sec < t < ~10 sec.
- The temperature decreases such that kT is significantly lower than the rest mass energy of the proton (m_{\rm p}=938 MeV).
- Proton-antiproton pairs, in addition to other hadrons present, annihilate.
 The lepton era begins with photons in thermal equilibrium with electrons
- and positrons, muons, neutrinos and antineutrinos. • The energy released by hadron annihilation is thus shared between all of
- these particle families. • Each of the relativistic particles (photons, neutrinos and electrons – plus antiparticles) contributes an energy density $_{\ast}$ T 4 .
- an inparticles) contributes an energy density $\approx 1^{-5}$. • The lepton era ends when the radiation temperature drops significantly below T = 5 x 10 ° K (i.e. kT = m_e c² = 511 keV).
- Electron-positron pairs annihilate and temperatures begin to decrease to levels where a protons fall out of equilibrium with neutrons.

Galaxies

20

Short history of early Universe

- 3. The plasma era: 10 sec < \sim t < \sim 10 ¹³ sec.
- The universe consists of photons, neutrinos, electrons, protons and neutrons (the discussion assumes that at this stage Dark Matter particles do not interact).
- The early stages of the plasma era remain sufficiently hot and dense to produce light nuclear elements from hydrogen.
- Matter and radiation are coupled to form a photon-baryon fluid: photons are coupled to electrons via Thompson scattering, and electrons are coupled to protons via Coulomb interactions.
 Matter and radiation remain in thermal equilibrium until the
- photon temperature drops below $T = 3 \times 10^3$ K where electrons combine with protons to form atomic hydrogen.
- The radiation field continues unimpeded to the present day where it is observed as the Cosmic Microwave Background.

Galaxies

21

g is constant at early times and scales as 1/a at late times for our cosmology, the action ended around z=0.5

Growth of Structure

- after $\delta > 1$, non-linear regime
- matter accumulates in dense regions
- hard to approximate without numerical simulations
- random motions of particles halts the growth
- non-linear collapse on small scales doesn't change the linear evolution of the large-scale perturbations (they don't care whether the small scale power is lumpy -- Gauss's law!)

Galaxies

35

Growth of Structure

Linear Power Spectrum = Primordial Power Spectrum * Transfer Function * Growth Fucntion

• Primordial Power Spectrum:

$P_k \sim k^n$

n < 1 :'blue tilt', less power on small scales n=1 :'scale-free', Harrison-Zeldovich-Peebles n>1:'red tilt', more power on small scales n(k): running scale index

current constraints from WMAP+LSS: n = 0.95

In pure CDM cosmology

- in the matter dominated era all scales grow equally
- in radiation-dominated era, pressure is important.
- scales smaller than the horizon: growth is stalled by the presence of radiation pressure. growth slows as a², and small scale modes are damped as k⁻² --> power spectrum suppressed by k⁴.
- Universe is expanding too quickly for the dark matter to collapse
- scales above the horizon continue to collapse
- scales that enter horizon during the radiation-dominated era grow more slowly than those that enter during matter domination.

- Spherical collapse
- Defining a halo
- · Analytical representations
- Press-Schechter
- Structure of halos

Structure Formation

- · we discussed the generation of fluctuations
- the evolution of the power spectrum under linear theory, applies when the fluctuations are small.
- this likely doesn't work for big fluctuations; these fluctuations become non-linear
- roughly, non linear is when the density fluctuations are ~ 1 $\delta(x)$ = ($\rho(x)\text{-}\rho_0)/\rho_0$
- most of the field of structure formation and galaxy formation concerns understanding the non-linear regime, and collapsed objects in the density field

Galaxies

2

4

simulating the Universe

Galaxies

- choose a cosmological model (Ωm,ΩΛ,Ωb,h,n, DM)
- choose a computational set up (box size, dynamic range, what physics to include)
- find the linear P(k) as per Lecture22
- set up a random realization of P(k) in the linear regime (200<z<30) in the chosen box
- follow the evolution of dark matter using particle N-body methods
- optionally, follow the evolution of the gas by numerically solving gas dynamic equations
- optionally, add sink and source terms to hydro equations, modeling heating and cooling of the gas, star formation, etc..
- evolve to the redshift of interest

Galaxies

3

- A challenging problem ... the scales of interest for dark matter structures are ~ pc to hundreds of Mpc. would like to simulate a large volume, but also want to small scales & resolve collapsed objects with many particles your computer & the amount of time you have determines N. Although not the only variable: refinement schemes, and the amount of clustering in the box (the more non-linear, the
- amount of clustering in the box (the more non-linear, the harder the problem) all play a role in computing time for a given N
- for a given particle number, always a trade-off between volume and mass resolution:
 - miss large scale modes and rare objects with small volume;
 miss small objects and physics in dense regions with low particle number

Galaxies

Basic things to study:

- how many collapsed things of various masses?
- · how are they distributed in space?
- what internal properties do they have? (internal density distribution? internal angular distribution? shapes? internal substructure?)

Galaxies

• can we understand the collapsed objects (halo formation) analytically?

halo finder is typically looking for a nonlinear peak in the dark matter density field, defined by some density contrast. each halo finder has to choose a definition of mass and of boundary.

types of halo finders

- spherical overdensity
- defines a halo as matter within a sphere, centered on a density peak, and enclosing a certain overdensity (for example, the "virial overdensity we just defined)
- simple (one parameter delta_vir), requires spherical. doesn't remove unbound particles.
- friends-of-friends
 - all particles within a linking length are connected in a group. halo = connected region bounded by a density isosurface
- simple (one parameter b) and accounts for non-spherical objects. doesn't remove unbound particles.
- density maxima (DenMax, SKID, HOP)
- define halos as connected regions above a certain overdensity, break neighboring peaks at saddle points

