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1 Introduction

Preamble. Mathematical subjects are typically studied according to what might be called the
tree of knowledge paradigm, in a natural progression from axioms to theorems to applications.
However, there is a natural temptation to teach applicable subjects as a phone directory, whereby
imparting maximum of implementable knowledge without bothering with mathematical niceties.
In this lecture course we steer a middle course, although sympathetic to the tree of knowledge
model.

Like the human brain, computers are algebraic machines. They can perform a finite number of
elementary arithmetical and logical operations – and that’s just about all! Conceptual understand-
ing and numerical solution of differential equations (an analytic construct!) can be accomplished
only by translating ‘analysis’ into ‘algebra’.

Computation is not an alternative to rigourous analysis. The two go hand-in-hand and the di-
chotomy between ‘qualitative’ and ‘quantitative’ mathematics is a false one.

The purpose of this course is to help you to think about numerical calculations in a more professional
manner, whether as a preparation for career in numerical maths/scientific computing or as useful
background material in computationally-heavy branches of applied maths. Don’t worry, you will
not be a numerical analyst by the end of the course! But you might be able to read a book or a
paper on a numerical subject and understand it.

Structure of the subject. Typically, given a differential equation with an initial value (and perhaps
boundary values), the computation can be separated into three conceptual stages:

Semidiscretization

Solution of ODEs

Linear algebra

?

?

-

?�

-�	(having started with
an ODE system)

� 	� (having started with
a boundary problem)

-�	(having started with
an initial value PDE)

Example: The diffusion equation ut = uxx, zero boundary conditions. Herewith we sketch our
reasoning without any deep analysis, which will be fleshed out in the sequel.

Stage 1 Semidiscretization:

u′k =
1

(∆x)2
(uk−1 − 2uk + uk+1), k = 1, 2, . . . ,m− 1, (1.1)

an ordinary differential equation (ODE). Here ∆x = 1/m.
In matrix form u′ = Au, u(0) = u0, hence the exact solution of (1.1) is u(t) = etAu0.
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Stage 2 Ordinary Differential Equations:
Familiar methods for y′ = f(t,y):

Forward Euler (FE): yn+1 = yn + ∆tf(tn,yn);

Backward Euler (BE): yn+1 = yn + ∆tf(tn+1,yn+1);

Trapezoidal Rule (TR): yn+1 = yn + 1
2∆t(f(tn,yn) + f(tn+1,yn+1)).

In our case

FE: un = (I + ∆tA)un−1 = · · · = (I + ∆tA)nu0;

BE: un = (I − ∆tA)−1un−1 = · · · = (I − ∆tA)−nu0;

TR: un = (I − 1
2∆tA)−1(I + 1

2∆tA)un−1 = · · · =
(

(I − 1
2∆tA)−1(I + 1

2∆tA)
)n

u0.

The matrix A is symmetric ⇒ A = QDQ⊤, where Q is orthogonal and D diagonal, D =
diag {d1, d2, . . . , dm−1}. Moreover,

dk =
2

(∆x)2

(

−1 + cos
kπ

m

)

= −4m2 sin2 kπ

2m
, k = 1, 2, . . . ,m− 1.

In the FE case
un = Q(I + ∆tD)nQ⊤u0.

The exact solution of ut = uxx: uniformly bounded, dissipates to 0 at ∞. To mimic this, we
require ρ(I + ∆tD) ≤ 1. Let µ := ∆t/(∆x)2. Then

σ(I + ∆tD) =

{

1 − 4µ sin2 kπ

2m

}

⇒ ρ(I + ∆tD) = max

{∣

∣

∣

∣

1 − 4µ sin2 (m− 1)π

2m

∣

∣

∣

∣

, 1

}

≈ max{|1 − 4µ|, 1}.

Thus,

ρ(I + ∆tD) < 1 =⇒ µ ≤ 1

2
=⇒ ∆t ≤ 1

2
(∆x)2.

We can do better with either BE or TR: in each case, uniform boundedness holds for all ∆t
and ∆x.

Stage 3 Linear algebra:
‘Good’ ODE methods (BE and TR) entail the solution of a linear system of equations. There
are several options:

Option 1: LU factorization (i.e. Gaussian elimination): LU-factorizing the matrix A costs
O
(

m3
)

flops and each subsequent ‘backsolve’ costs O
(

m2
)

flops. This is bearable in a

1D problem but worse to come in, say, 2 space dimensions (O
(

m6
)

instead of O
(

m3
)

etc.).

Option 2: Sparse LU factorization (the Thomas algorithm): Can be performed in ≈ 5m
flops per time step – substantial saving but costs significantly mount in several space
dimensions.

Option 3: Iterative methods (Jacobi, Gauss–Seidel. . . ): quite expensive, although the cost
less sensitive to the number of space dimensions. Converge in the present case.

Option 4: Splitting methods (to come!): retain the advantages of sparse LU for any number
of space dimensions.
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2 Ordinary Differential Equations

Formulation of the problem. We solve

y′ = f(t,y), y(0) = y0 ∈ R
d. (2.1)

Without loss of generality, (1) The system is autonomous, i.e. f = f(y); and (2) f is analytic (and
hence so is y). Both assumptions may be lifted when they breach generality.

Denote h = ∆t > 0 and consider numerical methods that approximate the exact solution y(nh)
by yn for all n ∈ Z+ (or in a smaller range of interest). Of course (and unless we are perverse) y0

coincides with the initial value.

Order of a method. We say that a method is of order p if for all n ∈ Z+ it is true that yn+1 =
ỹ((n+ 1)h) + O

(

hp+1
)

, where ỹ is the exact solution of (2.1) with the initial value ỹ(nh) = yn.

High derivatives. These can be obtained by repeatedly differentiating (2.1). This gives equations
of the form y(k) = fk(y), where

f0(y) = y, f1(y) = f(y), f2(y) =
∂f(y)

∂y
f(y), . . . . (2.2)

2.1 Taylor methods

From the Taylor theorem and (2.2)

y((n+ 1)h) =

∞
∑

k=0

1

k!
hky(k)(nh) =

∞
∑

k=0

1

k!
hkfk(y(nh)), n ∈ Z+.

This leads us to consider the Taylor method

yn+1 =

p
∑

k=0

1

k!
hkfk(yn), n ∈ Z+. (2.3)

Examples:
p = 1: yn+1 = yn + hf(yn) (forward Euler)

p = 2: yn+1 = yn + hf(yn) + 1
2h

2 ∂f (y
n
)

∂y f(yn)

Theorem 1 The Taylor method (2.3) is of order p.

Proof By induction. Assuming yn = ỹ(nh), it follows that fk(yn) = fk(ỹ(nh)), hence yn+1 =
ỹ((n+ 1)h) + O

(

hp+1
)

. 2

Connection with ez . The differential operator: Dg(t) = g′(t); the shift operator: Eg(t) = g(t + h)
(E = Eh). Thus, the ODE (2.1) is Dy = f(y), whereas Dky = fk(y). Numerical solution of the
ODE – equivalent to approximating the action of the shift operator and its powers. But the Taylor
theorem implies that ∀ analytic function g

Eg(t) =

∞
∑

k=0

1

k!
hkDkg(t) = ehDg(t).
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Let R(z) =
∑∞
k=0 rkz

k be an analytic function s.t. R(z) = ez + O
(

zp+1
)

(i.e., rk = 1
k! , k =

0, 1, . . . , p). Identically to Theorem 1 we can prove that the formal ‘method’

yn+1 = R(hD)yn =

∞
∑

k=0

rkh
kfk(yn), n ∈ Z+, (2.4)

is of order p. Indeed, the Taylor method (2.3) follows from (2.4) by letting R(z) =
∑p
k=0

1
k!z

k, the
pth section of the Taylor expansion of ez .

Stability. The test equation: y′ = λy, y(0) = 1, h = 1. The exact stability set: λ ∈ C
− = {z ∈ C :

Re z < 0}. The stability domain D of a method: the set of all λ ∈ C s.t. limn→∞ yn = 0.

A-stability: We say that a method is A-stable if C
− ⊆ D.

Why is A-stability important? Consider the equation

y′ =

[

−1 1
0 −105

]

y, y(0) = y0.

There are two solution components, e−t (which decays gently) and e−105t (which decays almost

at once, e−105 ≈ 3.56 × 10−43430). Inasmuch as the second component dies out fast, we require
−105h ∈ D – otherwise the solution gets out of hand. This requirement to depress the step length
(for non-A-stable methods) is characteristic of stiff equations.

In the case of Taylor’s method, fk(y) = λky, k ∈ Z+, hence

yn =

(

p
∑

k=0

1

k!
λk

)n

, n ∈ Z+.

Hence

D =

{

z ∈ C :

∣

∣

∣

∣

∣

p
∑

k=0

1

k!
zk

∣

∣

∣

∣

∣

< 1

}

and it follows that D must be bounded – in particular, the method can’t be A-stable.

2.2 Rational methods

Choose R as a rational function,

R(z) =

∑M
k=0 pkz

k

∑N
k=0 qkz

k
.

This corresponds to the numerical method

N
∑

k=0

qkh
kfk(yn+1) =

M
∑

k=0

pkh
kfk(yn). (2.5)

If N ≥ 1 then (2.5) is an algebraic system of equations – more about the solution of such (nonlin-
ear) systems later.

Padé approximations. Given a function f , analytic at the origin, the [M/N ] Padé approximation is
the quotient of anM th degree polynomial over anN th degree polynomial that matches the Taylor
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series of f to the highest order of accuracy. For f(z) = exp z we have RM/N = PM/N/QM/N ,
where

PM/N (z) =
M
∑

k=0

(

M

k

)

(M +N − k)!

(M +N)!
zk,

QM/N (z) =

N
∑

k=0

(

N

k

)

(M +N − k)!

(M +N)!
(−z)k = PN/M (−z).

Lemma 2 RM/N (z) = ez + O
(

zM+N+1
)

and no [M/N ] function can do better.

Corollary 1 The Padé method

N
∑

k=0

(−1)k
(

N

k

)

(M +N − k)!

(M +N)!
hkfk(yn+1) =

M
∑

k=0

(

M

k

)

(M +N − k)!

(M +N)!
hkfk(yn) (2.6)

is of order M +N .

Examples:

[0/1]: yn+1 = yn + hf(yn+1) (backward Euler);

[1/1]: yn+1 = yn + 1
2h[f(yn) + f(yn+1)] (trapezoidal rule);

[0/2]: yn+1 − hf(yn+1) + 1
2h

2
∂f(yn+1)

∂y
f(yn+1) = yn.

A-stability. Solving y′ = λy, y(0) = 1, h = 1, with (2.5) we obtain yn = Rn(λ), hence

D = {z ∈ C : |R(z)| < 1} .

Lemma 3 The method (2.5) is A-stable if and only if (a) all the poles of R reside in C
+ := {z ∈ C :

Re z > 0}; and (b) |R(iy)| ≤ 1 for all y ∈ R.

Proof By the maximum modulus principle. 2

It easy to verify that all three methods in the last example are A-stable. In general, according to
a theorem of Wanner, Hairer & Nørsett, the Padé method (2.6) is A-stable iff M ≤ N ≤ M + 2,
M ∈ Z+. Figure 2.1 displays linear stability domains of four popular methods.

2.3 Multistep methods

These exploit past values of the solution. Thus (with a single derivative – the whole theory can
be generalized to use higher derivatives)

m
∑

l=0

αlyn+l = h

m
∑

l=0

βlf(yn+l), αm = 1. (2.7)
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An operatorial interpretation. Let ρ(w) :=
∑m
l=0 αlw

l, σ(w) =
∑m
l=0 βlw

l. Since hD = logE,
substituting the exact solution in (2.7) yields

[ρ(E) − logE σ(E)]y(nh) = small perturbation. (2.8)

Suppose that
ρ(w) = logwσ(w) + O

(

|1 − w|p+1
)

.

Then
{ρ(E) − logEσ(E)}y(nh) = O

(

hp+1
)

. (2.9)

Subtracting (2.9) from (2.7) and using the implicit function theorem we ‘deduce’

“Lemma” The method (2.7) is of order p.

The snag in the “lemma” is that not always are we allowed to use the implicit function theorem
in this manner.

The root condition. We say that ρ obeys the root condition if all its zeros are in |w| ≤ 1 and
the zeros on |w| = 1 are simple. The root condition suffices for the application of the implicit
function theorem. Moreover, we say that a method is convergent if, as h ↓ 0, the numerical error
is uniformly bounded throughout a compact interval by a constant multiple of the errors in the
choice of the starting values and in the solution of algebraic equations.

Theorem 4 (The Dahlquist Equivalence Theorem) The method (2.7) is convergent iff p ≥ 1 and ρ
obeys the root condition.

Proof in the easy direction: Let y′ ≡ 0, y(0) = 1. Then
∑m
l=0 αlyn+l = 0, a linear recurrence with

the solution yn =
∑r
i=1

∑µi−1
j=0 αi,jn

jωni , where ωi is a zero of ρ of multiplicity µi,
∑r
i=1 µi = m.

The αi,js are determined by the starting values. Hence, whether |ωi| > 1 or |ωj | = 1 and µi ≥ 2
for some i, some starting values imply that limn→∞ |yn| = ∞. This can’t converge to y(t) ≡ 1 on
any bounded interval as h ↓ 0. 2

Examples: (Here and elsewhere fm = f(ym).)

1. yn+2 = yn + 2hfn+1 (explicit midpoint rule, a.k.a. leapfrog), order 2, convergent.

2. yn+2 − (1 + a)yn+1 + ayn = 1
12h[(5 + a)fn+2 + 8(1 − a)fn+1 − (1 + 5a)fn], convergent for

−1 ≤ a < 1, of order 3 for a 6= −1 and order 4 for a = −1.

3. yn+3 + 27
11yn+2 − 27

11yn+1 − yn = 3
11h

(

fn + 9fn+1 + 9fn+2 + fn+3

)

, order 6. But

ρ(w) = (w − 1)

(

w +
19 + 4

√
15

11

)(

w +
19 − 4

√
15

11

)

and the root condition is violated.

Highest order of a multistep method. Let

ρ(w) − logwσ(w) = c(w − 1)p+1 + O
(

|w − 1|p+2
)

, c 6= 0, (2.10)

and define

R(ζ) :=

(

ζ − 1

2

)m

ρ

(

ζ + 1

ζ − 1

)

=

m
∑

l=0

rlζ
l, S(ζ) :=

(

ζ − 1

2

)m

σ

(

ζ + 1

ζ − 1

)

=

m
∑

l=0

slζ
l.
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Proposition 5 The following is true:

(a) p ≥ 1 ⇒ rm = 0, hence degR = m− 1;

(b) Order p⇔ R(ζ) − log ζ+1
ζ−1S(ζ) = c

(

2
ζ

)p+1−m
+ · · · as ζ → ∞;

(c) The root condition ⇒ rm−1 6= 0 and all the nonzero rls have the same sign.

