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1 Brief History

There exists a particular class of nonlinear PDEs called integrable. By the
mid eighty’s the initial value problem of integrable evolution equations in
one and two space variables was solved via the so called inverse scatter-
ing transform. Following this development, the outstanding open problem
in the analysis of these equations became the solution of initial–boundary–
value problems. A general approach for solving such problems was finally
announced in 1997 [1] and was developed further in the works of almost
100 researchers. It is remarkable that these results have motivated the dis-
covery of a new transform method for solving boundary–value problems
for linear evolution PDEs with x–derivatives of arbitrary order, as well as
for linear elliptic PDEs in two dimensions [2]. This has led to the emer-
gence of a new method in mathematical physics, which is usually referred
to as the “Fokas method” or “the unified transform”. Several hundred pa-
pers have been written using this method, some of which can be found in
[http://www.unifiedmethod.azurewebsites.net]. The Fokas method has had
a significant impact, from the analysis of boundary value problems for inte-
grable nonlinear PDEs [3] and the introduction of a new method for studying
the well posedness of arbitrary nonlinear evolution PDEs [4], to a novel for-
mulation of the classical problem of water waves [5]. This method, which
is based on the synthesis, as opposed to the separation of variables [6], uni-
fies and extends several classical branches of mathematics, form the usual
transforms to the formulation of Ehrenpreis type integral representations.
It is important to note that the solution of any inhomogeneous boundary
value problem solved by the usual transforms,suffers from lack of uniform
convergence at the boundaries. This serious disadvantage, which renders
these representations unsuitable for numerical computations, has not been
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emphasised in the literature. In contrast, the unified transform yields rep-
resentations which are uniformly convergent. Thus, it gives new formulae
even for such basic problems as the heat equation on the half line, and on
a finite interval (see below). Furthermore, it yields effective analytical for-
mulae for several problems for which there do not exist usual transforms
[6]. Also, it has given rise to new numerical techniques: for evolution PDEs
see, for example, the book “The computation of spectral representations for
evolution PDE” by S. Vetra–Carvalh [7], where it is noted that “for linear
evolutionary PDEs the numerical implementation of the Fokas method is
faster and more accurate than a pseudospectral method”; for elliptic PDEs
see, for example, [8]; for other applications see, for example [9].

A pedagogical introduction of the Fokas method is presented in [10]. In
an accompanying editorial, the editor of SIAM Review wrote: “Similar to
the Fosbury Flop the method of Fokas approached familiar problems from
a new direction, providing students and instructors with new insights into
linear PDEs”.

2 Separation of Variables and Transform Pairs

Until the development of the Fokas method, the most important method
for the analytic solution of linear PDEs was the method of separation of
variables, and the use of an “appropriate” transform pair. Consider for
example the heat equation

∂u

∂t
=
∂2u

∂x2
. (2.1)

Seeking a separable solution in the form,

u(x, t) = X(x)T (t), (2.2)

we find
XT ′ = X ′′T,

where prime denotes differentiation.
Thus,

X ′′

X
=
T ′

T
. (2.3)

Since the LHS of the above equation is a function of x, whereas the RHS is
a function of t, it follows that each of the above ratios is a constant, which
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for convenience we write as −λ2, λ arbitrary complex number. Thus, (2.3)
yields the two ODE’s

X ′′(x) + λ2X(x) = 0, (2.4)

and
T ′(t) + λ2T (t) = 0. (2.5)

Clearly the representation (2.2) is very limited, however, the intuitive idea
is that if we can solve the ODE’s (2.4), (2.5), and if we can “sum up”
appropriate solutions over λ, then perhaps we can obtain the general solution
of the heat equation.

For example, the exponentials eiλx and e−λ
2t are particular solutions of

equations (2.4) and (2.5) respectively. Hence, equation (2.2) implies that a
particular solution of the heat equation is given by

U(λ)eiλx−λ
2t,

where λ is an arbitrary complex constant, and U(λ) is an arbitrary function.
Clearly, the following expression is also a solution of the heat equation:

u(x, t) =

∫
U(λ)eiλx−λ

2tdλ, (2.6)

where we assume that the above integral makes sense.
It turns out that their exists a general, deep result in analysis known

as the Ehrenpreis Principle, which when applied to the particular case of
the heat equation, shows that for a well posed problem formulated in a
bounded, smooth, convex, domain, the solution can always be written in
the form (2.6). However, this result does not provide a systematic way for
choosing the above contour, as well as for determining the function U(λ).

For the initial value problem of the heat equation, using the Fourier
transform pair, it is straighforward to obtain both the relevant contour and
the function U(λ) :

u(x, t) =
1

2π

∫ ∞
−∞

eiλx−λ
2tû0(λ)dλ, −∞ < x <∞, t > 0, (2.7)

where ûo(λ) is the Fourier transform of u0(x),

û0(λ) =

∫ ∞
−∞

e−iλxu0(x)dx, −∞ < λ <∞.
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Suppose that u(x, t) satisfies the heat equation (2.1) on the half line,

∂u

∂t
=
∂2u

∂x2
, 0 < x <∞, t > 0, (2.8)

together with the following initial and boundary conditions:

u(x, 0) = u0(x), 0 < x <∞; u(0, t) = g0(t), t > 0. (2.9)

Usually, this problem is solved via the sine transform pair:

f̂s(λ) =

∫ ∞
0

sin(λx)f(x)dx, 0 < λ <∞, (2.10)

f(x) =
2

π

∫ ∞
0

sin(λx)f̂s(λ)dλ, 0 < x <∞. (2.11)

By employing the above pair it is straightforward to show that

u(x, t) =
2

π

∫ ∞
0

sin(λx)e−λ
2t

[∫ ∞
0

sin(λξ)u0(ξ)dξ + λ

∫ t

0
eλ

2τg0(τ)dτ

]
dλ,

0 < x <∞, t > 0. (2.12)

We first note that this represented is not of the Ehrenpreis form. Second,
it is not straightforward to verify that u(0, t) = g0(t): if we attempt to verify
this condition by letting x = 0 in the RHS of (2.12) we fail since sin 0 = 0.
This implies that we cannot exchange the integral with the limit x→ 0. In
other words, the representation (2.12) is not uniformly convergent at x = 0
unless g0(t) = 0. This lack of uniform convergence makes the representation
(2.12) unsuitable for the numerical evaluation of the solution.

