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Quantum Fluids: Example Sheet 1

1. Consider an ideal gas of bosons in two dimensions, contained within a two-dimensional
box of volume V2D.

(a) Derive the density of states g(E) for this two-dimensional system.
(b) Using this result show that the number of particles can be expressed as

Nex =
2πmV2DkBT

h2

∫

∞

0

ze−x

1− ze−x
dx

where z = eµ/kBT and x = E/kBT . Solve this integral using the substitution y = ze−x.
(c) Obtain an expression for the chemical potential µ and thereby show that Bose-

Einstein condensation is possible only at T = 0.

2. Bose-Einstein condensates are typically confined in harmonic trapping potentials

Vext =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2).

Using the corresponding density of states:
(a) Derive the expression for the critical number of particles.
(b) Derive the expression for the critical temperature.
(c) Determine the expression for the variation of condensate fraction N0/N with T/Tc.
(d) In one of the first BEC experiments, a gas of 40,000 Rubidium-87 atoms (atomic

mass 1.45× 10−25 kg) underwent Bose-Einstein condensation at a temperature of 280 nK.
The harmonic trap was spherically-symmetric with with ωr = 1130 Hz. Calculate the
critical temperature according to the ideal Bose gas prediction. How does this compare to
the result for the boxed gas (you may assume the atomic density is 2.5× 1018m−3).

3. The compressibility β of a gas, a measure of how much it shrinks in response to a
compressional force, is defined as

β = − 1

V

∂V

∂P
.

Determine the compressibility of the ideal gas for T < Tc.
[Hint: Since Tc is a function of V, you should ensure the full V -dependence is present

before differentiating.]
4. (a) Using the normalization condition, determine the dimensions of the wavefunction

Ψ in S.I. units (metres, kilograms, seconds).
(b) Verify that all terms of the GPE have the same dimension.
(c) Show that g|Ψ|2 has dimension of energy.
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5. Consider a BEC in the Thomas-Fermi limit confined within a three-dimensional
spherical harmonic trap.

(a) Normalize the wavefunction, and hence determine an expression for the Thomas-
Fermi radius Rr in terms of N, as and ℓr.

(b) Determine an expression for the peak density in terms of N and Rr.
(c) Find an expression for the ratio Rr/ℓr, and comment on its behaviour for large N.
(d) What is the energy of the condensate?

6. Derive the expression for the variational energy of a three-dimensional trapped con-
densate, E(σ). Repeat in two dimensions (for a potential Vext(x, y) = mω2

r (x
2+y2)/2) and

in one dimension (for a potential Vext(x) = mω2
rx

2/2). For each case plot E/N~ωr versus
the variational width σ, for some different values of the interaction parameter Nas/ℓr.
What effect does dimensionality have on the shape of the curves? How do this change the
qualitative behaviour?

7. Consider a BEC in the non-interacting limit with wavefunction

ψ(x, y, z) =
√
n0e

−x2/2ℓ2xe−y2/2ℓ2ye−z2/2ℓ2z ,

where n0 is the peak density and ℓx, ℓy, ℓz are the harmonic oscillator lengths in three
Cartesian directions. The BEC is imaged along the z-direction. Determine the form of the
column-integrated density nCI(x, y).

[Hint:
∫

∞

0

1

2

√

π/a.]

8. Consider a 1D uniform static condensate with Vext(x) = 0. Obtain an expression
for the energy E in a length L of the condensate, in terms of n0, g and L. Now consider
the condensate to be flowing with uniform speed v0. Show that the solution satisfies the
1D GPE, and confirm that the velocity field of this solution is indeed v(x) = v0. What is
the corresponding energy for the flowing condensate, and how does it differ from the static
result? What is its momentum?

0Please email corrections/comments to N.G.Berloff@damtp.cam.ac.uk
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