Proof (a) rm = 2−mρ(1). But p ≥ 1 implies ρ(1) = 0. (b) Follows at once from (2.10); (c) The
root condition ⇔ all the zeros ofR are in cl C

−, no multiple zeros reside on iR and rm−1 6= 0 (since
rm−1 = 2−m(2ρ′(1)−mρ(1)), the latter corresponds to ρ having no multiple zero at 1). Denote the
zeros of R by ξ1, . . . , ξM , ξM+1 ± iνM+1, . . . , ξN ± iνN . Thus,

R(ζ) = rm−1

M
∏

j=1

(ζ − ξj)

N
∏

j=M+1

[(ζ − ξj)
2 + ν2

j ].

Since −ξj , ν2
j ≥ 0 and the rls are convex linear combinations of products of these quantities, the

lemma follows. 2

Theorem 6 (Dahlquist’s first barrier) Convergence implies p ≤ 2 [(m+ 2)/2].

Proof Let G(ζ) :=
(

log ζ+1
ζ−1

)−1

. Thus, (b) ⇒

R(ζ)G(ζ) − S(ζ) = c

(

2

ζ

)p−m
+ O

(

ζ−p+m−1
)

As |ζ| → ∞, we have G(ζ) → 1
2ζ, hence

G(ζ) = 1
2ζ +

∞
∑

l=0

glζ
−l.

However, G(ζ) = −G(−ζ), hence g2l = 0, l ∈ Z+. By the Cauchy integral formula,

g2l+1 =
1

2πi

∫

Γε

v2lG(v) dv,

where Γε: �

-�
�

�
�−1 +1

?ε
. Letting ε ↓ 0, for all l ∈ Z+

g2l+1 =
1

2πi

∫ 1

−1

v2l

{

1

log 1+v
1−v + iπ

− 1

log 1+v
1−v − iπ

}

dv = −
∫ 1

−1

v2l dv
(

log 1+v
1−v

)2

+ π2

< 0.

But, for general polynomials R and S of degrees m − 1 and m, respectively, R(ζ)G(ζ) − S(ζ) =
∑∞
l=−m elζ

−l. Order conditions ⇒ e−m = · · · = ep−m−1 = 0. (c) and g2l+1 < 0, l ∈ Z+, imply

m = 2s: |e2| =
∣

∣

∣

∑s
j=1 r2j−1g2j+1

∣

∣

∣ ≥ |r2s−1g2s+1| > 0 ⇒ p ≤ m+ 2;

m = 2s+ 1: |e1| =
∣

∣

∣

∑s
j=0 r2jg2j+1

∣

∣

∣ ≥ |r2sg2s+1| > 0 ⇒ p ≤ m+ 1.
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This proves the theorem. 2

Attaining the first Dahlquist barrier. When m is even, order m+ 2 attainable but all the zeros of
ρ live on |w| = 1 and this is unhealthy. Better choice: p = m + 1 for all m. The ‘stablest’ method
with ρ(w) = wm − wm−1, since all the zeros of ρ (except for the one at 1) are at 0. This gives the
Adams methods.

Adams–Moulton: Implicit (βm 6= 0), order m+ 1:

m = 1: ρ(w) = w − 1, σ(w) = 1
2 (w + 1),

m = 2: ρ(w) = w2 − w, σ(w) = 1
12 (5w2 + 8w − 1).

Adams–Bashforth: Explicit (βm = 0), order m:

m = 1: ρ(w) = w − 1, σ(w) ≡ 1 (forward Euler),

m = 2: ρ(w) = w2 − w, σ(w) = 1
2 (3w − 1).

To derive Adams–Moulton, say, choose an mth degree polynomial σ that matches the Taylor
expansion of ρ(w)/ logw about w = 1.

A-stability. Let T (z, w) = ρ(w) − zσ(w). When applied to y′ = λy, y(0) = 1, h = 1, the method
reads

m
∑

l=0

(αl − λβl)yn+l = T (λ,E)yn = 0.

This is a difference equation whose characteristic polynomial is the function T (λ, · ). Let its zeros be

ω1(λ), . . . , ωN(λ)(λ), of multiplicities µ1(λ), . . . , µN(λ)(λ) resp.,
∑N(λ)

1 µk(λ) ≤ m. Then

yn =

N(λ)
∑

j=1

µj(λ)−1
∑

i=0

niωnj (λ)ξi,j(λ), ξi,j(λ) independent of n.

Hence, the linear stability domain is the set of all λ ∈ C such that all the zeros of T (λ,w) = 0 reside
in |w| < 1 (cf. Figure 2.1). We have

Lemma 7 A-stability ⇔ for every λ ∈ C
− all the zeros of T (λ,w) = 0 are in |w| < 1.

Theorem 8 (Dahlquist’s second barrier) A-stability implies that p ≤ 2. Moreover, the 2nd order A-
stable method with the least truncation error is the trapezoidal rule.

Multistep–multiderivative methods. Motivated by the above, we consider methods that employ
both information across a range of steps and higher derivatives. We already know that there exists
a 1-step, N -derivative method ([N/N ] Padé) of order 2N .

Theorem 9 (Wanner–Hairer–Nørsett) A-stability implies that p ≤ 2N for any multistep N -derivative
method. Moreover, the (2N)-order A-stable method with the least truncation error is the 1-step [N/N ]
Padé.

Checking for A-stability of 2-step methods. We again employ the maximum principle, checking
for (i) absence of poles in cl C

−; and (ii) the root condition of T (it, · ), t ∈ R. We can use the
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Figure 2.1 Linear stability domains of four numerical methods.

Cohn–Schur criterion: The quadratic aw2 + bw+ c, a, b, c ∈ C, a 6= 0, obeys the root condition iff (a)

|a| ≥ |c|; (b)
(

|a|2 − |c|2
)2 ≥

∣

∣ab̄− bc̄
∣

∣

2
; (c) If (b) is obeyed as an equality then |b| < 2|a|.

Relaxed stability concepts. Requiring stability only across a wedge in C
− of angle α results in

A(α)-stability. Thus, A-stability ⇔ A(90◦)-stability. This is sufficient for most purposes. High-
order A(α)-stable methods exist for α < 90◦.

Backward differentiation formulae (BDF). We want ‘stability’ when |λ| ≫ 1 (Reλ < 0). Since
T (λ,w) ≈ −λσ(w), the ‘best’ choice is σ(w) = βmw

m. Stipulating order m, we have

m = 1: ρ(w) = w − 1, σ(w) = w (backward Euler, A-stable);

m = 2: ρ(w) = w2 − 4
3w + 1

3 , σ(w) = 2
3w

2 (A-stable);

m = 3: ρ(w) = w3 − 18
11w

2 + 9
11w − 2

11 , σ(w) = 6
11w

3 (A(86◦2′)-stable).

BDF methods are the standard workhorse for stiff equations.

Are BDF convergent? It is possible to prove that BDF is convergent iff m ≤ 6. That’s enough for
all intents and purposes.
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2.4 Implementation of multistep methods

Implicit methods need be solved by iteration, which must be employed in every time step. Typ-
ically, starting values for the iterative scheme are provided by an explicit method of comparable
order. This leads to predictor–corrector (PC) pairs, where “P” is explicit and “C” is implicit – e.g.
Adams–Bashforth and Adams–Moulton.

Modes of iteration. Either iterating until the error is beneath tolerance (iterating to convergence,
PC∞) or executing a fixed (small) number of iterations and abandoning the process unless the
error is beneath tolerance (PCm, wherem is the number of iterations). The choice between the two
is dictated by the interplay between the set-up cost CS and the iteration cost CI. Thus, CS ≫ CI ⇒
PC∞, otherwise PCm with m ∈ {1, 2, 3}. The cost is influenced by several factors:

1. Function evaluations;

2. Solution of nonlinear algebraic equations;

3. Coping with stiffness;

4. Error and stepsize control.

Solving nonlinear algebraic equations. The algebraic system is

y − βhf(y) = v,

where v is known. Direct iteration:

y[j+1] = v + βhf(y[j]). (2.11)

This is a special case of the functional iteration x[j+1] = g(x[j]) to approach a fixed point of g.

Theorem 10 (Banach’s contraction mapping theorem) Let ‖g(x)− g(y)‖ ≤ L‖x−y‖, 0 < L < 1,
for all ‖x − x[0]‖, ‖y − x[0]‖ ≤ r for some r > 0. Provided that ‖g(x[0]) − x[0]‖ ≤ (1 − L)r, it is true
that

(a) ‖x[j] − x[0]‖ ≤ r ∀j ∈ Z+;

(b) x⋆ = limj→∞ x[j] exists and is a fixed point of g;

(c) x⋆ is the unique fixed point of g in Sr := {‖x − x[0]‖ ≤ r}.

Proof We prove that ‖x[j+1] − x[j]‖ ≤ Lj(1 − L)r. It is true for k = 0 and, by induction,

‖x[j+1] − x[j]‖ = ‖g(x[j]) − g(x[j−1])‖ ≤ L‖x[j] − x[j−1]‖ ≤ Lj(1 − L)r.

Therefore, by the triangle inequality,

‖x[j+1] − x[0]‖ =

∥

∥

∥

∥

∥

j
∑

i=0

(x[i+1] − x[i])

∥

∥

∥

∥

∥

≤
j
∑

i=0

Li(1 − L)r = (1 − Lj+1)r ≤ r.

This proves (a).
{x[j]}∞j=0 is a Cauchy sequence, since

‖x[k+j] − x[j]‖ =

∥

∥

∥

∥

∥

k−1
∑

i=0

(x[j+i+1] − x[j+i])

∥

∥

∥

∥

∥

≤ Ljr
j→∞→ 0.



Part III: Numerical Solution of Differential Equations 13

Therefore a limit x⋆ exists in the compact set Sr. It is a fixed point and (b) follows.
Finally, suppose that x◦ ∈ Sr, x◦ 6= x⋆, is a fixed point. Then

‖x⋆ − x◦‖ = ‖g(x⋆) − g(x◦)‖ ≤ L‖x⋆ − x◦‖ < ‖x⋆ − x◦‖,

a contradiction. 2

For the iteration (2.11) L ≈ h|β|ρ(∂f/∂y), hence, for stiff equations, attaining L < 1 may radically
depress h > 0. In that case we may consider Newton–Raphson (NR), namely functional iteration
on

ĝ(x) := x −
(

I − ∂g(x)

∂x

)−1

(x − g(x)).

This gives the scheme

x[j+1] = x[j] −
(

I − ∂g(x[j])

∂x

)−1

(x[j] − g(x[j])). (2.12)

The scheme (2.12) is very expensive, since (i) the Jacobian must be re-evaluated in each iteration;
(ii) a new linear system must be solved for every j. Instead, we use modified NR (MNR), keeping
the Jacobian constant:

x[j+1] = x[j] −
(

I − ∂g(x◦)

∂x

)−1

(x[j] − g(x[j])), (2.13)

with, for example, x◦ = x[0].

Conclusion. (2.11) for nonstiff, (2.13) for stiff.

But. . . CS negligible for (2.11), whereas CS ≫ CI for MNR (as long as we reuse the same LU
factorization in every step). Hence

Conclusion. Solve nonstiff ODE with PCm, solve stiff ODE by iterating to convergence.

2.5 Strategies for error control

The following are some of the most popular devices to control local error and to choose the step
length so that the error estimate does not exceed given tolerance.

The Milne device. Let cP and cC be the error constants of “P” and “C” resp., hence y
(P )
n+1 =

y(tn+1) + cPh
p+1 dp+1y(tn)/dtp+1 + · · · etc. Hence

y
(P )
n+1 − y

(C)
n+1 ≈ (cP − cC)hp+1 dp+1y(tn)

dtp+1

⇒
∥

∥

∥
y

(C)
n+1 − y(tn+1)

∥

∥

∥
≈
∣

∣

∣

∣

cC
cP − cC

∣

∣

∣

∣

∥

∥

∥
y

(P )
n+1 − y

(C)
n+1

∥

∥

∥
.

This provides an estimate of the local error.

Deferred correction. As an example, consider the trapezoidal rule yn+1 = yn + 1
2h[f(yn) +

f(yn+1)]. The error is − 1
12h

3y′′′(tn) + O
(

h4
)

. Let

s(wn−1,wn,wn+1) := − 1

12
h(f(wn+1) − 2f(wn) + f(wn−1)).
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Then s(yn−1,yn,yn+1) = − 1
12h

3y′′′(tn) + O
(

h4
)

. We retain an extra value yn−1 and use s to
estimate the local error.

The Zadunaisky device. Given a p-order solution sequence {yj}nj=0, choose a polynomial q,
deg q = p, that interpolates y at the last p+ 1 grid points. Let d(t) := q′(t) − f(q(t)) and consider
the auxiliary system z′ = f(z) + d(t) (with the same past values). Then (a) Since q(t) = y(t) +
O
(

hp+1
)

and y obeys y′ − f(y) = 0, d(t) = O(hp) and the system is very near (within O(hp)) of
the original ODE; and (b) The function q solves exactly the auxiliary equation; it makes sense to
use zn+1 − q(tn+1) as an estimate of yn+1 − y(tn+1).

Gear’s automatic integration. This is not just an error control device but an integrated approach
to the implementation of multistep methods. We estimate the local error of an order-p multistep
method by repeatedly differentiating an interpolating polynomial. Moreover: suppose that we
have a whole family ofm-step methods form = 1, 2, . . . ,m∗, say, each of order pm = m+K (thus,
K = 1 for Adams–Moulton and K = 0, m∗ ≤ 6, for BDF) and with the error constant cm.

1. Commence the iteration with m = 1.

2. At the nth step, working with the m-step method, evaluate error estimates

Ej ≈ cjh
j+K+1y(j+K+1)(tn), j ∈ Im := {m− 1,m,m+ 1} ∩ {1, 2, . . . ,m∗}.

3. Use Em to check whether ‖yn+1 − y(tn+1)‖ is beneath the error tolerance.

4. Using Ej find the method in Im that is likely to produce a result within the error tolerance
in the next step with the longest step size.

5. Change to that method and step-size, using interpolation to re-grid the values.

Remarks on Gear’s method:

• No starting values are required beyond the initial value.

• We must retain enough past values for error control and step-size management – this is well
in excess of what is required by the multistep method.

• The set Im of ‘locally allowed’ methods is likely to be further restricted: we are not allowed
to increase step-size too soon after a previous increase.

• In practical packages it is usual to use the Nordsieck representation, whereby, instead of past
values of yj , we store (use, interpolate. . . ) finite differences.

• Many popular all-purpose ODE solvers – DIFFSYS, EPISODE, FACSIMILE, DASSLE etc. –
are all based on Gear’s method. (However, other popular solvers, e.g. STRIDE and SIMPLE,
use Runge–Kutta methods.)