It should be emphasised that the above pathology, namely the lack of
uniform convergence at the boundary, is a characteristic of any solution
obtained via the usual transform methods. Indeed, these transforms are
defined by considering the homogeneous version of the given inhomogeneous
problem (see the discussion below). Thus, they construct solutions that are
uniformly convergent only for homogeneous data.

In addition to the above major disadvantage of the usual transform meth-
ods, we also note that in this particular case we were able to “guess” the
correct transform. The good news is that there does exist a systematic,
albeit complicated, way for deriving the appropriate transform pair for a
given IBVP. For example, for the case of equations (2.8) and (2.9) one first
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computes the associated Green’s function, namely one solves the following
ODE:

∂2

∂x2
G(x, ξ, λ) + λ2G(x, ξ, λ) = δ(x− ξ), 0 < x <∞, 0 < ξ <∞,

G(0, ξ, λ) = 0, lim
x→∞

G(x, ξ, λ) = 0.

Then, one computes the integral of G around an appropriate contour in
the complex λ-plane, and this yields the sine transform pair.

The bad news is that for many important IBVPs there does not exist
an x-transform. For example, there does not exist an x-transform for the
so-called Stokes equation on the half-line, namely for the equation

∂u

∂t
+
∂u

∂x
+
∂3u

∂x3
= 0, 0 < x <∞, t > 0. (2.13)

Indeed, this equation, supplemented with the initial and boundary con-
ditions (2.9), defines an x-spectral problem which is non-self adjoint, for
which there does not exist an appropriate transform.

It should be noted that an evolution PDE in one space variable can
also be analysed via a transform in t, which turns out to be the Laplace
transform.

Denoting by ûL(s, x) the Laplace transform of u(t, x) we find

∂ûL(s, x)

∂x
+
∂3ûL(s, x)

∂x3
+ sûL(s, x) = u0(x), 0 < x <∞. (2.14)

One must now solve this third order ODE supplemented with the boundary
condition

ûL(s, 0) =

∫ ∞
0

e−stg0(t)dt. (2.15)

The starting point for solving equation (2.14) is to seek an exponential
solution of the homogeneous version of (2.14). Letting uL(s, x) = exp(Ω(s)x)
we find that Ω(s) satisfies the cubic equation

Ω(s)3 + Ω(s) + s = 0.

In summary, the sine transform pair, in contrast to the Fourier transform
pair, has a very limited applicability. Furthermore, the representation (2.12)
obtained via this transform is not uniformly convergent at x = 0, and is not
of the form (2.6). The Laplace transform could in principle be applied to
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PDEs involve higher derivatives, but, it has the disadvantage that involves
0 < t <∞, and also it requires the analysis of high order nonlinear algebraic
equations.

It turns out that there does exist the proper analogue of the Fourier
transform pair for solving evolution PDEs: in the next section we will de-
fine a representation which is both uniformly convergent at x = 0 and it
is of the form (2.6). Furthermore, analogous representations exist for the
solution of a general evolution PDE.
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3 The Heat Equation on the Half-Line via the
Fokas Method

The new method involves three steps. The first step is identical with the
procedure used for the implementation of the usual transforms, whereas the
third step involves only algebraic manipulations; the second step requires
the use of Cauchy’s theorem.

1a. Given a domain, derive the Global Relation (GR), which is an equa-
tion coupling the function and its derivatives on the boundary of the domain.

Figure 3.1

For the domain
Ω = {0 < x <∞, t > 0}, (3.1)

the GR is

eλ
2tû(−iλ, t) = û0(−iλ)− g̃1(λ2, t)− iλg̃0(λ2, t), =λ ≤ 0, (3.2)

where

û(−iλ, t) =

∫ ∞
0

e−iλxu(x, t)dx, t > 0, =λ ≤ 0, (3.3)

û0(−iλ) =

∫ ∞
0

e−iλxu0(x)dx, t > 0, =λ ≤ 0, (3.4)

g̃0(λ, t) =

∫ t

0
eλτg0(τ)dτ, g̃1(λ, t) =

∫ t

0
eλτg1(τ)dτ, t > 0, λ ∈ C, (3.5)

with
g1(t) = ux(0, t), g0(t) = u(0, t), t > 0. (3.6)

Regarding equations (3.3) and (3.4) we note that

|e−iλx| = |e−iλRx+λIx| = eλIx,
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thus, this term is bounded as x→∞, for λI < 0.
The functions g̃0 and g̃1 are defined for all complex values of λ, whereas

û and û0 are defined for =λ ≤ 0, thus the global relation (3.2) is valid for
=λ ≤ 0.

Conceptually, the simplest way to derive the global relation is to use the
half–Fourier transform, and to follow the same procedure used with the sine
transform. Indeed, let the half–Fourier transform of u(x, t) be defined by
(3.3).

Then,

ût =

∫ ∞
0

e−iλxutdx =

∫ ∞
0

e−iλxuxxdx

= uxe
−iλx|∞0 + iλue−iλx|∞0 − λ2û.

Thus,
ût + λ2û = −g1(t)− iλg0(t).

