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Planetary System Dynamics
Mathematical Tripos Part III / Part III Astrophysics

Dr M. C. Wyatt
Lent Term 2014

Examples Sheet 3

1. Radial drift with coagulation
After settling to the midplane of a protoplanetary disk grains then drift inward due to gas drag at a rate

vrd = −ηvk[τs + 1/τs]
−1, (1)

where η ≈ (cs/vk)
2, vk is the Keplerian velocity, the sound speed cs ∝

√
T ∝ r−α/2, the dimensionless

stopping time is

τs = (π/4)ρsD/Σg, (2)

ρs is grain density and the gas mass surface density is parametrised as Σg = fscΣg0(r/r0)
−β , where

Σg0 = 1700g/cm2, r0 = 1AU and β = 1.5.

(a) Find the size (in cm) and drift rate (in AU/yr) of the fastest moving particle as a function of r (in AU)
and fsc if ρs = 3g/cm3, α = 0.5 and cs = 0.6km/s at 1AU.

(b) Settling sets the initial size of dust that has settled to the midplane to

Di = 0.5hfdgρgm/ρs, (3)

where fdg = 0.01 is the dust to gas ratio, the midplane gas volume density ρgm = Σg/(
√

2πh) and the scale
height h = rcs/vk. Find and comment on the particle’s initial dimensionless stopping time and the initial
drift rate.

(c) Show that if this particle accretes all of the mass it encounters due to its radial drift, it would grow at
a rate

Ḋ = 0.5fdgρgm|vrd|/ρs. (4)

Hence show that such a model would predict that by the time particles reach the sublimation radius rsub ≪ ri

they would have grown to a size in cm of

Dsub ≈ 30fscr
−7/4

sub . (5)
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2. Collisional cascade with embryo stirring and gas drag

(a) Consider a belt of planetesimals of strength Q⋆
D = 105 J kg−1 surrounding a star of mass M⋆ at a dis-

tance r in AU. Within the belt are a few embedded embryos of mass Mem. If the velocity dispersion in the
belt is approximately the escape speed of the embryos, and assuming all objects have a density ρ = 3000 kg
m−3, what is the minimum embryo mass to ensure that collisions between equal-sized planetesimals are
catastrophic?

(b) Collisions in the belt set up a cascade with a size distribution n(D) ∝ D−7/2 between the maximum
planetesimal size Dmax and a minimum size Dmin ≪ Dmin. If the fractional luminosity f of the cascade is
approximately the ratio of the total cross-sectional area in the cascade to the surface area of a sphere at r,
show that

f ∝ MtotD
−1/2

min D−1/2
max ,

where Mtot is the total mass in planetesimals. Hence, assuming that the minimum grain size is set by radi-
ation pressure for which β = 1.2×10−3ρ−1D−1, where D is in m and ρ in kg m−3, and that Dmax = 10 km,
consider the implications of the observational constraint that f < 10−3 at 1AU on the ability of the plan-
etesimal belt to affect the orbits of any embedded embryos.

(c) If the scale height of the planetesimal disk h is such that h/r is approximately the ratio of the embryos’
escape speed to the Keplerian velocity, the collisional lifetime of planetesimals of size D is

tcc(D) = AD1/2,

where A ∝ M
11/9
em D

1/2
max/Mtot. Assume there is also gas coincident with the planetesimal belt which causes

drag that removes particles on a timescale

tgas(D) = B(τs + 1/τs),

where τs = CM−1
gasD, B and C are constants and Mgas the gas mass. Draw a figure comparing collision

lifetimes with gas drag lifetimes as a function of particle size, and note how this comparison changes with
Mgas and Mtot. Hence show that gas drag can become important when Mgas > C(2B/A)2, in which limit

the largest particles that are affected by gas drag are those with diameters (
AMgas

BC )2, and discuss the impli-
cations for how fractional luminosity depends on Mgas.
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3. Collisional lifetime of irregular satellites

(a) Consider a planet of mass Mpl on a circular orbit around a star of mass M⋆ at a distance apl. The
planet is surrounded by a swarm of irregular satellites the orbits of which are approximately circular at a
distance of ηrH, where the planet’s Hill radius rH = apl(Mpl/3M⋆)

1/3, and their inclinations are random
such that they form an isotropic distribution. Show that the average relative velocity of satellite collisions
is 4/π times the Keplerian velocity at ηrH, and so can be given by

〈vrel〉 = 4.6 × 104η−1/2a
−1/2

pl M
1/3

pl M
1/6
⋆ , (6)

in m s−1, for masses in units of M⊙ and distances in AU.

(b) Collisions set up a collisional cascade with a size distribution n(D) ∝ D−7/2 below a maximum size of
Dmax. Assuming that satellites have a density ρ and dispersal threshold Q⋆

D, and that the total satellite
mass Msat is concentrated at radii (η ± dη)rH, work out the rate at which the largest satellites undergo
catastrophic collisions Rcc(Dmax).