2.6 Runge–Kutta methods

Quadrature. Consider y′(t) = f(t). Thus

y(t0 + h) = y0 +

∫ h

0

f(t0 + τ) dτ ≈ y0 + h

s
∑

l=1

blf(t0 + clh),
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where the latter is a quadrature formula. Following this logic, we can try for y′ = f(t,y) the
‘scheme’

y(t0 + h) ≈ y0 + h
s
∑

l=1

blf(t0 + clh,y(t0 + clh)).

Although impossible in an exact form, this provides a useful paradigm. Runge–Kutta schemes
can be seen as an attempt to flesh it out. . . .

An RK scheme. Let A be an s × s RK matrix and b ∈ R
s a vector of RK weights. c := A1 (where

1 ∈ R
s is a vector of 1s) is the vector of RK nodes. The corresponding s-stage RK method reads

k1 = f



tn + c1h,yn + h

s
∑

j=1

a1,jkj



 ,

k2 = f



tn + c2h,yn + h

s
∑

j=1

a2,jkj



 ,

...

ks = f



tn + csh,yn + h

s
∑

j=1

as,jkj



 ,

yn+1 = yn + h
s
∑

l=1

blkl. (2.14)

Butcher’s notation. Denote an RK method by the tableau

c A

b⊤
=

c1 a1,1 a1,2 · · · a1,s

c2 a2,1 a2,2 · · · a2,s

...
...

...
...

cs as,1 as,2 · · · as,s
b1 b2 · · · bs

.

Different categories of RK methods:
Explicit RK (ERK): A strictly lower triangular;
Diagonally-implicit RK (DIRK): A lower triangular;
Singly-diagonally-implicit RK (SDIRK): A lower triangular, al,l ≡ const 6= 0.
Implicit RK (IRK): Otherwise.

An example: ERK, s = 3: Unless otherwise stated, all quantities derived at (tn, yn). We assume
that the ODE is scalar and autonomous. (For order ≥ 5 this represents loss of generality, but this is
not the case at present.) Hence

k1 = f,

k2 = f(y + ha2,1k1) = f + c2hfyf + 1
2h

2c22fyyf
2 + · · · ,

k3 = f(y + h(a3,1k1 + a3,2k2)) = f + hc3fyf + h2
(

c2a3,2f
2
y f + 1

2c
2
3fyyf

2
)

+ · · ·
and

yn+1 = y + h(b1 + b2 + b3)f + h2(b2c2 + b3c3)fyf (2.15)

+ h3

(

b2c
2
2 + b3c

2
3

2
fyyf

2 + b3c2a3,2f
2
y f

)

+ O
(

h4
)

.



Part III: Numerical Solution of Differential Equations 16

However, d
dtf = fyf , d2

d2tf = fyyf
2 + f2

y f ⇒

y(tn + h) = y + hf + 1
2h

2fyf + 1
6h

3(fyyf
2 + f2

y f) + O
(

h4
)

. (2.16)

Comparison of (2.15) and (2.16) yields the third-order conditions

b1 + b2 + b3 = 1, b2c2 + b3c3 = 1
2 , b2c

2
2 + b3c

2
3 = 1

3 , b3c2a3,2 = 1
6 .

Examples of 3-stage ERK of order 3:

Kutta:

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

, Nystrom:

0
2
3

2
3

2
3 0 2

3
1
4

3
8

3
8

.

Highest order attainable by ERK.
stages 1 2 3 4 5 6 7 8 9 10 11
order 1 2 3 4 4 5 6 6 7 7 ?

Elementary differentials. Error expansions of RK can be arranged into a well-behaved mathe-
matical framework by using elementary differentials of Butcher and graph theory. The idea is to
establish a recursive relationship between f , fyf , f2

y f , fyyf
2 etc. (elementary differentials). Note

that each kth derivative of y can be expressed as a linear combination (with positive integer coeffi-
cients) of elementary differentials of ‘order’ k−1. A handy way of expressing the recurrence is by
associating elementary differentials with rooted trees and the expansion coefficients with certain
combinatorial attributes of these trees. Likewise, the RK method can be expanded in elementary
differentials and comparison of the two expansions allows to ascertain the order of any given (ex-
plicit or otherwise) method. However, this approach is nonconstructive – given a method, we can
check its order, but the technique provides only partial clues how to design high-order methods
with suitable properties.

Embedded RK. An error-control device specific to RK. We embed a method in a larger method.
For example, let

Ã =

[

A 0

a⊤ ã

]

, c̃ =

[

c

c̃

]

,

such that
c̃ Ã

b̃
⊤ is of higher order than

c A

b⊤ . Comparison of the two yields an estimate of

the error in the latter method.

Collocation methods. Assuming that c1, . . . , cs are distinct, find an s-degree polynomial u s.t.
u(tn) = yn and

u′(tn + clh) = f(tn + clh,u(tn + clh)), l = 1, 2, . . . , s. (2.17)

We let yn+1 := u(tn + h) be the approximation at tn+1.
Let ω(t) :=

∏s
l=1(t− cl) and ωl(t) := ω(t)/(t− cl), l = 1, 2, . . . , s.

Lemma 11 Let the cls be distinct. The RK method

ak,l =
1

ωl(cl)

∫ ck

0

ωl(τ) dτ, k = 1, 2, . . . , s, bl =
1

ωl(cl)

∫ 1

0

ωl(τ) dτ, l = 1, 2, . . . , s

is identical to the collocation method (2.17).
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Proof The polynomial u′ coincides with its (s− 1)st degree Lagrange interpolation polynomial.
Thus, denoting by

Lj(t) :=
ωj(t)

ωj(cj)

the jth Lagrange cardinal polynomial at c1, c2, . . . , cs of degree s− 1 (thus Lj(cj) = 1, Lj(ci) = 0 for
all i 6= j), we have

u′(t) =

s
∑

j=1

Lj
(

t−tn
h

)

u′(tn + cih) =

s
∑

j=1

Lj
(

t−tn
h

)

f(tn + cjh,u(tn + cjh))

=
s
∑

j=1

ωj((t− tn)/h)

ωj(cj)
f(tn + cjh,u(tn + cjh))

and integration yields

u(t) = yn + h

s
∑

j=1

∫ (t−tn)/h

0

ωj(τ)

ωj(cj)
dτf(tn + cjh,u(tn + cjh)).

Letting
kj := f(tn + cjh,u(tn + cjh)), j = 1, . . . , s,

we have

u(tn + clh) = yn + h

s
∑

j=1

al,jkj , j = 1, . . . , s,

and

yn+1 = u(tn + h) = yn + h

s
∑

l=1

blkl.

This and the definition (2.14) of an RK method prove the lemma. 2

An intermezzo: numerical quadrature. Let w be a positive weight function in (a, b). We say that
the quadrature

∫ b

a

g(τ)w(τ) dτ ≈
s
∑

l=1

blg(cl) (2.18)

is of order p if it is correct for all g ∈ Pp−1. (For connoisseurs of mathematical analysis: instead of
a terminology of weight functions, we may use, with greater generality, Borel measures dµ(t) =
ω(t) dt.)

We denote by ps ∈ Ps an sth orthogonal polynomial, i.e. ps 6≡ 0,
∫ b

a
q(τ)ps(τ)w(τ) dτ = 0 ∀q ∈

Ps−1.

Theorem 12 Let c1, . . . , cs be the zeros of ps and let b1, . . . , bs be the solution of the (nonsingular) Van-

dermonde linear system
∑s
l=1 blc

j
l =

∫ b

a
τ jw(τ) dτ , j = 0, . . . , s− 1. Then

(a) (2.18) is of order exactly 2s,

(b) Every other quadrature must be of order ≤ 2s− 1.
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Proof Let µj :=
∫ b

a
τ jw(τ) dτ , j ∈ Z+, be the moments of w. Then order 2s is equivalent to

∑s
l=1 blc

j
l = µj , j = 0, . . . , 2s− 1. In other words, it is equivalent to

2s−1
∑

j=0

αjµj =

s
∑

l=1

bl

2s−1
∑

j=0

αjc
j
l

for any α0, . . . , α2s−1 ∈ R. Choose
∑2s−1
j=0 αjt

j = ps(t)q(t), where q ∈ Ps−1. Then

2s−1
∑

j=0

αjµj =

∫ b

a

ps(τ)q(τ)w(τ) dτ = 0 (2.19)

and
s
∑

l=0

bl

2s−1
∑

j=0

αjc
j
l =

s
∑

l=0

blps(cl)q(cl) = 0. (2.20)

We prove first that (2.18) is of order 2s. Expressing v ∈ P2s−1 as v = psq + ṽ, where q, ṽ ∈ Ps−1,
the definition of b1, . . . , bs means that

s
∑

l=1

blṽ(cl) =

s−1
∑

j=0

ṽj

s
∑

l=1

blc
j
l =

s−1
∑

j=0

ṽjµj =

∫ b

a

ṽ(τ) dτ.

This, in tandem with (2.19) and (2.20), proves that (2.18) is of order 2s.

It is of order exactly 2s, since
∫ b

a
[ps(τ)]

2w(τ) dτ > 0, whereas
∑s
l=1 bl[ps(cl)]

2 = 0.

To prove that no other method can match or exceed this order, we choose q = Lm (the m La-
grange interpolation polynomial), m ∈ {0, 1, . . . , s}. It follows from (2.20) that bmps(cm) = 0. It
is impossible that bm = 0, otherwise the (s − 1)-point method omitting (bm, cm) will be of order
> 2s − 2, and this leads to a contradiction, identically to the last paragraph. Hence ps(cm) = 0,
m = 1, . . . , s. 2

Corollary 2 Quadrature (2.18) is of order s + r for r ∈ {0, 1, . . . , s} iff b1, . . . , bs are chosen as in the
theorem, whereas

∫ 1

0

τ jω(τ)w(τ) dτ = 0, j = 0, . . . , r − 1 where ω(t) =
s
∏

k=1

(t− ck). (2.21)

Corollary 3 Letting (a, b) = (0, 1) andw ≡ 1, the highest order of quadrature is obtained when c1, . . . , cs
are the zeros of a Legendre polynomial Ps, shifted from [−1, 1] to [0, 1].

Back to collocation. . .
Frequently – and this is the case with collocation – we have a numerical solution which is a smooth
(i.e. C1) function u, say (rather than merely having the solution at grid points). In that case we
can evaluate the defect, i.e. the “departure” f(t,u(t)) − u′(t) from the solution of the exact ODE.
How much does its magnitude tell us about the numerical error?

Theorem 13 (The Alekseev–Gröbner Lemma) Let u be a smooth function s.t. u(t0) = y(t0), where
y solves y′ = f(t,y). Then

u(t) − y(t) =

∫ t

t0

Φ(t, τ,u(τ))[f(τ,u(τ)) − u′(τ)] dτ,

where Φ is the matrix of partial derivatives of the solution of v′ = f(t,v), v(τ) = u(τ), w.r.t. u(τ).
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Theorem 14 Provided that ω obeys (2.21) with (a, b) = (0, 1), w ≡ 1 and r ∈ {0, 1, . . . , s}, the colloca-
tion method is of order s+ r.

Proof By estimating u−y with the Alekseev–Gröbner lemma and approximating the underlying
integral with the corresponding quadrature rule. 2

Corollary 4 The highest-order s-stage RK method corresponds to collocation at shifted Legendre points
(Gauss–Legendre RK, of order 2s).

Examples:

1
2

1
2

1
,

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

.

2.7 Stability of RK methods

A-Stability Solving y′ = λy, y(0) = 1, h = 1, and denoting the vector of stages by k, we have
k = λ(1 +Ak) ∈ R

s, thus k = λ(I − λA)−11. We obtain yn+1 = R(λ)yn, where

R(λ) = 1 + λb⊤(I − λA)−11 = b⊤(I + λ(I − λA)−1)1

= b⊤(I − λA)−1(I − λ(A− I))1 =
1

det(I − λA)
b⊤adj (I − λA)(I − λ(A− I))1.

It follows that R is a rational function in Ps/s.

Lemma 15 The Gauss–Legendre RK is A-stable.

Proof R ∈ Ps/s and it approximates exp z of order 2s, hence it necessarily is the s/s Padé approx-
imation. Thus A-stability. 2

Nonlinear stability analysis. Suppose that it is known that

〈u − v,f(u) − f(v)〉 ≤ 0, u,v ∈ R
d, (2.22)

where 〈 · , · 〉 is an inner product. Let ‖u‖ :=
√

〈u,u〉.

Lemma 16 The solution of y′ = f(y) is dissipative, i.e. ‖u(t) − v(t)‖ is monotonically nonincreasing
for any two solutions u(t) and v(t) and t ≥ 0.

Proof Let φ(t) := ‖u(t) − v(t)‖2. Then, by (2.22),

1
2φ

′(t) = 〈u(t) − v(t),u′(t) − v′(t)〉 = 〈u(t) − v(t),f(u(t)) − f(v(t))〉 ≤ 0.

Hence φ is monotonically nonincreasing. 2

Do RK methods share this feature?
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Herewith, 〈 · , · 〉 is the standard Euclidean inner product. Denote the stages in the nth step by
k1, . . . ,ks (for u) and by l1, . . . , ls (for v). Then

‖un+1 − vn+1‖2 = ‖un − vn‖2 + 2h

〈

un − vn,
∑

j

bj(kj − lj)

〉

+ h2

∥

∥

∥

∥

∥

∥

∑

j

bj(kj − lj)

∥

∥

∥

∥

∥

∥

2

.

Thus, for ‖un+1 − vn+1‖ ≤ ‖un − vn‖ we require

2

〈

un − vn,
∑

j

bj(kj − lj)

〉

+ h

∥

∥

∥

∥

∥

∥

∑

j

bj(kj − lj)

∥

∥

∥

∥

∥

∥

2

≤ 0. (2.23)

Let dj := kj − lj and set

pj := un + h
s
∑

i=1

aj,iki, qj := vn + h
s
∑

i=1

aj,ili, j = 1, . . . , s.

Then kj = f(pj), lj = f(qj), j = 1, 2, . . . , s, and, provided that b1, . . . , bs ≥ 0,

〈

un − vn,
∑

j

bjdj

〉

=
∑

j

bj

〈

pj − h
∑

i

aj,iki − qj + h
∑

i

aj,ili,dj

〉

=
∑

j

bj

{

〈pj − qj ,f(pj) − f(qj)〉 − h
∑

i

aj,i〈di,dj〉
}

≤ −h
∑

i,j

bjaj,id
⊤
j di.