Hence,
(ûeλ

2t)t = −eλ2t(g1(t) + iλg0(t)),

or

ûeλ
2t = û0 −

∫ t

0
eλ

2τ [g1(τ) + iλg0(τ)]dτ,

which is the GR.
2. Express the solution as an integral in the complex λ-plane involving

û0(−iλ), as well as the t-transforms of all the relevant boundary values.
For the heat equation formulated on the half-line, we find

u(x, t) =
1

2π

∫ ∞
−∞

eiλx−λ
2tû0(−iλ)dλ− 1

2π

∫
∂D+

eiλx−λ
2t
[
g̃1(λ2, t) + iλg̃0(λ2, t)

]
dλ,

(3.7)
where the contour ∂D+ is the boundary of the domain D+ defined by

D+ =
{
=λ ≥ 0, <λ2 < 0

}
, (3.8)

see figure 3.2.
Indeed, solving the global relation (3.2) for û(−iλ, t) and then using the

inverse Fourier transform formula, we find an expression similar to (3.7) but
with the contour of integration along the real line instead of ∂D+. In order
to deform from the real line to ∂D+ we use Cauchy’s theorem and Jordan’s
Lemma. We first consider the function

eiλx−λ
2tg̃1(λ2, t) = eiλx

∫ t

0
e−λ

2(t−τ)g1(τ)dτ,
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Figure 3.2

which is an analytic function of λ. This function involves the two exponen-
tials

eiλx = eiλRx−λIx, e−λ
2(t−τ) = e−<(λ2)(t−τ)−i=(λ2)(t−τ),

thus since x ≥ 0 and t − τ ≥ 0, the above exponentials are bounded as
λ → ∞ if λ satisfies =λ ≥ 0 and <λ2 ≥ 0. Furthermore, integration by
parts implies that the above function is of O(1/λ2) as λ→∞:

e−λ
2t

∫ t

0
eλ

2τg1(τ)dτ ∼ g1(t)

λ2
, λ→∞.

Thus, Cauchy’s theorem in the domain bounded by the real line and ∂D+

implies that the integral of the above function can be deformed from R to
∂D+.
The situation is similar with the term iλ exp[iλx − λ2t]g̃0(λ2, t), but now
because of the λ factor this function is of O(1/λ) as λ → ∞, thus we need
to supplement Cauchy’s theorem with Jordan’s lemma.

3. For given boundary conditions, by employing the global relation as
well as certain invariant transformations, eliminate from the integral repre-
sentation obtained in step 2 the transforms of the unknown boundary values.

Consider for example the Dirichlet problem of the heat equation formu-
lated on the half line, i.e., equation (2.8) supplemented with the initial and
boundary conditions (2.9). In this case, the functions û0 and g̃0 appearing in
the global relation (3.2) are known but the functions û and g̃1 are unknown.
The global relation is valid for =λ ≤ 0, whereas we need g̃1 for λ ∈ ∂D+,
thus we need to compute g̃1 for =λ ≥ 0. We note that the transformation
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λ→ −λ has two crucial properties: first, it maps the domain =λ ≤ 0 to the
domain =λ ≥ 0, and also leaves g̃0(λ2, t) and g̃1(λ2, t) invariant. Using this
transformation, the GR yields

eλ
2tû(iλ, t) = û0(iλ)− g̃1(λ2, t) + iλg̃0(λ2, t), =λ ≥ 0. (3.9)

Our strategy will be to use equation (3.9) to eliminate g̃1; in this procedure
we ignore the fact that û(iλ, t) is unknown since it will turn out that its
contribution to u(x, t) vanishes. Solving (3.9) for g̃1(λ2, t) we find

g̃1 = iλg̃0 + û0(iλ) + eλ
2tû(iλ, t), =λ ≥ 0. (3.10)

Replacing in equation (3.7) g̃1 with the RHS of (3.10) we find

u(x, t) =

1

2π

∫ ∞
−∞

eiλx−λ
2tû0(−iλ)dλ− 1

2π

∫
∂D+

eiλx−λ
2t
[
2iλg̃0(λ2, t) + û0(iλ)

]
dλ.

(3.11)
The term exp(λ2t)û(iλ, t) gives rise to the term

− 1

2π

∫
∂D+

eiλxû(iλ, t)dλ, 0 < x <∞, t > 0,

which vanishes, since both exp(iλx) and û(iλ, t) are bounded and analytic in
the upper half of the complex λ plane, and furthermore û(iλ, t) is of O(1/λ)
as λ→∞:

û(iλ, t) =

∫ ∞
0

eiλxu(x, t)dx ∼ −u(0, t)

iλ
, λ→∞.

Thus, Cauchy’s theorem supplemented with Jordan Lemma in the do-
main D+ imply the desired result.

Remarks
(a) Suppose that the heat equation is valid for 0 < t < T . Let

g̃0(λ) = g̃0(λ, T ), g̃1(λ) = g̃1(λ, T ). (3.12)

Then, equation (3.7) is equivalent to the equation

u(x, t) =
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1

2π

∫ ∞
−∞

eiλx−λ
2tû0(−iλ)dλ− 1

2π

∫
∂D+

eiλx−λ
2t
[
g̃1(λ2) + iλg̃0(λ2)

]
dλ.

(3.13)
Indeed, the RHS of equation (3.7) and the RHS of equation (3.13) differ by
the term

1

2π

∫
∂D+

eiλx
[∫ T

t
eλ

2(τ−t)g1(τ)dτ + iλ

∫ T

t
eλ

2(τ−t)g0(τ)dτ

]
dλ,

and Cauchy’s theorem supplemented with Jordan’s lemma imply that the
above term vanishes.

Similarly, equation (3.11) is equivalent to the equation

u(x, t) =

1

2π

∫ ∞
−∞

eiλx−λ
2tû0(−iλ)dλ− 1

2π

∫
∂D+

eiλx−λ
2t
[
2iλg̃0(λ2) + û0(iλ)

]
dλ.

