
C
op

yr
ig

ht
 ©

 2
02

0 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Hybrid Photonics Computing. Example Sheet 3.

Due May 10, 2020

Equilibrium quantum fluids

1. Simulator: optical lattices

The full Bose condensate dynamics satisfies the Gross-Pitaevskii equation

ih̄
∂Φ

∂t
= −

h̄2

2m
∇2Φ+ [Vext + g0 | Φ |2]Φ (1)

where Vext is the external potential given by the laser field

Vext(~r) = UL(x, y) sin
2[2πz/λ] (2)

where λ is the wavelength of the lasers (the spacing in the lattice is λ/2) and UL(x, y) is determined by the
transverse intensity profile of the (nearly Gaussian) laser beams.

In the tight-binding approximation the condensate order parameter can be written as:

Φ(~r, t) =
√

NT
∑

n

ψn(t) φ(~r − ~rn), (3)

where NT is the total number of atoms and φ(~r− ~rn) is the condensate wave function localized in the trap n with
∫

d~r φn φn+1 ≃ 0, and
∫

d~r φ2n = 1. ψn =
√

ρn(t) e
iθn(t) is the n-th amplitude (ρn = Nn/NT , where Nn and θn

are the number of particles and phases in the trap n).
(i) Show that under these assumptions GPE reduces to the following equation:

i
∂ψn
∂t

= −
1

2
(ψn−1 + ψn+1) + (ǫn + Λ | ψn |2)ψn (4)

where you need to specify ǫ, Λ, K and state how you rescaled the time.
(ii) Show that Eq. (4) is the equation of motion ψ̇n = ∂H

∂(iψ∗

n)
, with iψ∗

n, ψn canonically conjugate variables,

where you need to specify the Hamiltonian function H.
(iii) Under which assumptions the Hamiltonian function H reduces to the XY Hamiltonian?

Kuramoto networks

2. Synchronization in Kuramoto networks

Kuramoto proposed a mathematically tractable model to describe the phenomenology of synchronization. He
recognized that the most suitable case for analytical treatment should be the mean field approach. He proposed an
all-to-all purely sinusoidal coupling, and then the governing equations for each of the oscillators in the system are:

θ̇i = ωi +
K

N

N
∑

j=1

sin (θj − θi) (i = 1, ..., N) , (5)

where the factor 1/N is incorporated to ensure a good behavior of the model in the thermodynamic limit, N → ∞,
ωi stands for the natural frequency of oscillator i, andK is the coupling constant. The frequencies ωi are distributed
according to some function g(ω), that is usually assumed to be unimodal and symmetric about its mean frequency
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Ω. Admittedly, due to the rotational symmetry in the model, we can use a rotating frame and redefine ωi → ωi+Ω
for all i and set Ω = 0, so that the ωi’s denote deviations from the mean frequency.

The collective dynamics of the whole population is measured by the macroscopic complex order parameter,

r(t)eiφ(t) =
1

N

N
∑

j=1

eiθj(t) , (6)

where the modulus 0 ≤ r(t) ≤ 1 measures the phase coherence of the population and φ(t) is the average phase.
The values r ≃ 1 and r ≃ 0 (where ≃ stands for fluctuations of size O(N−1/2)) describe the limits in which all
oscillators are either phase locked or move incoherently, respectively.

(i) Show that
θ̇i = ωi +Kr sin (φ− θi) (i = 1, ..., N) . (7)

Equation (7) states that each oscillator interacts with all the others only through the mean field quantities r and φ.
The first quantity provides a positive feedback loop to the system’s collective rhythm: as r increases because the
population becomes more coherent, the coupling between the oscillators is further strengthened and more of them
can be recruited to take part in the coherent pack. Moreover, Eq. (7) allows to calculate the critical coupling Kc

and to characterize the order parameter limt→∞ rt(K) = r(K). Looking for steady solutions, one assumes that r(t)
and φ(t) are constant. Next, without loss of generality, we can set φ = 0, which leads to the equations of motion

θ̇i = ωi −Kr sin (θi) (i = 1, ..., N) . (8)

The solutions of Eq. (8) reveal two different types of long-term behavior when the coupling is larger than the
critical value, Kc. On the one hand, a group of oscillators for which |ωi| ≤ Kr are phase-locked at frequency Ω
in the original frame according to the equation ωi = Kr sin (θi). On the other hand, the rest of the oscillators
for which |ωi| > Kr holds, are drifting around the circle, sometimes accelerating and sometimes rotating at lower
frequencies. Demanding some conditions for the stationary distribution g(ω) of drifting oscillators with frequency
ωi and phases θi, a self-consistent equation for r can be derived as

r = Kr

∫ π
2

−π
2

(

cos2 θ
)

g(ω)dθ,

where ω = Kr sin (θ). This equation admits a non-trivial solution,

Kc =
2

πg(0)
. (9)

beyond which r > 0. Equation (9) is the Kuramoto mean field expression for the critical coupling at the onset
of synchronization. Moreover, near the onset, the order parameter, r, obeys the usual square-root scaling law for
mean field models, namely,

r ∼ (K −Kc)
β (10)

with β = 1/2.