Thus

2

h

〈

un − vn,
∑

j

bjdj

〉

+

∥

∥

∥

∥

∥

∥

∑

j

bjdj

∥

∥

∥

∥

∥

∥

2

=
∑

i,j

d⊤
j (bibj − bjaj,i − biai,j)di = −

∑

i,j

d⊤
i mi,jdj ,

where mi,j := biai,j + bjaj,i − bibj . Suppose, though, that the symmetric matrix M = (mi,j) is

positive semidefinite and denote the matrix with the columns d1, . . . ,ds by D. Let δ⊤
1 , . . . , δ

⊤
s be

the rows of D. Then
∑

i,j

d⊤
i mi,jdj =

∑

i,j,k

di,kmi,jdj,k =
∑

k

∑

i,j

di,kmi,jdj,k =
∑

k

δ⊤
kMδk ≥ 0.

2

Theorem 17 (Butcher) A RK method is algebraically stable (i.e., mimics the dissipation) iff b ≥ 0 and
M is negative semidefinite.

2.8 Additional ODE problems and themes

• ODEs as nonlinear dynamical systems – Increasing insight into the asymptotics of ODE
solvers has been gleaned in recent years by treating a numerical method as a map that
approximates the ODE flow, analysing its dependence on parameters like y0, h etc.
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1. It can be shown that certain methods may display, in a fixed-step implementation,
spurious modes of behaviour, inclusive of fixed points, oscillations, Hopf bifurcations
or chaos. Other methods are more immune to this phenomena.

2. Certain methods are better than others in displaying correct asymptotic behaviour
(omega sets, bifurcations etc.). Likewise, some error control techniques are safer than
others.

• Geometric integration – Most of advance in numerical ODEs in the last decade occurred
in geometric integration: computation of initial-value problems for ODEs (and PDEs) while
retaining exactly their known invariants of mathematical and physical significance. For ex-
ample

1. Symplectic methods: Main qualitative features of Hamiltonian ODEs are conserved by
methods that conserve the symplectic invariant, e.g. by Gauss–Legendre RK (but only
as long as the step size remains fixed!). This is important because Hamiltonian ODEs
are of crucial importance in many subjects, their solution is typically desired along
extended time intervals and they exhibit very ‘sensitive’ behaviour, that can be easily
corrupted by a numerical method.

2. Differential equations on manifolds: An example: Y ′ = A(Y )Y , Y (0) = Y0, where Y0

is a d × d orthogonal matrix and the function A maps orthogonal to skew-symmetric
matrices. (Equations of this form widely occur in robotics and in the engineering of
mechanical systems.) It is easy to prove that Y (t) remains orthogonal for all t ≥ 0. Yet,
most numerical methods destroy orthogonality! In greater generality, it is often known
that the solution of an ODE system possesses an invariant (equivalently, evolves on
a manifold) and a new generation of numerical methods attempts to discretize while
retaining this qualitative feature.

• High-order equations – An example: y′′(t) = f(t, y, y′), y(0) = y0, y′(0) = y′0. In principle,
they can be always converted into an ODE system by letting y1 = y, y2 = y′. However,
because of their ubiquity, there are special variants of multistep (Numerov’s method) and RK–
Nystrom methods for second-order equations.

• Two-point boundary value problems – An example: y′′ = f(t, y, y′), y(0) = a, y′(1) = b.
Typical methods: shooting, finite differences and finite elements.

1. Shooting: The idea is to treat c = y′(0) as a parameter. Thus, y(t) = y(t; y(0), y′(0)) and
we try to find c so that y(1; a, c) = b. In reality, y(1; a, c) is evaluated by an initial-value
ODE solver and nonlinear iterative techniques (recall Newton–Raphson) are employed
to find the right value of c.

2. Finite differences: Discretize the derivative locally, e.g.

1
h2 (yn+1 − 2yn + yn−1) = f

(

nh, yn,
1
2h (yn+1 − yn−1)

)

, n = 1, 2, . . . , N − 1,

where h = 1
N . This, together with y(0) = a, (yN − yN−1)/h = b, say, yields a (typically)

nonlinear algebraic system.

3. Finite elements: Discussion deferred till later.

• Differential delay equations (DDE) – An example: y′(t) = f(y(t − τ)), y(t) = φ(t) for
−τ < t ≤ 0. Can be solved by a ‘continuous’ extension of ODE methods. However, the main
source of problems is analytic: the DDEs are not ODEs. Thus, the solution of the equation
is, in general, of low smoothness at {mτ}∞m=0, even if f is analytic – unlike ODEs, where
analytic f implies an analytic solution. Even more curious is the solution of y′(t) = −y(qt),
y(0) = 1, where q ∈ (0, 1). Even if q is arbitrarily near to 1, |y| cannot be uniformly bounded!



Part III: Numerical Solution of Differential Equations 22

• Differential algebraic equations (DAE) – An example: x′ = f(t, x, y), 0 = g(t, x, y). In
other words, the solution is forced (at the price of tying down some degrees of freedom) to
live on a nonlinear, multivariate manifold. Again, it is misleading to treat DAEs as ODEs,
disregarding their special nature. There exists an extensive modern theory, inclusive of DAE
extensions of RK, BDF and other standard methods.

Exercises

2.1 Let

R(z) =
1 + (1 − a)z +

(

b− a+ 1
2

)

z2

1 − az + bz2
.

1. Determine p such that R(z) = ez + O
(

zp+1
)

.

2. Write the one-step two-derivative order-p method that ‘corresponds’ to the rational function R.

3. Determine conditions on a and b so that the method is A-stable.

2.2 Prove that Padé approximations to exp z are unique: LetRk(z) = Pk(z)/Qk(z), degPk = m, degQk =
n, Qk(0) = 1, Rk(z) = ez + O

(

zm+n+1
)

, k = 1, 2. Then necessarily R1 ≡ R2.

2.3 Let integer m,n ≥ 0 be given and

Pm/n(z) :=

m
∑

k=0

(

m

k

)

(m+ n− k)!

(m+ n)!
zk;

Qm/n(z) :=

n
∑

k=0

(

n

k

)

(m+ n− k)!

(m+ n)!
(−z)k = Pn/m(−z).

Set
ψm/n(z) := Pm/n(z) − ezQm/n(z).

1. Prove that the ψm/n’s obey the recurrence relation

ψm/n(z) = ψm/(n−1)(z) −
mz

(m+ n− 1)(m+ n)
ψ(m−1)/(n−1)(z), m, n ≥ 1.

2. Prove by induction or otherwise that

ψm/n(z) = (−1)n−1

∞
∑

k=0

m!(k + n)!

(n+m)!k!(k + n+m+ 1)!
zk+n+m+1.

Deduce the explicit form of Padé approximations to ez .

2.4 1. The equation y′ = f (t,y), y(t0) = y0, is solved by consecutive steps of forward and backward
Euler,

y2n+1 = y2n + hf (t2n,y2n),

y2n+2 = y2n+1 + hf (t2n+2,y2n+2).

Prove that the sequence {y2n}n≥0 approximates {y(t2n)}n≥0 to second order.
Is the method A-stable?

2. The same equation is solved by the combination

y3n+1 = y3n + h0f (t3n,y3n),

y3n+2 = y3n+1 + 1
2
h1

(

f (t3n+1,y3n+1) + f (t3n+2,y3n+2)
)

,

y3n+3 = y3n+2 + h0f (t3n+3,y3n+3),

of forward Euler, the trapezoidal rule and backward Euler. Prove that there exist no h0, h1 > 0
such that {y3n}n≥0 approximates {y((2h0 + h1)n)}n≥0 to third order.
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2.5 Determine the range of the real parameter α such that the multistep method

yn+3 − (1 + 2α)yn+2 + (1 + 2α)yn+1 − yn

= 1
6
h[(5 + α)f (yn+3) − (4 + 8α)f (yn+2) + (11 − 5α)f (yn+1)]

is convergent.

What is the order of the method for different values of α?

For which values of α is the method A-stable?

2.6 Derive the coefficients of the BDF methods for m = 2, 3, 4. Are these methods A-stable?

2.7 Consider the two-step (one-derivative) methods of order p ≥ 2.

1. Show that they form a two-parameter family.

2. Characterise all the A-stable methods of this kind.

3. Find the A-stable method with the least magnitude of the error constant.

2.8 We say that a method is R[1] if, for any ODE system y′ = f (y) with continuous f , the existence and
boundedness of the limit ŷ = limn→∞ yn (with any constant step-size h > 0) implies that ŷ is a fixed
point of the ODE (i.e. f (ŷ) = 0).

1. Prove that every convergent multistep method (iterated to convergence, if implicit) is R[1].

2. Show that the second-order Runge–Kutta method

0 0 0
1
2

1
2

0

0 1

is not R[1]. [Hint: Consider the logistic equation y′ = κy(1 − y).]

2.9 A method is R[2] if, for all equations y′ = f (y), there exists no solution sequence (with any constant
step-size h > 0) such that both ŷo := limn→∞ y2n+1 and ŷe := limn→∞ y2n exist, are bounded
and ŷo 6= ŷe (such solution sequence is necessarily false!). Prove that, for any convergent multistep
method determined by the polynomials (ρ, σ) (that are relatively prime, i.e. have no zeros in common),
R[2] is equivalent to σ(−1) = 0.

2.10 A multistep one-leg method for y′ = f (t,y) is defined as

k
∑

l=0

ρlyn−k+l = hf

(

k
∑

l=0

σltn−k+l,

k
∑

l=0

σlyn−k+l

)

.

Letting ρ(z) :=
∑k

0
ρlz

l, σ(z) :=
∑k

0
σlz

l, derive necessary and sufficient conditions on {ρ, σ} for (a)
order 2; and (b) A-stability.

2.11 Derive the order of the one-leg method (implicit midpoint rule)

yn+1 = yn + hf
(

tn + 1
2
h, 1

2
(yn + yn+1)

)

.

Is it A-stable? It is R[1]? R[2]?

2.12 We say that an ODE method is conservative if, given that the exact solution of y′ = f (y) obeys a
quadratic conservation law of the form y(t)⊤Sy(t) ≡ c, t ≥ 0, where S is a symmetric, positive-
definite matrix and c is a (positive) constant, it is also true that y⊤

nSyn ≡ c, n = 0, 1, . . .. Methods
like this are important in the solution of Hamiltonian systems. Prove that the one-leg method from
Exercise 11 is conservative.

2.13 Find the order of the explicit Runge-Kutta method

0 0 0 0 0
1
2

1
2

0 0 0
1
2

0 1
2

0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

.
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2.14 Determine conditions on b, c, and A such that the method

c1 a1,1 a1,2

c2 a2,1 a2,2

b1 b2

is of order p ≥ 3.

2.15 Prove that the implicit Runge–Kutta scheme

0 0 0 0
1
2

5
24

1
3

− 1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

can be expressed as a collocation method with a cubic collocation polynomial. Determine the order of
this scheme.

2.16 Let a ν-stage Runge–Kutta method be defined by collocation with the collocation points c1, c2, . . . , cν ,
which are distinct. Suppose that the polynomial ω(t) :=

∏ν

l=1
(t− cl) can be expressed in the form

ω(t) = αP̃ν(t) + βP̃ν−1(t),

where P̃n is the nth Legendre polynomial, shifted to the interval [0, 1]. (Hence
∫ 1

0
τ jP̃n(τ) dτ = 0,

j = 0, 1, . . . , n− 1.)

1. Prove that the method is at least of order 2ν − 1.

2. The constants α and β are chosen so that the matrix A is invertible and b⊤A−1
1 = 1. Prove that

the stability function is a (ν − 1)/ν rational function, hence deduce that the method is A-stable.

2.17 The function R is a rational fourth-order approximation to exp z. We solve y′ = f (y), y(t0) = y0 by
the numerical scheme

yn+1 = yn +A−1 (R(hA) − I) f (yn),

where A is a nonsingular matrix that may depend on n.

1. Prove that

A =
∂f (y(tn))

∂y
+ O(h)

gives a second-order method.

2. Discuss the stability properties of the above method.
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3 Finite difference methods for PDEs

3.1 Calculus of finite differences

Given {yn}∞n=−∞, we define

Eyn = yn+1 The shift operator
∆+yn = yn+1 − yn The forward difference operator
∆−yn = yn − yn−1 The backward difference operator
∆0yn = yn+ 1

2
− yn− 1

2
The central difference operator

µ0yn = 1
2 (yn+ 1

2
+ yn− 1

2
) The averaging operator.

Note that ∆0 and µ0 are ill-defined – but watch this space!

Assume further that yn = y(nh), where y is analytic in R with radius of convergence > h, and
define
Dyn = y′(nh) The differential operator.

All operators can be conveniently expressed in terms of each other. For example,

µ0 = 1
2 (E

1
2 + E− 1

2 ) ⇔ E = 2µ2
0 − I + 2µ0

√

µ2
0 − I.

We conclude that all the above operators commute.

Approximating Ds. Using ‘slanted’ (i.e. ∆±) differences, we have

Ds =
1

hs
(log(I + ∆+))

s
=

1

hs
{

∆s
+ − 1

2s∆
s+1
+ + 1

24s(3s+ 5)∆s+2
+ − · · ·

}

=
(−1)s

hs
(log(I − ∆−))

s
=

1

hs
{

∆s
− + 1

2s∆
s+1
− + 1

24s(3s+ 5)∆s+2
− + · · ·

}

.

For example,

Dsyn ≈ 1

hs
(

∆s
+ − 1

2s∆
s+1
+ + 1

24s(3s+ 5)∆s+2
+

)

yn (error O
(

h3
)

, bandwidth s+ 2).

Central differences. Although ∆0 and µ0 aren’t well-defined on a grid, ∆2
0yn = yn+1−2yn+yn−1

and ∆0µ0yn = 1
2 (yn+1 − yn−1) are!

We have D = 2
h log

(

1
2∆0 +

√

I + 1
4∆2

0

)

and we let g(z) := log(z +
√

1 + z2). By the (generalized)

binomial theorem

g′(z) = (1 + z2)−
1
2 =

∞
∑

j=0

(−1)j
(

2j

j

)

(z

2

)2j

.

Since g(0) = 0, integration yields

g(z) = 2

∞
∑

j=0

(−1)j

2j + 1

(

2j

j

)

(z

2

)2j+1

.

Hence

D =
2

h
g
(

1
2∆0

)

=
4

h

∞
∑

j=0

(−1)j

2j + 1

(

2j

j

)

(

1
4∆0

)2j+1
=

1

h
(∆0 − 1

24∆3
0 + 3

640∆5
0 − · · ·).
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We have

Ds =
1

hs
(

∆s
0 − 1

24s∆
s+2
0 + 1

5760s(5s+ 22)∆s+4
0 − · · ·

)

. (3.1)

This works beautifully for even s, e.g.

D2yn ≈ 1

h2

(

∆2
0 − 1

12∆4
0

)

yn (error O
(

h4
)

, bandwidth 4)

For odd s we exploit µ0 =
(

I + 1
4∆2

0

)
1
2 to multiply (3.1) by

I = µ0

(

I + 1
4∆2

0

)− 1
2 = µ0

∞
∑

j=0

(−1)j
(2j)!

(j!)2

(

∆0

4

)2j

.

