Nonlinear Continuum Mechanics, Problem Sheet 3

1. A Green-elastic material has stored energy function W per unit referece volume and is subject to two constraints:

$$\phi_1(\mathbf{F}) = 0 \text{ and } \phi_2(\mathbf{F}) = 0.$$

Show that the relation between nominal stress and deformation gradient for this material is

$$P_{Ii} = \frac{\partial W}{\partial F_{iI}} + q_1 \frac{\partial \phi_1}{\partial F_{iI}} + q_2 \frac{\partial \phi_1}{\partial F_{iI}},$$

where q_1 and q_2 are undetermined.

A body comprising such material occupies a domain Ω in its reference configuration and is in equilibrium in the presence of dead-load body force and some combination of dead-load traction and placement (\mathbf{x} prescribed) conditions on its boundary $\partial\Omega$. Show that its equilibrium configuration is stable, and the solution branch is incrementally unique, if

$$\int_{\Omega} \frac{\partial u_i}{\partial X_I} \left[\frac{\partial^2 W(\mathbf{F})}{\partial F_{iI} \partial F_{jJ}} + q_1 \frac{\partial^2 \phi_1(\mathbf{F})}{\partial F_{iI} \partial F_{jJ}} + q_2 \frac{\partial^2 \phi_2(\mathbf{F})}{\partial F_{iI} \partial F_{jJ}} \right] \frac{\partial u_j}{\partial X_J} \, d\mathbf{X} > 0$$

for all non-zero perturbations $\delta \mathbf{x} = \lambda \mathbf{u}$ ($\lambda \ll 1$) compatible with the constraints and any placement boundary conditions. Here, \mathbf{F} , q_1 and q_2 are the actual equilibrium fields.

2. Show that the "upper convected Maxwell" constitutive relation for incompressible fluid,

$$oldsymbol{\sigma} = oldsymbol{\sigma}^d - p \mathbf{I}; \quad rac{\delta oldsymbol{\sigma}^d}{\delta t} + rac{oldsymbol{\sigma}^d}{ au} = rac{2\mu}{ au} \mathbf{D},$$

can be expressed in the integral form

$$\boldsymbol{\sigma}^d(t) = \frac{2\mu}{\tau} \int_{-\infty}^t e^{-(t-t')/\tau} \mathbf{F}(t) \mathbf{F}^{-1}(t') \mathbf{D}(t') \mathbf{F}^{-T}(t') \mathbf{F}^{T}(t) dt'.$$

[Recall that the relation $\sigma = \mathbf{F}\mathbf{T}\mathbf{F}^T$ between Cauchy and second Piola–Kirchhoff stress for incompressible material equivalently interprets the components of \mathbf{T} as contravariant components of σ on convected coordinates.]

Check directly that the integral form satisfies the principle of material indifference.

Develop corresponding relations (differential and integral) for the "lower convected Maxwell" model. [Recall: $\sigma_{IJ} = F_I^i F_J^j \sigma_{ij}$ defines the required covariant components of $\boldsymbol{\sigma}$.]

3. Obtain $\sigma^d(t)$ explicitly for the two models discussed in question 2, in the case of a time-dependent simple shear:

$$\mathbf{F}(t) = \begin{pmatrix} 1 & \gamma(t) & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

4. Develop the solution for laminar flow between two plates in the presence of a pressure gradient, for "upper convected Maxwell" fluid. [Use the integral form of the constitutive relation.]

Now make the problem non-trivial by considering a time-dependent pressure gradient, in the "slow flow" limit so that inertia is disregarded. If $\dot{\gamma}(x_2,t) = \partial v(x_2,t)/\partial x_2$, show that $\gamma(x_2,t)$ must satisfy

$$\frac{1}{\tau} \int_{-\infty}^{t} e^{-(t-tt)/\tau} \dot{\gamma}(x_2, t') dt' = -\left[\frac{G(t)}{\mu} + A(t) \right],$$

where G(t) is the pressure gradient and A(t) is an arbitrary function. Deduce $v(x_2, t)$.

5. Solve the problem of Couette flow, in the region a < r < b, $-\infty < z < \infty$, with the boundary conditions $v_{\theta}(a) = v_0$, (constant) $v_{\theta}(b) = 0$, for "upper convected Maxwell" fluid. [Try to avoid a lot of work by using the integral form of the constitutive relation and a suitable rotating frame of reference.]