(3.14)
This equation is of the Ehrenpreis form (2.6). Actually, the Fokas method

always yields representations of this form. The advantage of (3.14) is that
the only (x, t) dependence of the RHS of this equation is of the form eiλx−λ

2t,
thus it immediately follows that the function u defined in (3.14) satisfies the
heat equation. On the other hand, (3.7) is consistent with causality, since
the function u(x, t) cannot depend on the values of g0(τ) for τ > t.

(b) In deriving (3.7), the real line was deformed to ∂D+. This defor-
mation is always possible before using the global relation. However, after
using the global relation we introduce û0 and then it is not always possible
to return to the real axis. Actually, the cases where there do exist usual
transforms, are precisely the cases where this “return” is possible.

In the particular case of (3.7), we note that û0(iλ) is bounded and ana-
lytic in the upper half of the complex λ plane, thus it is possible to return
to the real axis:

u(x, t) =
1

2π

∫ ∞
−∞

eiλx−λ
2t [û0(−iλ)− û0(iλ)] dλ− i

π

∫ ∞
−∞

λeiλx−λ
2tg̃0(λ2, t)dλ.

Splitting the integral along R to an integral from−∞ to 0 plus an integral
from 0 to ∞, and letting λ → −λ in the former integral we obtain the
representation obtaned in section 2 via the sine transform. An easier way to
obtain this representation is to recall that the global relation together with
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the equation obtained from the global relation after replacing λ with −λ are
the following equations:

eλ
2tû(−iλ, t) = û0(−iλ)− g̃1 − iλg̃0, =λ ≤ 0,

eλ
2tû(iλ, t) = û0(iλ)− g̃1 + iλg̃0, =λ ≥ 0. (3.15)

If λ is real, then both these equations are valid. Hence if g0 is given, we
subtract equations (3.15) and we obtain the equation for the sine transform
of u(x, t). Similarly, if ux(0, t) is given, we add equations (3.15) and we
obtain

eλ
2tûc(λ, t) = û0c(−iλ)− g̃1(λ2, t), λ ∈ R,

where ûc and û0c denote the cosine transform of u(x, t) and u0(x) respec-
tively, namely:

ûc(λ, t) =

∫ ∞
0

cos(λx)u(x, t)dx, û0c(λ) =

∫ ∞
0

cos(λx)u0(x)dx.

(c) Equation (3.14) immediately implies that u(x, t) satisfies the heat
equation. Furthermore, evaluating (3.14) at t = 0 we find

u(x, 0) =
1

2π

∫ ∞
−∞

eiλxû0(−iλ)dλ− 1

2π

∫
∂D+

eiλxû0(iλ)dλ, x > 0.

Jordan’s lemma implies that the second integral in the above expression
vanishes and hence by recalling the definition of û0(−iλ) and employing the
inverse Fourier transform formula we find u(x, 0) = u0(x).

Evaluating (3.14) at x = 0 we find

u(0, t) =

1

2π

[∫ ∞
−∞

e−λ
2tû0(−iλ)dλ−

∫
∂D+

e−λ
2tû0(iλ)dλ

]
− 1

2π

∫
∂D+

2iλe−λ
2tg̃0(λ2)dλ.

(3.16)
By deforming the second integral to the real axis and then replacing λ with
−λ we find that the first two terms in the RHS of (3.16) cancel. Furthermore,
letting iλ2 = l in the last integral in the RHS of (3.16) we find

u(0, t) =
1

2π

∫ ∞
−∞

eilt
(∫ T

0
e−ilτg0(τ)dτ

)
dl = g0(t).

12



Numerical Evaluations[11]
For the simple cases when the transforms of the given data can be com-

puted explicitly, the numerical evaluation of the solution obtained by the
Fokas method reduces to the computation of a single integral in the com-
plex λ-plane. Using simple contour deformations, it is possible to obtain an
integrand which decays exponentially as λ→∞.

Example Consider the heat equation on the half line with

u(x, 0) = e−a
2x, u(0, t) = cos(bt), a, b real constants.

Then,

û0(−iλ) =

∫ ∞
0

e−iλx−a
2xdλ =

1

iλ+ a2
,

g̃0(λ, t) =

∫ t

0
eλτ cos(bτ)dτ =

1

2

[
e(λ+ib)t − 1

λ+ ib
+
e(λ−ib)t− 1

λ− ib

]
.

Hence (3.7) becomes

2πu(x, t) =

∫ ∞
−∞

eiλx−λ
2t

iλ+ a2
dλ

−
∫
∂D+

eiλx−λ
2t

[
1

−iλ+ a2
+

iλ

λ+ ib

(
e(λ2+ib)t − 1

)
+

iλ

λ− ib
(
e(λ2−ib)t − 1

)]
dλ.

The term exp(iλx) in the integrand of the second integral decays as λ→∞,
but the term exp(−λ2t) oscillates. However, if we deform ∂D+ to a contour
L between the real line and ∂D+, then we achieve exponential decay in both
exp(iλx) and exp(−λ2t):

2πu(x, t) =

∫
L

{
eiλx−λ

2t

[
1

iλ+ a2
+

1

iλ− a2

]
+ iλeiλx

[
eibt − e−λ2t

λ+ ib
+
e−ibt − e−λ2t

λ− ib

]}
dλ,

where L depicted in Figure 3.3.
The above integral can be computed using the demand of MATLAB.

With the command we have stated in the homework
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Figure 3.3

4 The Heat Equation on the Finite-Interval via
the Fokas Method

We now solve the heat equation formulated on the finite interval

0 < x < L. (4.1)

In what follows, we implement steps 1, 2, and 3, of section 3.