This gives

Ds =
1

hs
µ0∆0

(

∆s−1
0 − 1

24 (s+ 3)∆s+1
0 + 1

5760 (5s2 + 52s+ 135)∆s+3
0 − · · ·

)

.

For example,

Dyn ≈ 1

h

(

1
12yn−2 − 2

3yn−1 + 2
3yn+1 − 1

12yn+2

)

(error O
(

h4
)

, bandwidth 4.)

3.2 Synthesis of finite difference methods

An example – the Poisson equation ∇2u = f with Dirichlet conditions on the boundary of [0, 1]2.
Let uk,l ≈ u(k∆x, l∆x). We solve the Poisson equation with the five point formula

(∆x)2(∆2
0,x + ∆2

0,y)uk,l = uk−1,l + uk+1,l + uk,l−1 + uk,l+1 − 4uk,l = (∆x)2fk,l. (3.2)

A compact notation is given via computational stencils (a.k.a. computational molecules). Thus, (3.2)
can be written as

1
(∆x)2 ��

��
��
��

��
��

��
��
��
��

1 1

1

1

−4 u = f

Computational stencils can be formally ‘added’, ‘multiplied’ etc.

Curved boundaries. It is often impossible to fit a grid into a domain so that all the intersections
of the grid with the boundary are themselves grid points. The easiest quick fix is to use, when
necessary, finite-difference formulae with non-equidistant points. This, in practice, means using
larger stencils near (curved) boundaries.

Initial value problems. Again, we can use finite differences and computational stencils. Two
approaches: full discretization (FD), whereby both time and space are discretized in unison, and
semidiscretization (SD) – only space is discretized, and this gives an ODE system. Schemes can be
explicit or implicit.
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Example: ut = uxx, x ∈ [0, 1], t ≥ 0, with 0 b.c. at x = 0, 1 and initial conditions for t = 0 (the
diffusion equation, a.k.a. the heat equation). Let um(t) ≈ u(m∆x, t), unm ≈ u(m∆x, n∆t). Then

(Explicit) SD: u′m =
1

(∆x)2
(um−1 − 2um + um+1),

(Explicit) FD: un+1
m = unm +

∆t

(∆x)2
(unm−1 − 2unm + unm+1),

(Implicit) FD: un+1
m = unm +

∆t

2(∆x)2
(unm−1 − 2unm + unm+1 + un+1

m−1 − 2un+1
m + un+1

m+1).

Note that the explicit FD (Euler’s method) is the result of SD followed by forward Euler, whereas
the implicit FD (Crank–Nicolson) is obtained by solving the SD equations with the trapezoidal rule.

An analytic approach. Works for linear equations with constant coefficients. It is obvious in a
hand-waiving manner, but more rigourous justification requires tools like Fourier analysis.

We consider first the Poisson equation ∇2u = f in Ω ⊂ R
2, with Dirichlet b.c. u = g, (x, y) ∈ ∂Ω or

Neumann b.c. ∂
∂nu = g, (x, y) ∈ ∂Ω. It is approximated by the linear combination

L∆xuk,l :=
∑

(i,j)∈I
ai,juk+i,l+j = (∆x)2fk,l. (3.3)

Recalling that ∇2 = D2
x + D2

y = (∆x)−2[(log Ex)
2 + (log Ey)

2], we set

L(x, y) := (log x)2 + (log y)2,

L∆x(x, y) :=
∑

(i,j)∈I
ai,jx

iyj .

Suppose that
L∆x(x, y) = L(x, y) + O((∆x)p+3), x, y = 1 + O(∆x) .

Let ũk,l = u(k∆x, l∆x) (the exact solution). Then

L∆ũk,l − (∆x)2fk,l = (∆x)2
(

∇2ũk,l − fk,l
)

+ O
(

(∆x)p+3
)

= O
(

(∆x)p+3
)

.

Subtracting L∆uk,l − (∆x)2fk,l = 0 gives

L∆x(u − ũ) = O
(

(∆x)p+3
)

.

But L(x, y) = O
(

(∆x)2
)

(since L(x, y) = (1 − x)2 + (1 − y)2 + h.o.t.) and the implicit function
theorem implies (in simple geometries, with ‘nice’ boundary conditions) that the error in (3.3) is
O
(

(∆x)p+1
)

.

Example: The 5-point formula (3.2):

L∆x(e
iθ, eiψ) = −4

(

sin2 θ
2 + sin2 ψ

2

)

= −(θ2 + ψ2) + O
(

(∆x)4
)

= L(eiθ, eiψ) + O
(

(∆x)4
)

,

hence error O
(

(∆x)2
)

.

Example: The 9-point formula

1
(∆x)2

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

1
6

2
3

1
6

2
3

−10
3

2
3

1
6

2
3

1
6

u = f



Part III: Numerical Solution of Differential Equations 28

We can prove, by proceeding as before, that

L∆x(e
iθ, eiψ) = −(θ2 + ψ2) + 1

12 (θ2 + ψ2)2 + O
(

(∆x)6
)

.

Hence, as before, the error is O
(

(∆x)2
)

. However, when f ≡ 0, we are solving the equation

(

1 +
(∆x)2

12
∇2

)

∇2u = 0 (3.4)

to O
(

(∆x)4
)

– and, disregarding the highly nontrivial matter of boundary conditions, for small
∆x, the differential operator on the left is invertible and the solutions of (3.4) and of ∇2u =
0 coincide. Consequently, the 9-point formula carries local error of O

(

(∆x)2
)

for Poisson, but

O
(

(∆x)4
)

for Laplace!

Mehrstellenverfahren. How to extend the benefits of the 9-point formula to the Poisson equa-
tion? We have seen that L∆ = L− 1

12L
2 + O

(

(∆x)6
)

. Let

M∆x =
∑

(i,j)∈J
bi,jE

i
xE

j
y := M∆x(Ex,Ey)

be a finite-difference operator such that M∆x(x, y) = 1 + 1
12L(x, y) + O

(

(∆x)4
)

. We apply M∆x

to the right-hand side of the equation, i.e. solve

L∆xuk,l = (∆x)2M∆xfk,l.

This means that we are solving
[

1 + 1
12 (∆x)2∇2

]

(∇2u− f) = 0 (3.5)

and the local error is O
(

(∆x)4
)

. As before, for small ∆x, the solution of (3.5) and of Poisson’s
equation coincide.

Another interpretation: L(x, y) is being approximated by L∆x(x, y)/M∆x(x, y), a rational func-
tion.

The d-dimensional case. Let u = u(x1, x2, . . . , xd) and consider ∇2u = f , hence we have L(x) =
∑d

1(log xk)
2.

Theorem 18 Let

L∆x(x) = − 2
3 (2d+ 1) + 2

3

d
∑

1

(

xk +
1

xk

)

+ 2
3 · 1

2d

d
∏

1

(

xk +
1

xk

)

,

M∆x(x) = 1 − 1
6d+ 1

12

d
∑

1

(

xk +
1

xk

)

.

Then the solution of L∆xuk = (∆x)2M∆xfk approximates the solution of ∇2u = f to O
(

(∆x)4
)

.

Proof Follows at once from

L∆x(e
iθ1 , . . . , eiθd) = − 2

3 (2d+ 1) + 4
3

d
∑

1

cos θk + 2
3

d
∏

1

cos θk = L− 1
12L

2 + O
(

(∆x)6
)

,

M∆x(e
iθ1 , . . . , eiθd) = 1 − 1

6d+ 1
6

d
∑

1

cos θk = 1 − 1
12L+ O

(

(∆x)4
)

.
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2

In the special case d = 2 we obtain

1
(∆x)2
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1
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12 f .

3.3 Equations of evolution

An analytic approach. Consider ut = ∂L

∂xLu with given boundary and initial conditions. Set

µ = ∆t
(∆x)L , the Courant number. For example, L = 1 is the advection equation, whereas L = 2 yields

the diffusion equation.

Semidiscretizations. We consider the ODEs

u′m − 1
(∆x)L

s
∑

−r
αkum+k = 0 (3.6)

and denote the exact solution of the original PDE by ũ. Since Dtũ = DL
x ũ,

ũ′m − 1
(∆x)L

s
∑

k=−r
αkũm+k =

(

Dt − 1
(∆x)L

s
∑

k=−r
αkE

k
x

)

ũm

=
1

(∆x)L

(

(log Ex)
L −

s
∑

k=−r
αkE

k
x

)

ũm.

Suppose that

h(z) =

s
∑

k=−r
αkz

k = (log z)L + O
(

|z − 1|p+1
)

and denote em = um − ũm. Subtracting (3.6) from

ũ′m − 1
(∆x)L

s
∑

−r
αkũm+k = O

(

(∆x)p−L+1
)

yields

e′m = 1
(∆x)L

s
∑

−r
αkem+k + O

(

(∆x)p−L+1
)

with zero initial and boundary conditions. Therefore, as long as we solve the SD equations with
constant µ (which takes care of (∆x)−L), em = O

(

(∆x)p+1
)

and the method is of order p.

Example ut = ux, L = 1, r = s = 1 ⇒ u′m = 1
2∆x (um+1 − um−1).
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Full discretizations. Let
s
∑

k=−r
γku

n+1
m+k =

s
∑

k=−r
δku

n
m+k, (3.7)

where γk = γk(µ), δk = δk(µ) and
∑s

−r γk(0) 6= 0. Proceeding like before, we let

H(z;µ) :=

∑s
k=−r δkz

k

∑s
k=−r γkz

k
.

Provided that the rational function H is irreducible (i.e., it has no common factors), the method
(3.7) is of order p if

H(z;µ) = eµ(log z)L

+ O
(

|z − 1|p+1
)

.

Example ut = ux, L = 1, r = s = 1 ⇒ un+1
m = unm + µ

2 (unm+1 − unm−1).

Well posedness. Let ut = Lu+ f , where L is a spatial linear differential operator. The solution is
u = E(t)u0, where u0 is the initial condition and E is the evolution operator. Note that E(0) = I and
that E is a semigroup: E(t+ s) = E(t)E(s). We say that the equation is well posed in a Banach space
H (with the norm · ) if E(t) ≤ C uniformly for all 0 ≤ t ≤ T . Examples:

1. The advection equation ut = ux: Here u(x, t) = u(x + t, 0), hence E(t) = Etx and (provided
the initial values are given on all of R), E ≡ 1.

2. The diffusion equation ut = uxx with zero boundary conditions: By Fourier analysis for
x ∈ [−π, π],

u(x, 0) =

∞
∑

m=−∞
αmeimx =⇒ u(x, t) =

∞
∑

m=−∞
αmeimx−m2t. (3.8)

Therefore E(t)u0 ≤ u0 , hence E ≤ 1.

3. The ‘reversed’ diffusion equation ut = −uxx: eimx−m2t is replaced by eimx+m2t in (3.8) and
we have a blow-up, hence no well-posedness.

Convergence. The FD scheme
un+1

∆x = A∆xu
n
∆x + fn∆x, (3.9)

where all coefficients are allowed to depend on µ, is said to be convergent if, given T > 0, for all
∆x → 0, n,m → ∞, s.t. m∆x → x, n∆t → t (x in the spatial domain of definition, t ∈ (0, T ])
and fixed µ, (unm)∆x tends to u(x, t) and the progression to the limit is uniform in t ∈ (0, T ] and x.
Trivial generalization to several space variables.

We let ‖u‖∆x =
[

(∆x)
∑ |um|2

]
1
2 , where the sum is carried out over the grid points. Note that

if um = g(m∆x), where g is suitably smooth, Riemann sums imply that lim∆x↓0 ‖u‖∆x = ‖g‖,
where ‖g‖ is the standard Euclidean norm acting on functions.

Stability. We say that (3.9) is stable (in the sense of Lax) if it is true that ‖An
∆x‖∆x is uniformly

bounded when ∆x→ 0 (µ being constant) and for all n ∈ Z+, n∆t ∈ [0, T ]. Health warning: This
concept is different from A-stability!

Theorem 19 (The Lax equivalence theorem) For linear well posed PDEs of evolution, convergence is
equivalent to consistency (i.e. order ≥ 1) and stability.
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SD schemes. We now consider

u′
∆x =

1

(∆x)L
P∆xu∆x + f∆x(t). (3.10)

Convergence means that the solution of the ODE system (3.10) tends to the solution of the PDE
when ∆x→ 0, uniformly in ∆x and t ∈ [0, T ].

Stability: ‖exp (tP∆x)‖ is uniformly bounded for all t ∈ [0, T ], ∆x → 0. The Lax equivalence
theorem remains valid.

3.4 Stability analysis

Von Neumann’s theory I: Eigenvalue analysis. A matrix A is normal if AA∗ = A∗A. Examples:
Hermitian and skew-Hermitian matrices.

Lemma 20 A matrix is normal iff it has a full set of unitary eigenvectors.

Thus, A = Q∗DQ, where Q is unitary and D is diagonal.

For general matrices it is true that ρ(A) ≤ ‖A‖ (in every norm). Moreover, in Euclidean norm,

‖A‖ =
√

ρ(A∗A).

Corollary 5 Suppose that A is normal. Then ‖A‖ = ρ(A).

Proof Since ‖A‖ =
√

ρ(A∗A), A∗ = Q∗D̄Q and because multiplication by unitary matrices is an
isometry of the Euclidean norm. 2

Theorem 21 Suppose that A∆x is normal for all ∆x→ 0 and that there exists α ≥ 0 s.t. ρ(A∆x) ≤ eα∆t.
Then the method (3.9) is stable.

Proof The Euclidean norm of a normal matrix coincides with its spectral radius. For every vector
v∆x, ‖v∆x‖∆x = 1 and n s.t. n∆t ≤ T it is true that

‖An
∆xv∆x‖2

∆x = 〈An
∆xv∆x,An

∆xv∆x〉∆x = 〈v∆x, (An
∆x)

∗An
∆xv∆x〉∆x

= 〈v∆x, (A∗
∆xA∆x)

nv∆x〉∆x ≤ ‖v∆x‖2
∆x‖A∗

∆xA∆x‖n∆x = [ρ(A∆x)]
2n.

Therefore
‖An

∆x‖∆x ≤ [ρ(A∆x)]
n ≤ eαn∆t ≤ eαT ,

uniform boundedness. 2

An alternative interpretation. The factorization A = V DV −1 implies that ‖An‖ ≤ κ(V )‖D‖n,
where κ(V ) = ‖V ‖ · ‖V −1‖ is the spectral condition number. As long as A is normal, V is unitary
and κ(V ) ≡ 1 (irrespective of ∆x). However, in general it is possible that lim∆x→0 κ(V∆x) = ∞.
Therefore, uniformly bounded eigenvalues are necessary but not sufficient for stability!

Example: ut = uxx + f , 0 ≤ x ≤ 1, is being solved with Euler’s scheme

un+1
m = unm + µ(unm−1 − 2unm + unm+1) + fnm.

