A star * denotes a question, or part of a question, that should not be done at the expense of unstarred questions. Corrections, suggestions and comments should be emailed to S.J.Cowley@maths.cam.ac.uk.
If you would like questions 3, 6 and 8 marked in advance of the first Examples Class on 7 November, please note the following:

- the deadline for handing in your work is midnight on Thursday 3 November;
- please place your work in the folder in Stephen Cowley's DAMTP pigeonhole in the CMS;
- please put your full name and CRSid on your work, and staple (or equivalent) your work together.

1. Find the appropriate scalings for each root of
(a)
(b)

$$
\begin{gathered}
\epsilon x^{4}-x^{2}-x+2=0 \\
\epsilon^{2} x^{3}+x^{2}+2 x+\epsilon=0 .
\end{gathered}
$$

Hence find two terms in the approximation for each root.
2. Find an asymptotic approximation to the exponential integral

$$
E_{n}(x)=\int_{1}^{\infty} t^{-n} e^{-x t} d t
$$

for real $n=\operatorname{ord}(1)$ and $x \rightarrow \infty$, and estimate the remainder. How big is the remainder for the best choice of the number of terms in the expansion?
3. Evaluate the first two terms as $r \rightarrow 0$, and the first two terms as $r \rightarrow \infty$, of

$$
\int_{0}^{\infty} \frac{r x d x}{\left(r^{2}+x\right)^{3 / 2}(1+x)}
$$

*4. The integral $I(\lambda)$ is defined by

$$
I(\lambda)=\int_{0}^{\infty} s \exp \left(-s^{2}+2 \lambda-\frac{\lambda^{2}}{s^{2}}\right) \mathrm{d} s
$$

Find the asymptotic expansion for $I(\lambda)$ as $\lambda \rightarrow 0$ correct to, and including, terms that are $\mathcal{O}\left(\lambda^{2}\right)$. It may help to recall that

$$
\int_{0}^{\infty} \ln (t) \exp (-t) \mathrm{d} t=-\gamma
$$

where γ is Euler's constant.
5. For real x and $x \rightarrow \infty$, find the full asymptotic behaviour of

$$
K_{0}(x)=\int_{1}^{\infty}\left(t^{2}-1\right)^{-\frac{1}{2}} e^{-x t} d t
$$

6. For real x and $x \rightarrow \infty$, find the leading-order asymptotic behaviour of
(a)

$$
\int_{0}^{1} \sin (t) e^{-x \sinh ^{4} t} d t
$$

(b)

$$
\int_{0}^{\infty} e^{-x t-t^{-1}} d t
$$

7. For real n and $n \rightarrow \infty$, find the leading-order asymptotic behaviour of

$$
J_{n}(n)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \sin t-n t) d t
$$

[Give your answer in a form that is explicitly real. It should involve $\Gamma(1 / 3)$.]
8. Find the asymptotic behaviour of

$$
J_{\nu}(\nu \operatorname{sech} \alpha)=\frac{1}{2 \pi \mathrm{i}} \int_{\infty-\mathrm{i} \pi}^{\infty+\mathrm{i} \pi} e^{\nu \operatorname{sech} \alpha \sinh t-\nu t} d t
$$

for real ν and α, as $\nu \rightarrow \infty$ with first $\alpha>0$ and second $\alpha=0$. (There are lots of saddles here. A contour plot using Matlab, or equivalent, may help convince you that you have a steepest descent contour. The case $\alpha=0$ has a cubic saddle where three ridges meet and $\phi^{\prime \prime}=0$.)
9. The function $f(y ; \lambda)$ is defined by

$$
f(y ; \lambda)=\int_{C} \exp \left(\lambda(1+\mathrm{i} y) z-\frac{1}{3} z^{3}\right) d z
$$

where y and λ are real, and the contour C starts from $z=0$ and extends to $z=\infty$ in the sector $|\arg (z)|<\pi / 6$.
(a) Find the leading-order asymptotic behaviour of $f(0 ; \lambda)$ as $\lambda \rightarrow-\infty$.
(b) Find the leading-order asymptotic behaviour of $f(0 ; \lambda)$ as $\lambda \rightarrow+\infty$.
(c) By considering the solutions deduced in parts (a) and (b), and the steepest descent contours, find the leading-order asymptotic behaviour of f for $0 \leqslant y<\infty$; see the figure overleaf for contours of the real and imaginary parts of $3 \lambda(1+i y)-z^{3}$. In particular:
i. state clearly your choice of integration contour;
ii. for $\lambda \gg 1$ comment on how the asymptotic behaviour of the solution differs according as $0 \leqslant y<y_{c}$ and $y_{c}<y<\infty$, where y_{c} should be identified.
(d) Show that $f(y ; \lambda)$ satisfies the differential equation

$$
f_{y y}+\lambda^{3}(1+\mathrm{i} y) f=-\lambda^{2}
$$

with boundary conditions $f \rightarrow 0$ as $|y| \rightarrow \infty$.
(e) ${ }^{*}$ In relation to this equation, why is it that

$$
f=-\frac{1}{\lambda(1+\mathrm{i} y)}-\frac{2}{\lambda^{4}(1+\mathrm{i} y)^{4}}+\ldots
$$

is not always a uniformly valid asymptotic approximation for $|\lambda| \gg 1 ? *$ [This issue will be considered in the matched asymptotic expansions section of the course later.]

Figure 1: Contours of $\operatorname{Re}\left(3 \mu z-z^{3}\right)$ (blue: high; red: low), and $\operatorname{Im}\left(3 \mu z-z^{3}\right)$ (black).