Figure 4.1

Step 1. In analogy with equation (3.2) we now have

eλ
2tû(−iλ, t) = û0(−iλ)−g̃1(λ2, t)−iλg̃0(λ2, t)+e−iλL

[
h̃1(λ2, t) + iλh̃0(λ2, t)

]
,

λ ∈ C, (4.2)

where û and û0 are the finite Fourier transforms of u(x, t) and u0(x), defined
by

û(−iλ, t) =

∫ L

0
e−iλxu(x, t)dx, û0(−iλ) =

∫ L

0
e−iλxu0(x)dx, λ ∈ C,

(4.3)
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g̃1, g̃0 are defined in (3.5) and h̃1, h̃0 are defined by

h̃0(λ, t) =

∫ t

0
eλτh0(τ)dτ, h̃1(λ, t) =

∫ t

0
eλτh1(τ)dτ, t > 0, λ ∈ C,

(4.4)
with h0(t) = u(L, t), h1(t) = ux(L, t), t > 0.

In order to derive (4.2) we consider the finite Fourier Transform of u(x, t)
defind in (4.3). Then,

ût =

∫ L

0
e−iλxuxxdx = uxe

−iλx
∣∣∣L
0

+ iλue−iλx
∣∣∣L
0
− λ2û.

Thus,
ût + λ2û = −g1(t)− iλg0(t) + e−iλL(h1(t) + λh0(t)).

Hence

(ûeλ
2t)t = −eλ2t(g1(t) + iλg0(t)) + eλ

2t−iλL(h1(t) + iλh0(t)),

which upon integration implies (4.2)

Figure 4.2

Step 2. Solving (4.2) for û(−iλ, t), using the inverse Fourier transform
formula, well as deforming from R to ∂D+ in the integral involving g̃1, g̃0,
and from R to ∂D− in the integral involving h̃1, h̃0, we find

u(x, t) =
1

2π

∫ ∞
−∞

eiλx−λ
2tû0(−iλ)dλ− 1

2π

∫
∂D+

eiλx−λ
2t [g̃1 + iλg̃0] dλ
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− 1

2π

∫
∂D−

e−iλ(L−x)−λ2t
[
h̃1 + iλh̃0

]
dλ, (4.5)

where D− is the reflection of D+ with respect to the real axis and D− is to
the left of the increasing direction of ∂D−, see figure 4.2.

Step 3. The transformation λ → −λ together with the global relation
(4.2) yields two equations. Since there exist four unknown boundary val-
ues (two at each end of the domain), we require two boundary conditions.
However, we cannot assign these conditions in an arbitrary manner. It can
be shown that the terms arising from û(±iλ, t) are bounded as λ → ∞ in
the relevant domains D+ and D−, if and only if one boundary condition is
prescribed at each end of the domain.

Example

u(0, t) = g0(t), u(L, t) = h0(t).

The global relation (4.2) can be written in the form

eλ
2tû(−iλ, t) = G(λ, t)− g̃1 + e−iλLh̃1, (4.6)

where the known function G is defined by

G(λ, t) = û0(−iλ)− iλg̃0(λ2, t) + iλe−iλLh̃0(λ2, t). (4.7)

Letting λ 7→ −λ in (4.6), and recalling that g̃1 and h̃1 are invariant with
respect to λ 7→ −λ, we obtain

eλ
2tû(iλ, t) = G(−λ, t)− g̃1 + eiλLh̃1. (4.8)

Solving equations (4.6) and (4.8) for g̃1 and h̃1, we find

g̃1 =

1

eiλL − e−iλL
{
eiλLG(λ, t)− e−iλLG(−λ, t) + eλ

2t
[
e−iλLû(iλ, t)− eiλLû(−iλ, t)

]}
,

(4.9)

h̃1 =
1

eiλL − e−iλL
{
G(λ, t)−G(−λ, t) + eλ

2t [û(iλ, t)− û(−iλ, t)]
}
.

(4.10)
We next substitute g̃1 and h̃1 in (4.5). We claim that the terms involving
û(±iλ, t) yield a zero contribution. Indeed, since this is a well-posed BVP,
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the relevalt terms are bounded as λ→∞. Let us verify this explicitly; the
term in g̃1 involves the following contribution from û(±iλ, t):

e−iλLû(iλ, t)− eiλLû(−iλ, t)
eiλL − e−iλL

.

Since =λ ≥ 0, e−iλL grows, and then the above expression, as λ → ∞,
becomes

−û(iλ, t) + eiλL
∫ L

0
eiλ(L−x)u(x, t)dx,

which is clearly bounded as λ → ∞ with =λ ≥ 0. Similarly the term in h̃1

involves the following contribution from û(±iλ, t):

û(−iλ, t)− û(iλ, t)

eiλL − e−iλL
,

which as λ→∞, =λ ≤ 0, simplifies to the expression∫ L

0
e−iλ(L−x)u(x, t)dx− e−iλLû(iλ, t),

which is clearly bounded as λ→∞, =λ ≤ 0.
We also note that the zeros of exp(iλL) − exp(−iλL) occur on the real

axis, and hence are outside D except for λ = 0 which is a removable singu-
larity, since[

e−iλLû(−iλ, t)− eiλLû(iλ, t)
]
λ=0

= [û(−iλ, t)− û(iλ, t)]λ=0 = 0.

Thus, (4.5) becomes

u(x, t) =
1

2π

∫ ∞
−∞

eiλx−λ
2tû0(λ)dλ

− 1

2π

∫
∂D+

eiλx−λ
2t

[
iλg̃0(λ2, t) +

eiλLG(λ, t)− e−iλLG(−λ, t)
eiλL − e−iλL

]
dλ

− 1

2π

∫
∂D−

eiλx−λ
2t

[
iλh̃0(λ2, t) +

G(λ, t)−G(−λ, t)
eiλL − e−iλL

]
dλ, (4.11)

where ∂D+ and ∂D− are detected in Figure 4.2.