Hence A∆x is tridiagonal and symmetric. Moreover, it is a Toeplitz matrix, i.e. constant along the
diagonals. We denote matrices like this by TST. The dependence on ∆x is, by the way, expressed
via the matrix dimension.
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Lemma 22 (with a straightforward proof) Let A be a d × d TST matrix, ak,k = α, ak,k±1 = β. Then
the eigenvalues of A are λk = α + 2β cos kπ

d+1 , with the corresponding (orthogonal) eigenvectors vk,l =

sin πkl
2d+2 , k, l = 1, 2, . . . , d.

In our case α = 1− 2µ, β = µ, hence λk = 1− 4µ sin2 kπ
2d+2 . Consequently max |λk| ≤ 1 means that

µ ≤ 1
2 . Since the matrix is symmetric, this is necessary and sufficient for stability.

Example We solve the diffusion equation with the Crank–Nicolson method,

un+1
m = unm + 1

2µ(unm−1 − 2unm + unm+1 + un+1
m−1 − 2un+1

m + un+1
m+1) + fnm.

Now A∆x = B−1A, where both A and B are TST, with α = 1−µ, β = 1
2µ and α = 1+µ, β = − 1

2µ
respectively. Since all TST matrices commute,

λk =
1 − 2µ sin2 kπ

2d+2

1 + 2µ sin2 kπ
2d+2

∈ (−1, 1), k = 1, 2, . . . , d,

hence stability for all µ > 0.

Example The advection equation ut = ux, x ∈ [0, 1], with 0 b.c. at x = 1, is solved by Euler’s
method

un+1
m = (1 − µ)unm + µunm+1.

Hence A is bidiagonal with 1 − µ along the main diagonal and ρ(A) = |1 − µ|. It follows that
0 < µ < 2 is necessary for stability. To convince ourselves that it is not sufficient, consider a
general d× d matrix

Ad =



















a b 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . . 0

... 0 a b
0 · · · · · · 0 a



















⇒ A⊤
d Ad =



















a2 ab 0 · · · 0

ab a2 + b2
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . . ab a2 + b2 ab
0 · · · 0 ab a2 + b2



















.

Thus, by the Gerschgorin theorem, ‖Ad‖2 = ρ(A⊤
d Ad) ≤ (|a| + |b|)2. On the other hand, let vd,k =

(

sgn a
b

)k−1
, k = 1, . . . , d. It is easy to see that ‖Advd‖/‖vd‖ d→∞−→ |a|+ |b|. Consequently, ‖Ad‖ d→∞−→

|a|+ |b|. In our special example a = 1−µ, b = µ, hence the norm is at least µ+ |1−µ| and stability
is equivalent to 0 < µ ≤ 1.

Eigenvalue analysis for SD schemes.

Theorem 23 Let P∆x be normal and suppose that ∃β ∈ R s.t. Reλ ≤ β for all λ ∈ σ(P∆x) and ∆x→ 0.
Then the SD method is stable.

Proof Let ‖v‖ = 1. Then

‖etPv‖2 =
〈

v,
(

etP
)∗

etPv
〉

=
〈

v, etP
∗

etPv
〉

=
〈

v, et(P+P∗)v
〉

≤ ‖v‖2
∥

∥

∥et(P+P∗)
∥

∥

∥ = ρ
(

et(P+P∗)
)

= max
{

e2tReλ : λ ∈ σ(P)
}

≤ e2βT .

This completes the proof. 2
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Von Neumann theory II: Fourier analysis. We restrict attention to linear PDEs with constant
coefficients and to the Cauchy problem: the initial value is given on all of R (all this can be trivially
generalized to several space dimensions), with no boundary conditions.
FD schemes. Let

s
∑

k=−r
γku

n+1
m+k =

s
∑

k=−r
δku

n
m+k, (3.11)

and set, as before,

H(z;µ) =

∑s
k=−r δkz

k

∑s
k=−r γkz

k
.

Recall that the Fourier transform of {vm}m∈Z is v̂(θ) =
∑∞
m=−∞ vme−imθ and that

( ∞
∑

−∞
|vm|2

)
1
2

= ‖v‖ = ‖|v̂|‖ =

[

1

2π

∫ π

−π
|v̂(θ)|2 dθ

]
1
2

.

In other words the Fourier transform is an ℓ2 → L2 isomorphic isometry.

Multiplying (3.11) by e−imθ and summing up for all m ∈ Z+ we obtain ûn+1 = H(eiθ;µ)ûn, hence
ûn =

(

H(eiθ;µ)
)n
û0. Thus, ‖An

∆x‖ = ‖|ûn|‖ means that |H(eiθ;µ)| ≤ 1 for all |θ| ≤ π⇒ stability.

As a matter of fact, |H(eiθ;µ)| ≤ 1 for all |θ| ≤ π ⇔ stability. To prove in the ⇐ direction, take a
function u s.t.

û(θ) =

{

1, θ ∈ (α, β),
0, θ 6∈ (α, β),

, i.e. um =
1

2π

∫ β

α

eimθdθ =

{

(β − α)/(2π), m = 0,
(eimβ − eimα)/(2πm), m 6= 0,

where |H(eiθ, µ)| ≥ 1 + ε for α ≤ θ ≤ β and ε > 0.

Back to the last example. Now H(eiθ;µ) = 1 − µ + µeiθ and |H(eiθ;µ)| ≤ 1 iff 0 ≤ µ ≤ 1, as
required.

Semidiscretizations. Let, as before,

u′m =
1

(∆x)L

s
∑

k=−r
αkum+k, h(z) :=

s
∑

k=−r
αkz

k.

Similar analysis establishes that stability is equivalent to Reh(eiθ) ≤ 0 for all |θ| ≤ π.

Example: Suppose that ut = ux is solved with u′m = 1
(∆x)

(

− 3
2um + 2um+1 − 1

2um+2

)

. Hence

h(eiθ) = − 1
2 (3 − 4eiθ + e2iθ), thus Reh(eiθ) = −(1 − cos θ)2 ≤ 0 and stability follows.

A Toeplitz matrix interpretation. Equation (3.11) can be written in a matrix form as Bun+1 =
Aun and we wish to bound the norm of B−1A. Both A and B are bi-infinite Toeplitz matrices.
A spectrum of an operator C is the set of all λ ∈ C such that C − λI has no inverse – when the
number of dimensions is infinite this encompasses both eigenvalues and more exotic creatures.
In fact, bi-infinite Toeplitz matrices have no eigenvalues, just a continuous spectrum.1 A general
Toeplitz matrix F reads fk,l = ϕk−l, k, l ∈ Z, and we call the Laurent series f(z) =

∑∞
k=−∞ ϕkz

k

the symbol of F .

Theorem 24 σ(F ) =
{

f(eiθ) : |θ| ≤ π
}

and ‖F‖2 = max{|f(eiθ)| : |θ| ≤ π}.

1Have a good look at a functional analysis book if you wish to understand finer points of operatorial spectra. This,
though, will not be required in the sequel. . .
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Moreover, if A and B are bi-infinite Toeplitz then σ(B−1A) is the mapping of |z| = 1 under the
quotient of their symbols. For the difference scheme (3.11) we obtain σ(B−1A) = {H(eiθ;µ) : |θ| ≤
π}, hence |H| ≤ 1 iff stability. Similar argument extends to SD schemes.

Suppose thatFd is a d×d Toeplitz matrix andF = F∞. In general it is not true that limd→∞ σ(Fd) =
σ(F ) but (according to a theorem by Szegő) this is the case when the Fds are all normal. This con-
nects the present material to eigenvalue analysis.

Influence of boundary conditions. Presence of boundaries means that we need boundary schemes,
some of which can be artificial (when the number of required values exceeds the number of
boundary conditions). Although the Fourier condition is necessary, there are in general extra
conditions to ensure sufficiency. Zero boundary conditions require the Strang condition, namely
that, given H = P/Q (h = p/q), the Laurent polynomial Q (or q) has precisely r zeros inside
and s zeros outside the complex unit circle. This condition is a consequence of a Wiener–Hopf
factorization of the underlying Toeplitz matrices.

Stability analysis in the presence of boundaries is due to Godunov & Riabienkı̆, Osher and in par-
ticular Gustaffson, Kreiss and Sundström (the GKS theory). It is far too complicated for elementary
exposition. Fortunately, a more recent theory of Trefethen simplifies matters. Suppose that we are
solving ut = ux by the scheme (3.11) which is conservative: |H(eiθ;µ)| ≡ 1. We seek a solution of
the form unm = ei(ξm∆x+ω(ξ)n∆t). Here ω(ξ) is the phase velocity and c(ξ) := d

dξω(ξ) is the group

velocity. Both are defined for |ξ| ≤ π
∆x , wave numbers supported by the grid. Substituting the

stipulated values of unm into (3.11) yields

eiω(ξ)µ∆x = H(eiξ∆x;µ), hence c(ξ) =
eiξ∆x

µ

d
dzH(eiξ∆x;µ)

H(eiξ∆x, µ)
.

Example Crank–Nicolson: 1
4µu

n+1
m−1 + un+1

m − 1
4µu

n+1
m+1 = − 1

4µu
n
m−1 + unm + 1

4µu
n
m+1. Thus,

H(eiθ;µ) =
1 + i12µ sin θ

1 − i 12µ sin θ
⇒ c(ξ) =

cos(ξ∆x)

1 + µ2 1
4 sin2(ξ∆x)

.

Note that c(ξ) changes sign in |ξ| ≤ π
∆x . This means that some wave numbers are transported by

the numerical ‘flow’ in the wrong direction! In fact, c being a derivative of a periodic function, it is
easy to prove that, for every conservative (3.11), either c(ξ) changes sign or it can’t be uniformly
bounded for all µ > 0. Thus, some wave numbers are transported either in the wrong direction
or with infinite speed or both!

Trefethen’s theory. Suppose that, for some |ξ| ≤ π
∆x we have c(ξ) < 0 and that this is also the case

for the group velocity induced by the boundary scheme. Then the method is unstable. However,
if the ‘internal’ scheme is stable and boundary schemes bar all ξ such that c(ξ) < 0 then (3.11) is
stable.

Example (with CN): (i) un+1
0 = un−1

2 +(µ−1)(un2 −un0 ). Both CN and the boundary scheme admit
unm = (−1)m = eiπm ⇒ instability.
(ii) un+1

0 = un1 . For ξ to be admitted by the boundary scheme we need eiω∆t = eiξ∆x, hence
c ≡ µ−1 > 1 (where c is the ‘boundary group velocity’), whereas the method’s group velocity
lives in [−1, 1]. Hence stability.

Multistep methods. Fourier analysis can be easily extended to multistep schemes, e.g.
Leapfrog: un+1

m = µ(unm+1 − unm−1) + un−1
m ,

Angled derivative: un+1
m = −(1 − 2µ)(unm+1 − unm) + un−1

m+1,
both for ut = ux. Thus, angled derivative gives

T (w, z;µ) = w2 + (1 − 2µ)(z − 1)w − z ⇒ T (zµ, z;µ) = O
(

|z − 1|3
)

,
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hence the order is 2. Moreover, its Fourier transformation yields

ûn+1 + (1 − 2µ)(eiθ − 1)ûn − eiθûn−1 = 0.

This is a two-step recurrence relation and all its solutions are uniformly bounded iff the quadratic
T (·, eiθ;µ) obeys the root condition. The latter is true for all θ ∈ [−π, π] iff 0 ≤ µ ≤ 1.
Likewise, leapfrog is order-2 and stable for all |µ| ≤ 1. The interest in negative values of µ is moti-
vated by the extension of our analysis to the PDE system ut = Gux, where σ(G) = {λ1, . . . , λd} is
real (this ensures hyperbolicity and well-posedness). In this case stability requires that λl

∆t
∆x are

in the ‘stability set’ for all l = 1, . . . , d.

Periodic boundary conditions. These produce circulants, i.e. Toeplitz matrices of the form

F =















f0 f1 f2 · · · fM−1

fM−1 f0 f1 · · · fM−2

fM−2 fM−1 f0 · · · fM−3

...
. . .

. . .
. . .

...
f1 · · · fM−2 fM−1 f0















.

It is trivial to verify that λl =
∑M−1
k=0 fke

2πikl
M and

{

vl,k = e
2πikl

M : k = 0, 1, . . . ,M − 1
}

are an

eigenvalue/eigenvector pair for l = 0, 1, . . . ,M − 1. Hence normalcy, consequently stability re-
quires that the symbol is bounded by 1 on roots of unity.

Group velocity and wave propagation. Figure 3.1 displays the evolution of a step function, as
ut = ux (with periodic boundary conditions) is discretized by two different methods with µ = 3

4 .
In the case of Crank–Nicolson we have already seen that c(ξ) changes sign, hence some wave
numbers (and all wave numbers are present in a discontinuity) are propagated backwards. It is
easy to demonstrate, however, that the group velocity of the box method

(1 + µ)un+1
m + (1 − µ)un+1

m+1 = (1 − µ)unm + (1 + µ)unm+1,

namely

c(ξ) =
2

(1 + µ2) − (1 − µ2) cos ξ∆x
,

always exceeds one for ξ 6= 0 and µ ≤ 1. Hence wave numbers always propagate in the right
direction but they do it too fast!

The energy method. (when all else fails. . . ) Consists of direct estimates in the energy (a.k.a.
Euclidean, a.k.a. least squares, a.k.a. ℓ2) norm. For example, approximate ut = a(x)ux, with zero
b.c., by the SD

u′m =
am
2∆x

(um+1 − um−1) (3.12)

and let

‖u‖ =

[

(∆x)

M−1
∑

m=1

u2
m

]

1
2

, ∆x =
1

M
.

Hence, using the Cauchy–Schwarz inequality

d

dt
‖u‖2 = 2(∆x)

M−1
∑

m=1

umu
′
m =

M−1
∑

m=1

amum(um+1 − um−1)

=
M−1
∑

m=1

(am − am+1)umum+1 ≤ α(∆x)
M−1
∑

m=1

|umum+1| ≤ α‖u‖2,
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Figure 3.1 Propagation of a discontinuity by different numeri-
cal schemes.

provided that |a(x) − a(y)| ≤ α|x − y| for some α > 0. Consequently ‖u(t)‖ ≤ eαt‖u(0)‖ and we
have uniform boundedness on compact intervals, hence stability of (3.12).

3.5 A nonlinear example: Hyperbolic conservation laws

We consider
∂

∂t
u+

∂

∂x
f(u) = 0, (3.13)

where f is a given function. It is accompanied by initial (and possibly boundary) conditions.

Applications. Equations (3.13) include as special case the Burgers’ equation (i.e. f(u) = 1
2u

2).
Their multivariate generalizations include the equations of compressible invicid flow in Eulerian
formulation and equations of gas dynamics.