(c) Assuming that the mass loss rate due to satellite collisions is Msat(t)Rcc(Dmax), show that the mass of
satellites remaining at late times is independent of initial mass Msat(0) but scales as

Msat(tlate) ∝ ρM
−13/9
⋆ M

1/9

pl Dmaxa
13/3

pl η13/3(dη/η)Q⋆
D

5/6t−1
late. (7)

(d) It is possible that extrasolar planets have irregular satellites and that the dust produced in their colli-
sions would be detectable. What physical process would you expect to truncate the collisional cascade?
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4. Isolating terms in the disturbing function
In a coordinate system centred on the primary star of mass M⋆, the perturbation potential at r (the vector
offset from the origin), due to a planet of mass Mp (at rp), is

φp(r, θ, t) = −GMp/|r − rp| + (GMp/|rp|3)rp · r. (8)

This question considers perturbations in the plane of the planet’s orbit.

(a) Assume the planet’s orbit can be described by epicyclic motion about a guiding centre that rotates
around the star at a mean frequency Ωp, with an epicyclic frequency of κp for radial oscillations due to the
small but non-zero eccentricity of the planet’s orbit, i.e., rp = a(1 − e cos κpt). The longitude of the planet
is given by θp = Ωpt + 2e(Ωp/κp) sin κpt. What is the rate of precession of the planet’s pericentre?

(b) The perturbing potential φp can be expanded as a Fourier series

φp(r, θ, t) =

∞
∑

l=−∞

∞
∑

m=0

φp
l,m(r) cos {mθ − [mΩp + (l − m)κp]t}. (9)

Describe the form of the components of the perturbation potential in the frame that rotates at correspond-
ing angular frequency Ωp + (l − m)κp/m.

(c) Assume the planet’s orbit is circular. Evaluate the strength of the principal mth components of the
potential, φp

m,m(r), for m = 0, m = 1 and m > 1, in terms of Laplace coefficients defined by

bj
s(α) =

1

π

∫ 2π

0

cos jφdφ

(1 − 2α cos φ + α2)s
, (10)

using the Kronecker delta function δm,n to give an expression for φp
m,m(r) that is applicable for all m. What

is the physical meaning of the additional term in the m = 1 component?
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5. Oblate planet perturbations / ring alignment

(a) The gravitational potential experienced by a satellite orbiting an oblate planet is given by

V = −
(

GMpl

r

)

[

1 −
∞
∑

i=2

Ji

(

Rpl

r

)i

Pi(sin α)

]

, (11)

where G is the gravitational constant, Mpl and Rpl are the planet’s mass and mean radius, r is distance from
the planet, Ji are the dimensionless coefficients that characterise the size of the non-spherical components
of the potential, Pi(sin α) are Legendre polynomials of degree i, α is the latitude of the satellite above the
planet’s equatorial plane. Give the definition of the disturbing function, and show that by taking just the
second gravitational moment J2 this may be written as

R = −(GMpl/r)J2(Rpl/r)2P2(sin α). (12)

(b) Using the definition P2(x) = 0.5(3x2 − 1), write P2(sin α) in terms of the orbital elements (I,Ω, ω, f)
of the satellite that are referred to the equatorial plane. Hence show that the secular part of the disturbing
function (i.e., that averaged over mean longitude) can be written

〈R〉 = (GMpl/2a)J2(Rpl/a)2(1 − 1.5 sin 2I)(1 − e2)−3/2, (13)

where a is the semimajor axis of the orbit.

(c) Lagrange’s planetary equations for the variations in the satellite’s mean anomaly, longitude of ascending
node and argument of pericentre are

Ṁ = n − 1 − e2

na2e

∂R
∂e

− 2

na

∂R
∂a

, (14)

Ω̇ =
1

na2
√

1 − e2 sin I

∂R
∂I

, (15)

ω̇ =

√
1 − e2

na2e

∂R
∂e

− cos I

na2
√

1 − e2 sin I

∂R
∂I

, (16)

where n =
√

GMpl/a3. Show that the planet’s oblateness causes the mean motion of the satellite, n0, to
be faster than Keplerian motion by a fraction

(n0 − n)/n = 1.5J2(Rpl/a)2(1 − 1.5 sin 2I)(1 − e2)−1.5. (17)

(d) Show that to lowest order in inclination ˙̟ ≈ −Ω̇.

(e) Optional: The ǫ ring of Uranus can be modelled as two coplanar ellipses coincident with its inner and
outer boundaries. The ellipses have a common focus and aligned pericentres, but different semimajor axes
and eccentricities ([ain, ein] and [aout, eout], where eout > ein). Consider the gravitational perturbation from
each of these ellipses on the other. First ascertain whether it is interactions at pericentre or apocentre that
are strongest. Then use Gauss’ equation for pericentre precession due to a radial acceleration, ˙̟ ∝ −R̄ cos f ,
where f is true anomaly and R̄ the acceleration, to consider the sign of the pericentre precession induced
on each ellipse. Discuss whether the rings’ self-gravity might prevent the differential precession that would
otherwise be expected due to the oblateness of Uranus.
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