Remarks 4.1.
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1. It is possible to deform ∂D+ and ∂D− back to the real axis and then
using the residue theorem the usual sine-sine solution can be rederived.
A simpler way to obtain the usual solution representation is to subtract
(4.6), (4.8):

2ieλ
2t

∫ L

0
sin(λx)u(x, t)dx = (eiλL−e−iλL)h̃1(λ2, t)+G(−λ, t)−G(λ, t).

(4.12)
The unknown function h̃1 can be eliminated by evaluating the above
equation at those values of λ for which the coefficient of h̃1 vanishes:

eiλL − e−iλL = 0, λ =
nπ

L
, n = 0, 1, 2, . . . .

Hence (4.12) becomes

2ie

(
nπ
L

)2
t
∫ L

0
sin
(nπx
L

)
u(x, t)dx = G

(
−nπ
L
, t
)
−G

(nπ
L
, t
)
,

and then the usual representation follows using the following transform
pair:

fn =
2

L

∫ L

0
sin
(nπx
L

)
f(x)dx, n = 1, 2, . . .

f(x) =

∞∑
n=1

fn sin
(nπx
L

)
.

2. The function eiλL−e−iλL, which appears in (4.11), has simple poles at
the points nπ/L which occur on the real axis. Thus, the classical rep-
resentational is formulated on the “worst” part of the complex plane.
Perhaps this is related with the fact that this classical representation
is not uniformly convergent at x = 0 and x = L.

3. The numerical implementation of the Fokas method for evolution PDEs
on the finite interval is discussed in [12].

Example

ux(0, t)− γu(0, t) = gR(t), ux(L, t) = 0, γ > 0.

The classical representational involves a series area, over {λ}∞1 , where
are the real zeros of the transcendental equation

∆(λ) = (iλ− γ)e−iλL − (iλ+ γ)eiλL. (4.13)
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This series is not uniformly convergent at x = 0 and x = L.

On the other hand, the Fokas method yields a solution which is similar
to (4.11):

u(x, t) =
1

2π

∫ ∞
−∞

eiλx−λ
2tû0(−iλ)dλ− 1

2π

∫
∂D+

eiλx−λ
2t g̃(λ)

∆(λ)
dλ

− 1

2π

∫
∂D−

eiλx−λ
2t h̃(λ)

∆(λ)
dλ, (4.14)

where û0(−iλ) is the Fourier transform of u0(x), ∆(λ) is defined by
(4.13), ∂D+ and ∂D− are defined as in (4.5) and the transforms g̃, h̃
are explicitly given in and terms of û0(±iλ), and or gR which is the
t–transforms of gR:

g̃(λ) = 2iλe−iλLg̃R(λ2)− (iλ+ γ)(eiλLû0(−iλ) + e−iλLû0(iλ),

and

h̃(λ) = 2iλg̃R(λ2)− (iλ− γ)û0(−iλ)− (iλ+ γ)û0(iλ).
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5 Elliptic equation in the Interior of a Convex
Polygon

The most important elliptic PDEs are the Laplace, the modified Helmholtz
and the Helmholtz equations. The Laplace equation is:

uxx + uyy = 0. (5.1)

If u satisfies the Laplace equation (5.1), then u is called a harmonic
function. Traditionally, harmonic functions are associated with the real and
imaginary parts of an analytic function. However, there is an alternative
direct way to associate harmonic and analytic functions:

the function u(x, y), which may be complex, is harmonic if and only if
uz is analytic.

Indeed, if uz is analytic then uzz̄ = 0, i.e., u is harmonic; the inverse is
also true.

The Global Relation
Recall that the first step of the Fokas method consists of deriving the

global relation.
For elliptic PDEs involving second order derivatives, we need two global

relations. However, if we assume that u is real, then the second global
relation can be obtained from the first via complex conjugation.

The simplest way to derive a global relation is to consider the formal
adjoint of the Laplace equation, which is itself,

vxx + vyy = 0. (5.2)

Multiplying equations (5.1) and (5.2) by v and u respectively, and then
subtracting the resulting equations we find

(vux − uvx)x + (vuy − uvy)y = 0.

Letting v = exp(−iλx + λy), which is a particular solution of (5.2) for any
complex constant λ, we find the family of conservation laws[

e−iλx+λy(ux + iλu)
]
x

+
[
e−iλx+λy(uy − λu)

]
y

= 0, λ ∈ C. (5.3)

The exponential exp(iλx+λy) provides an other particular solution of (5.2),
and this yields[

eiλx+λy(ux − iλu)
]
x

+
[
eiλx+λy(uy − λu)

]
y

= 0, λ ∈ C. (5.4)
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We note that if u is real, then equation (5.4) can be obtained from (5.3) by
taking the complex conjugate and then replacing in the resulting equation
λ by λ̄. This procedure is called Schwartz conjugation.

Suppose that the Laplace equation is valid in the domain Ω. Then,
equations (5.3) and (5.4) together with Green’s theorem, imply the following
global relations:∫

∂Ω
e−iλx+λy [(ux + iλu)dy − (uy − λu)dx] = 0, λ ∈ C, (5.5)

and ∫
∂Ω
eiλx+λy [(ux − iλu)dy − (uy − λu)dx] = 0, λ ∈ C, (5.6)

where ∂Ω denotes the boundary of Ω.
The most well known boundary value problems for elliptic PDEs are

either the Dirichlet problem where u is prescribed on the boundary, or the
Neumann problem where the normal derivative, denoted by uω, is prescribed
on the boundary.