Features of the solution. It is easy to see that the solution is constant along characteristics – given
that u(x0, 0) = u0, say, the solution stays u0 for all t ≥ 0 at x = x0 + f ′(u0)t. However, the slope
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of each characteristic line is, in principle, different, and we can anticipate two problems:

1. Shocks: When two characteristics, ‘carrying’ distinct values, clash, a discontinuity occurs.
It is a shock, i.e. the flow is always into the discontinuity and no information ever leaves it.
Let Γ(t) be a parametric representation of a shock. It is possible to show that it obeys the
Rankine–Hugeniot conditions

dΓ(t)

dt
=

[f(u)]

[u]
where [w] is the jump of w across the shock.

2. Rarefactions: When characteristics depart from each other, they create a ‘void’, a rarefaction
fan. The solution can be patched across the void in a multitude of ways, but only one has
physical significance. We envisage (3.13) as the solution of ut + (f(u))x = νuxx, ν > 0, as
ν → 0 (νuxx represents viscosity) and this implies the entropy condition

1
2

∂

∂t
u2 +

∂

∂x
F (u) ≤ 0 where F (u) :=

∫ u

0

yf ′(y) dy.

Provided that the RH and entropy conditions are obeyed, the solution of (3.13) exists, is unique
and ∃c > 0 s.t. ‖u‖ ≤ c‖φ‖, where φ(x) = u(x, 0).
Note that (a) (3.13) is not a ‘true’ conservation law – the energy is lost at shocks; (b) Shocks are
a feature of the equation and they are likely to occur even with smooth initial conditions. They
have, incidentally, a physical interpretation.

Example: Burgers’ equation ut + uux = 0. It is easy to see that

u(x, 0) =

{

1 : x ≥ 0
0 : x < 0

⇒
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u = 0 u = 1The right way of filling the triangular void is

u(x, t) =







1 : 0 ≤ t ≤ x,
x
t : 0 ≤ x ≤ t,
0 : x < 0, t ≥ 0

.

Indeed, f(u) = 1
2u

2 ⇒ F (u) = 1
3u

3 ⇒ the entropy condition is uut + u2ux ≤ 0. There is nothing
to check when 0 ≤ t ≤ x or when x < 0, t ≥ 0 and it is trivial to verify that uut + u2ux = 0 in the
triangle 0 ≤ x ≤ t.

Godunov’s method. The main idea is to approximate the initial condition by a step function.

Hence, we keep (3.13) intact, but replace u(x, 0) = φ(x) with u(x, 0) = φ̃(x), where φ̃(x) ≡
φ
((

m+ 1
2

)

∆x
)

for m∆x ≤ x < (m+ 1)∆x, m ∈ Z. The latter is a Riemann problem, which can be
solved explicitly. Specifically, let u(x, 0) = a for all a ∈ [x0, x1). Then ut+f ′(a)ux = 0 there, hence

u(x, t) = φ̃(x − f ′(a)t) = a for x0 ≤ x − f ′(a)t < x1. We advance the solution in this fashion as
long as no more than two characteristics clash (i.e., as long as we can resolve distinct shocks) – the
length of a step depends on the steepness of the slopes – but also so as not to ‘open up’ rarefaction
fans too much. Thus, having reached a new time level t1, say, we have numerical values that are

not equidistributed. We replace them by a step function (as long as ∆t < (∆x)×max |f ′(φ̃)|, i.e. the
Courant number ≤ 1, we’ll have enough data in each interval) and continue this procedure.
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Improvement I – van Leer’s method. Instead of a step function, it is possible to approximate φ by
a piecewise linear function and derive the exact solution of (3.13) with this initial condition. This
yields a second-order method (compared to Godunov’s, which is first-order).

Improvement II – Glimm’s method. Instead of letting φ̃ be the value at the centre, we choose
it at random (according to uniform distribution) in the interval. This is repeated in every step.
Although this has only limited numerical merit, convergence of this procedure constitutes the
proof (originally due to James Glimm) that (3.13), subject to RH and entropy conditions, possesses
a (weak) solution. This is an example of an important use of ‘pseudo-numerical’ methods as a
device to prove existence of solutions of nonlinear PDEs.

The Engquist–Osher method. Suppose that f is a strictly convex function. Thus, there exists a
unique ū ∈ R s.t. f ′(ū) = 0 (sonic point, stagnation point). We assume that the initial condition is in
L2(R) and define the EO switches

f−(y) := f(min{y, ū}), f+(y) := f(max{y, ū}), y ∈ R.

The EO method is the semidiscretization

u′m = − 1

∆x
(∆+f−(um) + ∆−f+(um)) , m ∈ Z.

Stability. We use the energy method. Set

B1 := −
∞
∑

m=−∞
um∆+f−(um), B2 := −

∞
∑

m=−∞
um∆−f+(um).

Thus,

‖u‖2 = (∆x)
∞
∑

m=−∞
u2
m ⇒ 1

2

d

dt
‖u‖2 = B1 +B2. (3.14)

Integrating by parts,

∞
∑

m=−∞

∫ um+1

um

yf ′−(y) dy =

∞
∑

m=−∞

{

um+1f−(um+1) − umf−(um) −
∫ um+1

um

f−(y) dy

}

.

Telescoping series and exploiting limm→∞ u±m = 0 (a consequence of the initial condition being
L2), we obtain

∞
∑

m=−∞

∫ um+1

um

yf ′−(y) dy = lim
m,k→∞

{

umf−(um) − u−kf−(u−k) −
∫ um

u−k

f−(y) dy

}

= 0.

Therefore,

B1 = −
∞
∑

m=−∞
um

∫ um+1

um

f ′−(y) dy =
∞
∑

m=−∞

∫ um+1

um

(y − um)f ′−(y) dy :=
∞
∑

m=−∞
Im.

But

um+1 ≥ um ⇒ (y − um) ≥ 0, f ′−(y) ≤ 0, um ≤ y ≤ um+1 ⇒ Im ≤ 0
um+1 ≤ um ⇒ (y − um) ≤ 0, f ′−(y) ≤ 0, um+1 ≤ y ≤ um ⇒ Im ≤ 0

}

⇒ B1 ≤ 0.

Similarly, it follows that B2 ≤ 0 and (3.14) implies that ‖u‖ is monotonically nonincreasing –
hence stability.
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3.6 Additional PDE problems and themes

Finite difference are the simplest means to solve PDEs but numerous other approaches are avail-
able. Thus, we can single out

• Finite elements: The theme of the next section: the equation is formulated either as a varia-
tional problem or in a weak form. In the first case we seek to minimize a functional J(u), say,
amongst all u in an appropriate function space H, in the latter case we replace L(u) = f by
the more general 〈L(u) − f, v〉 = 0 ∀v ∈ H, where 〈 · , · 〉 is an inner product. The problem is
solved by replacing H with an appropriate finite-dimensional subspace, which is spanned by
functions with small local support (‘finite elements’).

Finite elements lend themselves very well to complicated geometries and exotic boundary
conditions.

• Spectral methods: Remember the method of separation of variables from basic PDE courses?
A spectral method is, basically, an attempt to turn separation of variables into a numerical
method. This leads to very effective methods for periodic boundary conditions in very
simple geometries: typically we need to invert full M ×M matrices, but the error decays
at ‘spectral’ speed, as e−αM for some α > 0. (For finite difference and finite elements it
typically decays as 1/Mq for some q > 0.) The method is far less potent for exotic geometries
or nonperiodic boundary conditions.

• Boundary-integral methods: Often, a PDE in a domain D can be replaced by an integral
equation defined on ∂D. Such an integral equation can be solved, e.g. by collocation meth-
ods. Although this is quite complicated and typically requires the inversion of linear sys-
tems with dense matrices, the redeeming feature of this approach is that the dimension of ∂D
is one less than the dimension of D.

• Fast multipole methods: The solution of a Poisson equation can be approximated by assum-
ing that the potential is generated by a finite number of particles. Subsequently, far-field and
near-field potentials are approximated differently, in a manner which lends itself to very fast
nested computation.

• Multiresolution methods: The solution of a PDE is approximated by functions (in particu-
lar, by wavelets) that automatically ‘zoom’ on parts of the solution where the action takes
place and provide higher resolution there.

The list goes on and on: boundary-element methods, pseudospectral methods, finite-volume
methods, particle methods, vorticity methods, gas-lattice methods, meshless methods. . . .

The choice of a method is just the beginning of a long procedure. Typically, it is a worthwhile idea
to use adaptive grids or domain decomposition. The whole procedure also hinges upon our algorithm
to solve the underlying algebraic system (cf. Section 5) and it typically takes place within parallel
computer architecture.

Exercises

3.1 Determine the order of magnitude of the error of the finite-difference approximation to ∂2u/∂x∂y
which is given by the computational stencil
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3.2 The biharmonic operator L = ∇4 is approximated by the thirteen-point finite-difference stencil
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1. Write down explicitly the underlying linear system for the values uk,l.

2. What is the order of the approximation?

3. Discuss briefly the nature of boundary conditions that we can expect in the present case. Suggest
amendments to the stencil at grid points near the boundary, to cater for these conditions.

3.3 A finite-difference operator L∆ is defined by the stencil
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1. Prove that

L∆ = ∇2
(

I +
1

10
(∆x)2∇2 +

1

180
(∆x)4∇4

)

+ O
(

(∆x)6
)

.

2. Find a finite-difference operator M∆ such that the Mehrstellenverfahren

L∆Uk,l + M∆Fk,l = 0

is an O
(

(∆x)6
)

approximation to ∇2u+ f = 0.

3.4 The diffusion equation ut = uxx is being approximated by the FD method

(

1

12
− 1

2
µ
)

un+1
m−1 +

(

5

6
+ µ
)

un+1
m +

(

1

12
− 1

2
µ
)

un+1
m+1

=
(

1

12
+

1

2
µ
)

un
m−1 +

(

5

6
− µ
)

un
m +

(

1

12
+

1

2
µ
)

un
m+1,

where µ is the Courant number (the Crandall method, a.k.a. the Morris & Gourlay method).

1. Prove that the method is of order 5 (in ∆x).

2. Prove that the method is stable for the Cauchy problem by two alternative approaches: (i) Eigen-
value analysis; (ii) Fourier analysis.

3.5 Determine order and stability of the finite-difference implicit FD scheme
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1
12

(1−µ)(2−µ)

1
12

(1+µ)(2+µ)

1
6
(4−µ2)

1
6
(4−µ2)

1
12

(1+µ)(2+µ)

1
12

(1−µ)(2−µ)

for the solution of the advection equation ut = ux.

3.6 Ditto for the SD scheme
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3.7 The semi-discretization

u′
m =

1

∆x

(

−3

2
um + 2um+1 −

1

2
um+2

)

, m = 1, 2, . . . ,M − 2, ∆x =
1

M
,

u′
M−1 =

1

∆x

(

−3

2
uM−1 + 2uM − 1

2
u1

)

,

u′
M =

1

∆x

(

−3

2
uM + 2u1 −

1

2
u2

)

approximates the solution of the advection equation ut = ux, given with initial conditions u(x, 0) =
ψ(x), 0 ≤ x ≤ 1, and periodic boundary conditions u(0, t) = u(1, t), t ≥ 0. Prove that the method
is stable. [Hint: You might formulate the problem in a matrix form, u′ = 1

∆x
Au, say, and show that all

eigenvectors of A are of the form [1, ωl, . . . , ω
M−1
l ]⊤ for some complex numbers {ωl : l = 1, 2, . . . ,M}.]

3.8 The parabolic equation
∂

∂t
u =

∂2

∂x2
u+ κu

is given for 0 ≤ x ≤ 1, t ≥ 0, together with an initial condition at t = 0 and zero boundary conditions
at x = 0 and x = 1.

1. Prove (by separation of variables or otherwise) that the exact solution of the equation tends to
zero as t→ ∞ for every initial condition if and only if κ < π2.

2. The equation is semidiscretized into

u′
m =

1

(∆x)2
(um−1 − 2um + um+1) + κum, m = 1, 2, . . . ,M,

where (M + 1)∆x = 1. Find the necessary and sufficient condition on κ that ensures that
limt→∞ um(t) = 0, m = 1, 2, . . . ,M , for all possible initial conditions.

3.9 An FD approximation
s
∑

k=−r

αk(µ)un+1
m+k =

s
∑

k=−r

βk(µ)un
m+k

to ut = ux is given. We assume the analyticity (as a function of µ) of all the coefficients as µ→ 0. Set

H(z;µ) :=

∑s

k=−r
βk(µ)zk

∑s

k=−r
αk(µ)zk

.

We further assume that H(z, 0) ≡ 1 and define

h(z) :=
∂

∂µ
H(z;µ)

µ=0

.

1. Show that h is a rational function,

h(z) =

∑s

k=−r
bkz

k

∑s

k=−r
akzk

,

say.
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2. Given that the FD method is of order p, prove that the SD method

s
∑

k=−r

aku
′
m+k(t) =

1

∆x

s
∑

k=−r

bkum+k(t)

is of order p∗ ≥ p.

3. Prove that, subject to stability of the FD scheme as µ→ 0, the SD method is stable.

3.10 The differential equation

ut = a(x)ux, −∞ < x <∞, t > 0,

u(x, 0) = φ(x), −∞ < x <∞

(the Cauchy problem for the advection equation with a variable coefficient) is solved by the SD method

u′
m =

am

2∆x
(um+1 − um−1), m ∈ Z,

where am = a(m∆x), m ∈ Z. We assume that 0 < C1 < C2 exist such that

C1 ≤ a(x) ≤ C2, x ∈ R.

1. Prove that the scheme for ut = a(x)ux is a second-order method.

2. Set v(x, t) := u(x, t)/
√

a(x) and v := A− 1
2 u, where A is the bi-infinite diagonal matrix whose

(l, l) component is al and u is the vector of the um’s.

Find a differential equation that is satisfied by v and show that the vector v is a second-order
finite-difference SD approximation to the solution of that equation.

3. By considering the difference equation that is obeyed by Ṽ , prove that the method (for Ũ ) is
stable. Hint:

(a) Prove that the matrix B in the SD system v′ = Bv is self-adjoint.

(b) Apply the Lax equivalence theorem twice, once in each direction.

3.11 Find a stable second-order semidiscretization of the Cauchy problem for the diffusion equation with
a variable coefficient,

∂u

∂t
=

∂

∂x

(

a(x)
∂u

∂x

)

.

The coefficient a is assumed to be uniformly bounded and uniformly positive for all x ∈ R.

3.12 The advection equation ut = ux is semidiscretized by

u′
m = 1

∆x

s
∑

k=−r

αkum+k,

where

αk =
(−1)k−1

k

r!s!

(r + k)!(s− k)!
, k = −r, . . . , s, k 6= 0,

α0 =

s
∑

j=−r
j 6=0

(−1)j

j

r!s!

(r + j)!(s− j)!

