
Part III: Galaxies
Lent Term 2010
Examples Sheet # 1: Dynamical Timescales

1. CROSSING TIME: Consider a spherical system with constant density
ρ and radius R. (a) Show that the circular orbital period in such a
system is independent of radius, and can be expressed as a function of
the density alone. (b) Derive the equivalent expression for the crossing
time (R/V ) in terms of the total mass and radius of the system.

2. A more realistic approximation for a stellar system is an isothermal
sphere, with constant orbital velocity v and radius R. Derive for this
case an expression for the crossing time at outer radius R, in terms
of R and the mass of the system, and compare to the result from the
constant density case above. Explain the origin of any difference in
timescales.

3. RELAXATION TIME: The crossing time represents a practical min-
imum time for altering the structure of a dynamical system. At the
other end of the spectrum is the relaxation time, the time required for
a system to reach dynamical equilibrium via 2-body interactions.

(a) The relaxation time can be estimated by calculating the mean frac-
tional change in the orbital kinetic energy of a star during a single
crossing of the stellar system, and then scaling by the crossing time of
the system. Begin by calculating the gravitational deflection of a star
by passing by another star of equal mass, at impact parameter b. The
force acting on the star perpendicular to its motion can be expressed
as a function of time:
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Show that over the entire encounter this introduces a transverse change
in velocity:

δv⊥ =
2Gm

bv

(b) Next consider a system comprised of N stars of equal mass m, and
radius R. Derive an estimate for the total number of encounters that a
star makes in one crossing of the cluster (with impact parameters be-
tween b and δb), and show that the total change in the square velocity is:
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(c) To calculate the total change in v2

⊥ we need to integrate over all
impact parameters from bmin = Gm/v2 to R (collisions closer than bmin

result in captures and are not relevant to this problem). Integrating
gives:
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Show the the fractional deviation per orbit crossing:
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(d) Finally show that the relaxation time can be approximately ex-
pressed in terms of the crossing time as:
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4. Use these results to estimate the values of the crossing and relaxation
times for the following systems. For which cases are relaxation effects
important?

(a) the Galactic Center: N = 107 M = 107M⊙ R = 10pc

(b) elliptical galaxy M87: N = 1012 M = 1012M⊙ R = 30kpc

(c) Coma cluster: N = 1000 M = 1014M⊙ R = 1Mpc

5. DYNAMICAL FRICTION: As an extension of the analysis above, con-
sider a large object of mass M orbiting through a sea of particles with
average volume density ρ, at a velocity V . From the reference frame
of the object, stars are streaming past at velocity v, and being gravi-
tationally deflected (focussed) in a wake as they pass by the massive
object. The result (back in the inertial rest frame) is a graviational
drag δV‖ on the massive object.

To estimate the drag force, we use the formalism from Problem 3, and
equate the momentum loss of the object to the net momentum loss of
the stars being deflected. These losses are dominated by stars with
impact parameters small enough that ∆v⊥ ≥ V .

We denote this critical impact parameter as bcrit.

Substituting from the second equation in Problem 3:

bcrit =
2GM

V 2

From this show that the net drag on the massive object:

dV

dt
= −4πρ

G2M

V 2
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