In order to rewrite the global relations in terms of u and uω, we pa-
rameterize the boundary ∂Ω in terms of its arclength which we denote by
s. Then, if uT denotes the derivative of u along the tangent to ∂Ω, and
uω denotes the derivative of u normal to uT in the outward direction, then
differentiating u(x(s), y(s)) we find

uxdx+ uydy = uTds. (5.7)

Since the infinitesimal vector (dy,−dx) is normal to the infinitesimal vector
(dx, dy), we find

uxdy − uydx = uωds. (5.8)

Thus, we can rewrite equations (5.5) and (5.6) in terms of u and uω:

(ux + iλu)dy − (uy − λu)dx = uωds+ λu(dx+ idy).

Hence, the global relation (5.5) becomes∫
∂Ω
e−iλx+λy

[
uω + λu

(dx
ds

+ i
dy

ds

)]
ds = 0. (5.9)

Similarly ∫
∂Ω
eiλx+λy

[
uω + λu

(dx
ds
− idy

ds

)]
ds = 0. (5.10)
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Letting
z = x+ iy, z̄ = x− iy, (5.11)

equations (5.9) and (5.10) become∫
∂Ω
e−iλz

(
uω + λu

dz

ds

)
ds = 0, (5.12)

and ∫
∂Ω
eiλz̄

(
uω + λu

dz̄

ds

)
ds = 0. (5.13)

A Polygonal Domain
Let Ω be the interior of the polygonal domain specified by the complex

numbers z1, z2, . . . ,zn, zn+1 = z1, see figure 5.1.

Figure 5.1

Let Lj denote the side (zj , zj+1).
Then, the global relation (5.12) becomes

n∑
j=1

Ŵj + λ
n∑
j=1

D̂j = 0, λ ∈ C, (5.14)

where {Wj}n1 denote the transforms of the Neumann boundary values and
{Dj}n1 denote the transforms of the Dirichlet boundary values:

Ŵj =

∫ zj+1

zj

e−iλzuwjds, j = 1, 2, . . . , n, λ ∈ C (5.15)
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and

D̂j =

∫ zj+1

zj

e−iλzuj
dz

ds
ds, j = 1, 2, . . . , n, λ ∈ C. (5.16)

If u is real, then instead of analysing the global relation (5.13), we can
analyse the complex conjugate of equation (5.12). Thus, for real u, equation
(5.12) and its complex conjugate provide two equations for n unknown func-
tions, since for a well posed problem only one boundary condition is given
on each side. This situation appears ominus, however in equation (5.12) the
complex constant λ is arbitrary, thus in this sense equation (5.12) contains
“infinitely many” equations. It turns out that this observation provides a
most efficient way for the numerical integration of this problem.

Approximate Global Relations
The numerical solution of the global relations for determining the un-

known boundary values involves the following two steps [13]-[15]:

1. Expand the function [uj ]
n
1 and

[
∂uj
∂w

]u
1

in terms of N basis functions

denoted by {Sl(t)}N−1
0 :

uj(t) ≈
N−1∑
l=0

ajlSl(t),
∂uj(t)

∂ω
≈

N−1∑
l=0

bjlSl(t), j = 1, 2, . . . , n.

A convenient such basis is given by the Legendre polynomials of order l,
denote by Pl.

Let Ŝl(λ) denote the Fourier transform of Sl(t), namely

Ŝl(λ) =

∫ 1

−1
e−iλtSl(t)dt, λ ∈ C. (5.17)

For the Legendre polynomials the relevant Fourier transform can be com-
puted explicitly,∫ 1

−1
e−iλtPl(t)dt = i

l∑
k=0

(l + k)!

(l − k)!k!

[
(−1)l+keiλ − e−iλ

(2iλ)k+1

]
. (5.18)

Then, the global relation and its complex conjugate yield two equations
involving the constants ajl and bjl . By evaluating these equations at appro-
priately chosen values of λ called collocation points, we can solve for the
unknown coefficients.
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Example
Consider the Laplace equation in the interior of the square with corners

z1 = −1 + i, z2 = −1− i, z3 = 1− i, z4 = 1 + i.

Then, the global relation (5.12) involves the following terms:

û1(λ) = eiλ
∫ −1

1
eλy
[
u(1)
x + iλu(1)

]
dy,

û2(λ) = e−λ
∫ 1

−1
e−iλx

[
−u(2)

y + λu(2)
]
dx,

û3(λ) = e−iλ
∫ 1

−1
eλy
[
u(3)
x + iλu(3)

]
dy,

û4(λ) = eλ
∫ −1

1
e−iλx

[
−u(4)

y + λu(4)
]
dx. (5.19)

Let

Ŵ (λ) =

∫ 1

−1
eλtW (t)dt, D̂(λ) =

∫ 1

−1
eλtD(t)dt, λ ∈ C, (5.20)

where W (t) and D(t) denote Neumann and Dirichlet boundary values re-
spectively. Then,

û1(λ) = −eiλ
[
Ŵ1(λ) + iλD̂1(λ)

]
,

û2(λ) = e−λ
[
Ŵ2(−iλ) + λD̂2(−iλ)

]
,

û3(λ) = e−iλ
[
Ŵ3(λ) + iλD̂3(λ)

]
,

û4(λ) = eλ
[
Ŵ4(−iλ)− λD̂4(−iλ)

]
. (5.21)

The approximate global relation yields

û1(λ) + û2(λ) + û3(λ) + û4(λ) = 0, λ ∈ C, (5.22)

where

û1(λ) ≈ −eiλ
N−1∑
l=0

[
iλal1P̂l(λ) + bl1P̂l(λ)

]
,
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û2(λ) ≈ e−λ
N−1∑
l=0

[
λal2P̂l(−iλ) + bl2P̂l(−iλ)

]
,

û3(λ) ≈ e−iλ
N−1∑
l=0

[
iλal3P̂l(λ) + bl3P̂l(λ)

]
,

û4(λ) ≈ eλ
N−1∑
l=0

[
−λal4P̂l(−iλ) + bl4P̂l(−iλ)

]
. (5.23)

2. For a given side, choose λ in such a way that for the given side we
obtain the usual Fourier transform (FT) of the Legendre functions, whereas
the contribution from the remaining sides vanishes as λ → ∞ It turns out
that for a convex polygon such a choice is always possible).