Nonequilibrium quantum fluids

3. Coupling strength in a polariton dyad. Consider two unequally pumped polariton condensates with
Gaussian pumping profiles. For two spatially separated condensates, we approximate the wave-function of the
system as the sum of the two wavefunctions of the individually created condensates:

ψ(r) ≈ Ψ1(|r− r1|) + Ψ2(|r− r2|), (11)

where the wavefunction of a condensate located at r = ri can be approximated by

Ψi(|r− ri|) ≈
√

ρi(|r− ri|) exp[ikci|r− ri|+ iθi], (12)

where θi is the space independent part of the phase, kci is the maximum wave-vector k(r) that polaritons reach
within their lifetime by converting their potential to kinetic energy, and ρi(|r− ri|) is the density of the isolated
condensate created by a single pumping source centered at ri.
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The total number of polaritons across the dyad is given by N =
∫

|ψ(r)|2dr, where integration is over the entire
area of the microcavity and

N ≈

∫

|Ψ1(|r− r1|) + Ψ2(|r− r2|)|
2dr (13)

where Ni =
∫

|Ψi(|r− ri|)|
2 dr is the number of polaritons of an individual condensate indexed by i.From all the

possible phase differences between two polariton condensates, ∆θ = θ1 − θ2 = [0, 2π), the one that maximises the
number of particles N will condense first.

(1) Show that in the generic case of a polariton dyad with unequal populations, the system will reach threshold
at the phase difference configuration ∆θ that minimises

HT = −(J cos∆θ +D sin∆θ), (14)

where you need to identify J and D. HT takes form of the sum of the symmetric Heisenberg exchange and the
asymmetric Dzyaloshinskii-Moriya interactions, that are usually studied in the context of a contribution to the
total magnetic exchange interaction between two neighboring magnetic spins.

(2) Show that for equally pumped condensates D = 0.
(3) Obtain analytical expressions of the coupling strengths J for equally pumped condensates by positioning the

condensates at r1 = (−d/2, 0) and r2 = (d/2, 0), where d = |r1 − r2| is the separation distance, and transforming
into elliptic coordinates (µ, ν) with

x =
d

2
coshµ cos ν, (15)

y =
d

2
sinhµ sin ν, (16)

d2r =
d2

4
(sinh2 µ+ sin2 ν)dµdν, (17)

where µ is a positive real number and ν ∈ [0, 2π). Assume an exponential decay of the amplitude for an individual
condensate

√

ρ(|r− ri|) = A exp(−β|r − ri|), where A and β correlate with the shape of the pumping profile and
show that

J = πA2d

[

1

β
J0(kcd)K1(βd) +

1

kc
J1(kcd)K0(βd)

]

. (18)

(4) Comment on the behaviour of J if the pumping width is large (β is small).

4. Polariton simulators: taking into account light polarization. Consider the full system of equations
describing the the left- and right-circular polariton states ψ+ and ψ+ in exciton-polariton condensates coupled to
hot exciton reservoirs N±:

i∂tψ± =

(

−(1− iηsN+ − η0N−)∇
2 + gsN+ + g0N− + αs|ψ±|

2

+ α0|ψ∓|
2 ±

∆

2
+
i

2
(RsN+ +R0N− − γC)

)

ψ± + Jψ∓, (19)

∂tN± = P̃± − ΓxN± − (Rs|ψ±|
2 +R0|ψ∓|

2) + Γs(N∓ −N±), (20)

where N± represent the densities of the incoherent reservoirs of spin-up and spin-down excitons providing gain
to the condensate through stimulated bosonic scattering, γC characterizes the linear losses in the condensate, the
blueshift of the polariton energy levels through Coulomb interaction is given by gs and g0 for the same- and cross-
spin interaction strengths, α1,2 are the same- and cross-spin polariton interaction parameters, Rs,0 are the same-
and opposite-spin gain from the two spin-polarized reservoirs to the condensate, P± represent the non-resonant
pump intensities, Γx is the exciton lifetime, and Γs denotes the spin relaxation rate in the reservoir, ∆ and J have
the same meaning as in the previous Problem, ηs,0 describe the condensate energy relaxation due to the scattering
with reservoirs.

Consider 1D chain of N polariton condensates created with N Gaussian beams P̃± = P±

∑N
i=1 exp[−α(x−xi)

2],
where α characterises the inverse width of each pump centered at x = xi. Use the tight-binding approximation
ψ± =

∑N
i=1 a

±
i (t)φ

±
i (x), N± =

∑N
i=1 k

±
i (t)n

±
i (x), φ

±
i = φ±(x− xi), n

±
i = n±(x− xi), and the assumptions used in

class and in Problem 1 derive the rate equations on a±i , k
±
i . Clearly state your assumptions.

Comment on the use of the resulting networks for solving optimization problems.
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