
Part III: GALAXIES - 2011

Examples Sheet 3: Galaxy Interactions, The Milky Way Galaxy, Distance scales with SZ effect

Lent Term

1. THE OORT LIMIT AND THE MASS DENSITY OF THE GALAC-
TIC DISC: A classic application of the Jeans equations is to “weigh” the mass
surface density of the Galactic disc, using measurements of the velocity disper-
sion and vertical falloff in densities of low-mass stars above the Galactic plane.
This was first analyzed by Jan Oort in 1932.

(a) Begin with the Jeans equation and Poisson’s equation in cylindrical coordi-
nates:
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Recall that ν(z) and ρ(z) are the number and mass densities of stars (per unit
volume), respectively, and σz is the velocity dispersion as a function of height
above the disc z.

Show that for an axisymmetric disc this can be expressed as:
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(b) Show that in the limit of a flat uniform disc with a constant rotation ve-
locity, and velocity dispersion that is independent of z-height, the projected
surface density of the disc (volume mass density integrated over height) has an
exponential falloff, with e-folding scale height

z0 = σ2
z/(2πGΣ) (4)

(c) Derive an estimate for the mass surface density of the Galactic disc in the
solar neighborhood, based on the observation that K-dwarf stars have a scale
height of ∼250 pc, and a vertical velocity dispersion of 20 km/sec. The observed
surface densities of stars and gas are approximately 55–60 M�/pc2 in total. How
does this compare to your result from stellar dynamics? What are the possible
sources of any discrepancy?
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2. GALAXY INTERACTIONS

Consider a dwarf companion galaxy in orbit around a giant parent galaxy. Each
is a spheroidal galaxy, with a distribution of stars approximated by an isothermal
sphere:

ρ(r) =
σ2

2πGr2

where σ is the (constant) velocity dispersion and r the radius from the centre
of each galaxy.

(a) The density profile of the dwarf galaxy is truncated by the gravitational field
of the giant galaxy. Derive an expression for the truncation radius in terms of
the velocity dispersions and radial separation of the two galaxies.

(b) Using the result above, derive an expression for the mass of the dwarf
spheroidal galaxy, again in terms of its velocity dispersion and separation from
the parent galaxy.

(c) Derive the value of the radius and mass of the dwarf galaxy assuming its
velocity dispersion is 10km s−1, and it is orbiting at a distance of 50kpc from a
giant galaxy with velocity dispersion 300 km s−1. Calculations to one significant
figure are sufficient (here and in what follows).

(d) Suppose that the optical (e.g., blue) luminosity of the giant galaxy is 1011L�,
which is a typical observed value for a system with σ = 300km s−1. Estimate the
luminosity of thedwarf galaxy (in solar units), if it lies on the main fundamental
plane for elliptical galaxies (i.e., Faber-Jackson relation). Derive the mass/light
ratio of the dwarf galaxy, and compare it with the values observed for (a) typical
giant elliptical galaxies, and (b) dwarf spheroidal galaxies in the local Universe.
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3. GETTING A FEEL FOR IMFs: The measured form of the stellar
initial mass function is well approximated by a 2-segment power law, with slope
dψ/dm = −2.35 (Salpeter) for stars with masses of 1–100 M�, and −1.0 for
stars with masses 0.1–1 M�.

(a) For this IMF derive the average stellar mass, meaning in this case the value
dividing equal halves of the total mass of the formed stellar population. How
does this compare to the value you derive if you assume a Salpeter IMF for all
stellar masses (0.1–100 M�)?

(b) Observations show that averaged over this entire stellar mass range the
bolometric stellar luminosity scales roughly as M3. For the two-segment IMF
derive the stellar mass above which half of the total luminosity of the population
is emitted. As before compare your result to the value you would derive for a
purely Salpeter IMF. Why is the comparison so different in this case?

(c) Derive the bolometric mass/light (M/L) ratio for this population, for both
IMFs, and compare the resulting values to those measured for galaxies. What
factors account for the large differences?

(d) The Milky Way is observed to have a total present-day star formation rate
of about 3 M�/yr, and a core-collapse supernova rate of about one per century.
Suppose we assume for a moment that all stars with an initial mass larger than
X eventually explode as supernovae. Use the information above to derive an
estimate for the threshold mass X, for the 2-segment and Salpeter IMFs. We
actually think that stars with masses above ∼30-40 M� may collapse directly
to black holes, without producing visible supernovae. Show that this possibility
has negligible effect on the derived value of X.
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4. THE SUNYAEV-ZELDOVICH EFFECT:

The change in the inferred temperature of the CMB due to the scattering of
CMB photons from electrons in an ionized plasma is given by
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where f is a relativistic correction dependent on the frequency of the observa-
tion, σT is the Thompson cross section, T is the temperature of the gas, and
ne is the electron density. The X-ray surface brightness at a given point on the
sky is given by
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where z is the redshift of the cluster, Λc is a temperature dependent cooling
function, and nH is the hydrogen density. Assume the density profile of a
cluster of galaxies is given by a spherical isothermal model with ne = ne(0)(1 +
(r/rc)2)−3β/2 where rc is the core radius. Show that the two expressions for
observables given above, evaluated along the line of sight through the cluster
center, can be used to determine the angular size distance (the ratio of the
physical size of an object to its projected angular size) as:
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Hint: eliminate ne(0)
END
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