• side 1. Multiply (5.22) by e−iλ and then let λ = −iρ, ρ > 0.

We find the following forms for Ŵj (and similarly for
[
D̂j

]4

1
:

Ŵ1(−iρ), eiρe−ρŴ2(−ρ), e−2ρŴ3(−iρ), e−iρe−ρŴ4(−ρ).

The first terms involve the FT, whereas the remaining terms vanish as ρ→
∞. This is obvious for the third term, whereas the second and the fourth
terms involve the integral ∫ 1

−1
e−ρ(1+t)w(t)dt;

since −1 < t < 1, it follows that 1 + t > 0, thus exp[−ρ(1 + t)] vanishes as
ρ→∞.

• side 2. Multiply by eλ and then let λ = −ρ, ρ > 0.

• side 3. Multiply by eiλ and then let λ = iρ, ρ > 0.

• side 4. Multiply by e−λ and then let λ = ρ, ρ > 0.

For ρ we can use the discrete values ρ = R
Mm, m = 1, 2, . . . ,M , R > 0,

where R/M determines how close are the collocation points.

25



It is found numerically [15] that the following rules for low condition
number:

R

m
≥ 2, M ≥ Nn.

The above numerical technique can be viewed as the counterpart in the
complex Fourier plane of the boundary integral method (which is formulated
in the physical plane).
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6 Modified Helmholtz and Helmholtz Equations

For the other two basic elliptic equations the situational is similar. In par-
ticular, for the modified Helmholtz equation,

uxx + uyy − k2u = 0, (x, y) ∈ Ω; k > 0, (6.1)

the global relation is given by∫
∂Ω
e
ik
2

[
z̄(t)
λ
−λz(t)

] [
uω +

ku

2

(
λ
dz(t)

dt
+

1

λ

dz̄(t)

dt

)]
dt = 0, k > 0, λ ∈ C\{0}.

(6.2)
For the case that Ω is the interior of the polygon with corners at z1, z2, . . . , zn,

equation (6.2) becomes

n∑
j=1

ûj(λ) = 0, λ ∈ C\{0}, (6.3)

where ûj(λ) is defined by

ûj(λ) =

∫ zj+1

zj

e−i
k
2

(λz− z̄
λ

)

[(
uz + i

k

2
λu

)
dz − (uz̄ +

k

2iλ
u)dz̄

]
, j = 1, · · · , n.

(6.4)
A second global relation is obtained from equation (6.2) by replacing λ with
1/λ. If u is real, we can obtain the second global relation by taking the
Schwarz conjugate of equation (6.2).

Remark Recall that for evolution PDE’s the second step of the Fokas
method involves the derivation of an integral representation, defined in the
complex plane which depends a all boundary values. This step can also be
implemented for the three basic elliptic PDEs defined in the interior of a
convex polygonal. For example, by employing either the classical Green’s
representation formula, or by performing the spectral analysis of the associ-
ated Lax pair [16], we find the following novel integral representation:

u(z, z̄) =
1

4iπ

n∑
j=1

∫
lj

ei
k
2 (λz− z̄λ)ûj(λ)

dλ

λ
, z ∈ Ω, (6.5a)

when {ûj}n1 are defined in (6.4) in terms of all boundary values and {lj}n1
are the rays in the complex λ-plane oriented towards infinity and defined by

lj = {λ ∈ C : arg λ = − arg(zj+1−zj), j = 1, · · · , n, zn+1 = z1}. (6.5b)
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For simple domains, it is possible, to impement step 3 of the Fokas
method: using the global relations and their invariant properties, it is pos-
sible to express all transforms in terms of the given boundary data, using
only algebraic manipulations. This has led to the analytic solution of several
BVPs for which the usual approaches apparently fail [16].

For more complicated domains, the global relations suggest the novel
numerical technique for the determination of the unknown boundary values,
discussed earlier.

Further development

The rigorous foundation of the new method for linear forced evolution
PDEs in Sobolev spaces is presented in [4], [17]. These results actually lead
to a new approach for proving well posedness for nonlinear IBVPs. The
crucial ingredient of this approach is to use for the linear version of the
given nonlinear PDE, the formulae obtained via the new method. Earlier
authors have been able to prove well posedness for IBVPs using ideas similar
to those used in the treatment of initial-value problems. In particular, one
first obtains a solution formula for the linear IBVP with forcing and then
uses this formula to derive appropriate linear estimates. Subsequently, one
replaces the forcing in the linear formula by the nonlinearity and uses the
linear estimates together with a contraction mapping argument to deduce
well-posedness of the nonlinear IBVP.

It is often the case, however, that even the derivation of the linear so-
lution formula is somewhat technical and unintuitive, not to mention the
derivation of the relevant linear estimates. The main advantage of the new
method is that it yields explicit formulae for forced linear evolution equa-
tions with arbitrary number of derivatives. Thus, it is not surprising that
these “naturally emerging” linear formulae can be used to establish local
well-posedness of nonlinear evolution IBVPs through a contraction mapping
approach.

Anthony Ashton employing the new method has developed a remarkable
formalism for the rigorous analysis of elliptic PDEs, see for example [18].

For recent results regarding the characterization of the Dirichlet to Neu-
mann map for integrable nonlinear evolution PDEs, see for example [19]-[22].

Linear evolution PDEs with either non-separable or other complicated
boundary conditions are analyzed in [23]–[27].

The new method can be extended to three dimensions, see for example
[5], [28]–[29]

Reviews of the Fokas method for linear and for integrable nonlinear PDEs
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are presented in [30] and [31], respectively.
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