Prove that the method is of order r+ s and that any other method (with the same r and s) is of smaller
order.
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3.13 Let r = s in the last question and evaluate the limit of αk as r → ∞. You may use (without proof) the
Stirling formula

m! ≈
√

2πm
(

m

e

)m

, m≫ 1.

Consider the following situation: the equation ut = ux is given in [0, 1] with periodic boundary condi-
tions. Semidiscretize

u′
m = 1

∆x

∑

k∈Z

αkum+k,

where the αks are the aforementioned limits and we identify um+k with its ‘wrap-around’ grid point
in [0, 1]. Prove that this gives an infinite-order method. (This algorithm, due to Fornberg, is an example
of a pseudospectral method.)
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4 Finite elements

4.1 Guiding principles

It is convenient to single out five main ideas behid the finite element method (FEM):

1. Formulate a differential equation as a variational problem, e.g. by seeking a function that
minimizes a nonlinear functional;

2. Reduce differentiability requirements in the above functional, using integration by parts;

3. Take appropriate care with boundary conditions while converting a differential to a varia-
tional problem and distinguish between essential and natural conditions;

4. Replace the underlying problem by an approximate one, restricted to a finite-dimensional
space;

5. Choose a finite-dimensional space which is spanned by functions with a small support (finite
element functions).

4.2 Variational formulation

Euler–Lagrange equations. Many differential equations start their life as variational problems:
find a function u such that I(u) = minv∈H I(v). Here H is a function space, defined in terms of
differentiability and boundary conditions, whereas I is a functional. Examples:

1. I(u) =
∫ b

a
F (x, u, ux) dx⇒ ∂F

∂u − d
dx

∂F
∂ux

= 0;
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2. I(u, v) =
∫ b

a
F (x, u, v, ux, vx) dx⇒











∂F
∂u − d

dx
∂F
∂ux

= 0,

∂F
∂v − d

dx
∂F
∂vx

= 0.

;

3. I(u) =
∫

D F (x, y, u, ux, uy) dxdy ⇒ ∂F
∂u − ∂

∂x
∂F
∂ux

− ∂
∂y

∂F
∂uy

= 0;

4. I(u) =
∫ b

a
F (x, u, ux, uxx) dx⇒ ∂F

∂u − d
dx

∂F
∂ux

+ d2

dx2
∂F
∂uxx

= 0.

It is perhaps worthwhile to recall that variational problems are the origin to many – if not most –
differential equations of physical significance.

The Ritz method. We reverse the reasoning behind the Euler–Lagrange equations, replacing a
DE by a variational principle. E.g., −(pu′)′ + qu = f , where p > 0, q ≥ 0 and initial conditions

are given at {0, 1}, is replaced by the problem of minimizing I(u) =
∫ 1

0
(p(x)u′2(x) + q(x)u2(x) −

2f(x)u(x)) dx. We seek the solution of the latter by letting u(x) ≈ ϕ0(x)+
∑M
m=1 amϕm(x), where

a0ϕ0 caters for the boundary conditions, and minimizing I w.r.t. am, m = 1, . . . ,M . Let

I(a) =

∫ 1

0







p(x)

(

M
∑

m=0

amϕ
′
m(x)

)2

+ q(x)

(

M
∑

m=0

amϕm(x)

)2

− 2f(x)

M
∑

m=0

amϕm(x)







dx.

At the minimum

1
2

∂I(a)

∂ak
=

M
∑

m=0

am

∫ 1

0

{pϕ′
mϕ

′
k + qϕmϕk} dx−

∫ 1

0

fϕk dx = 0, m = 1, . . . ,M. (4.1)

This is a set of M linear equations in a1, . . . , am.

Weak solutions and function spaces. Let 〈 · , · 〉 be an inner product (e.g. the standard L2 inner

product 〈f, g〉 :=
∫ b

a
f(x)g(x) dx). The weak solution of Lu = f in the function space H is the

function (to be precise, an equivalence class of functions) u s.t. 〈Lu − f, v〉 = 0 for every v ∈ H .
Weak and classical solution coincide when the latter exists, but weak solutions are more general,
because, allowing integration by parts, they impose lesser differentiability requirements. The
underlying space H is made out of the closure of all functions f and g for which 〈Lf, g〉 makes
sense after integration by parts. This helps to highlight why weak solutions are more general than

classical ones – they require less differentiability! For example, for L = d2

dx2 we require the closure
of once-differentiable functions. Spaces like this are called Sobolev spaces and they form an important
special case of Hilbert spaces.

The Ritz method – again. . . L is said to be self–adjoint if 〈Lu, v〉 = 〈u,Lv〉 ∀u, v,∈ H, elliptic if
〈Lv, v〉 > 0 ∀v ∈ H \ {0} and positive definite if it is both self-adjoint and elliptic.

Theorem 25 If L is positive definite then

(a) Lu = f is the Euler–Lagrange equation of I(v) = 〈Lv, v〉 − 2〈f, v〉;

(b) The weak solution of Lu = f is the unique minimum of I (and hence the weak solution is unique!).

Proof Suppose that u is a (local) minimum of I and choose v ∈ H s.t. u + εv obeys boundary
conditions. (Actually, we need only to stipulate that essential b.c.’s are obeyed – read on.) For
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example, for Dirichlet b.c. we require that v obeys zero b.c. Note that every ‘candidate’ for solution
can be expressed in this form. For small |ε| > 0

I(u) ≤ I(u+ εv) = 〈L(u+ εv), u+ εv〉 − 2〈f, u+ εv〉 (optimality of u)

= {Lu, u〉 − 2〈f, u〉} + ε{〈Lv, u〉 + 〈Lu, v〉 − 2〈f, v〉} + ε2〈Lv, v〉 (linearity)

= I(u) + 2ε〈Lu− f, v〉 + ε2〈Lv, v〉. (self-adjointness and linearity)

Suppose that ∃v s.t. 〈Lu − f, v〉 6= 0. Then we can always choose 0 < |ε| ≪ 1 such that ε〈Lu −
f, v〉 + ε2〈Lv, v〉 < 0, hence contradiction. It follows that 〈Lu− f, v〉 = 0 for all suitable v and u is
a weak solution.

Suppose that another, distinct, weak solution, w, say, exists. Then, along the lines of aforemen-
tioned analysis and by ellipticity, letting εv = w − u,

I(w) = I(u+ (w − u)) = I(u) + 2〈Lu− f, w − u〉 + 〈L(w − u), w − u〉
= I(u) + 〈L(w − u), w − u〉 > I(u)

and, likewise, I(u) < I(w), and this is a contradiction. 2

Example Let L = − d
dx

(

p(x) d
dx

)

+ q(x), where p > 0, q ≥ 0, x ∈ [0, 1], and p ∈ C1, with zero b.c.
We employ the standard L2 inner product. Since

〈Lu, v〉 =

∫ 1

0

{−(p(x)u′(x))′ + q(x)u(x)}v(x) dx

=

∫ 1

0

u(x){−(p(x)v′(x))′ + q(x)v(x)}dx = 〈u,Lv〉,

L is self-adjoint. It is elliptic, since

〈Lv, v〉 =

∫ 1

0

{p(x)v′2(x) + q(x)v2(x)}dx > 0, v 6= 0.

Consequently, I(v) =
∫ 1

0
(pv′2 + qv2 − 2fv) dx, as before.

Boundary conditions. There is a major discrepancy between DEs and variational problems – DEs
require a full complement of boundary conditions, whereas variational problems can survive with
less. Thus, in the last example, the DE b.c. u(0) = α, u(1) = β translate intact, whereas u(0) = α,
u′(1) = 0 translate into the variational b.c. u(0) = α – in general, natural b.c. are discarded and only
essential b.c. survive. The story is more complicated for more general b.c.’s. Thus, for example,

the two-point ODE ∂F
∂u − d

dx
∂F
∂ux

= 0 with the b.c. ∂F
∂ux

+ ∂ga

∂u = 0 (for x = a) and ∂F
∂ux

+ ∂gb

∂u = 0 (at
x = b), where ga and gb are given functions of x and u, corresponds to the functional

I(u) =

∫ b

a

F (x, u, ux) dx+ gb(x, u)
x=b

− ga(x, u)
x=a

.

The Galerkin method. It consists of seeking a weak solution in a finite-dimensional space HM ⊂
H , without an intermediate stage of Euler–Lagrange equations. If the space is spanned by the
functions ϕ1, . . . , ϕM , this gives for −(pu′)′ + qu = f exactly the same linear equations as (4.1).

The error in Galerkin’s method. Suppose 0 b.c., L linear, and let a(u, v) := 〈Lu, v〉. Thus, a is a
bilinear form. We say that a is coercive if a(v, v) ≥ γ‖v‖2 ∀v ∈ H and bounded if |a(v, w)| ≤ α‖v‖·‖w‖
∀v, w ∈ H , where α, γ > 0. Note that the Galerkin equations are a(u, v) = 〈f, v〉, v ∈ HM .
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Theorem 26 (The Lax–Milgram theorem) Suppose that L is linear, coercive and bounded. Then there
exists a unique uM ∈ HM s.t. a(uM , v) = (f, v) ∀v ∈ HM . In particular, letting M → ∞, the DE itself
possesses a unique weak solution in H . Furthermore, the error of the Galerkin method obeys

‖uM − u‖ ≤ α

γ
inf
v∈HM

‖v − u‖.

Consequently, the error in the solution can be bounded by the error of projecting H functions into
HM .
Note, incidentally, that (like Theorem 24), the last theorem is about analytic and numerical solu-
tions alike!

4.3 Finite element functions

The main idea in the FE method is to choose HM = Span {ϕ1, . . . , ϕM} as a linear combination
of functions with small local support, since then the coupling between equations is weak, hence
the linear (or, in general, nonlinear) algebraic systems that we need to solve are sparse. In other
words, we partition the underlaying space into ‘elements’ E1 . . . , EN such that only few functions
in {ϕ1, . . . , ϕM} are nonzero in each El, l = 1, . . . , N .

With a great deal of handwaving. . . Suppose that the highest derivative present (in the varia-
tional functional I or the Galerkin functional a) is s ≥ 1. Note that we use integration by parts to
depress s as much as possible: s = 1 for Poisson, s = 2 for the biharmonic equation etc. We are

using a basis of ‘similar’ functions Φ(M) := {ϕ(M)
1 , . . . , ϕ

(M)
M } (e.g., each such function is a linear

translate of the same ‘master function’). Denoting by hM the diameter of the maximal element in
the underlying partition, we assume that limM→∞ hM = 0. We say that Φ(M) is of accuracy p if,
inside each element, we can represent an arbitrary pth degree polynomial as a linear combina-

tion of elements of Φ(M). Moreover, we say that Φ(M) is of smoothness q if each ϕ
(M)
k is smoothly

differentiable (q − 1) times and the qth derivative exists in the sense of distributions (i.e., almost
everywhere). For example, translates of the chapeau function (a.k.a. the hat function)

ψ(x) =

{

1 − |x| : |x| ≤ 1,
0 : |x| ≥ 1 �

�
�@

@
@

are of both accuracy and smoothness 1. It is possible to prove for elliptic problems that, for
p = q ≥ s,

‖uM − u‖ ≤ chp+1−s
M ‖u(p+1)‖.

Hence convergence.

Larger p = q can be obtained by using pth degree B-splines. Splines are Cp−1 functions that reduce
to a degree-p polynomial inside each element, and B-splines form a basis of splines with the least-
possible support – each spline lives in just p+ 1 elements.

p = 1 gives the chapeau functions, whereas p = 2 requires translates of

ψ(x) =















1
6x

2 : 0 ≤ x ≤ 1,
− 1

6 (2x2 − 6x+ 3) : 1 ≤ x ≤ 2,
1
6 (x2 − 6x+ 9) : 2 ≤ x ≤ 3,
0 : otherwise.

Finite elements in 2D. It is convenient to define 2D piecewise-polynomial elements in terms of
interpolation conditions.
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Triangular finite elements are convenient for complicated boundaries. Consider first piecewise-
linears with interpolation conditions at •. These are the pyramid functions.

t t

t

�
�
�
�
�

A
A

A
A

A Inside each element the function is ϕ(x, y) = α + βx + γy for some α, β, γ ∈ R.
Thus, p = 1. To prove that also q = 1, we require continuity along the edges.
This is trivial: along each edge, ϕ is a linear function in a single variable. hence,
it is determined uniquely by the interpolation conditions

along that edge, conditions that are shared by both elements that adjoin it!
Higher values of p can be obtained with piecewise-quadratics and piecewise-cubics by specifying
the interpolation conditions

t t

t

t
t t

�
�
�
�
�

A
A

A
A

A

and t t

t

t t
t

t
t

t
t

�
�
�
�
�

A
A

A
A

A

with p = 2 and p = 3 respectively.
However, q = 1 for both. To in-
crease q, we may use instead tg tg

tg
t

�
�
�
�
�

A
A

A
A

A

,

where tg means that we are interpolating (with piecewise-cubics) both to a function value u and
to ux and uy . The required smoothness follows by Hermite interpolation (to a function and its
directional derivative, a linear combination of ux and uy).
Quadrilateral elements are best dealt with in the case of rectangles, employing bipolynomial func-
tions ϕ(x, y) = ϕ1(x)ϕ2(y). It is easy to verify now that their values along each edge are

independent of their values elsewhere, hence au-
tomatically q ≥ 1, provided that we have at least
two interpolation conditions along each edge. A
typical example is the pagoda function t t

t t

4.4 Initial value problems

Example: ut = uxx, 0 b.c. Let uM (x, t) =
∑M
m=1 ak(t)ϕk(x), where each ϕk is a translate of the

chapeau function, supported on
(

k−1
M+1 ,

k+1
M+1

)

. Requiring

〈

∂uM
∂t

− ∂2uM
∂x2

, ϕl

〉

= 0, l = 1, 2, . . . ,M,

gives the semidiscretized ODE system

1
6a

′
m−1 + 2

3a
′
m + 1

6a
′
m+1 =

1

(∆x)2
(am−1 − 2am + am+1), m = 1, . . . ,M, ∆x :=

1

M + 1
.

Of course, as soon as we are solving initial value problems, stability considerations apply to FEM
just as they do to finite differences.

Exercises

4.1 Find a variational problem with the Euler–Lagrange equation

uxx + uyy = eu, (x, y) ∈ D,

where D is a given, simply-connected, two-dimensional domain (the radiation equation).
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4.2 Prove that the biharmonic operator L = ∇4, acting in a simply-connected two-dimensional domain D,
with zero boundary conditions (on functions and derivatives) imposed along ∂D, is positive-definite.

4.3 The solution of the equation −u′′(x) + f(x) = 0, x ∈ [0, 1], with zero boundary conditions, is approxi-
mated by un(x) =

∑n

k=1
akφk(x), where the φk’s are hat functions. Prove from basic assumptions that

the error can be bounded by |u(x) − un(x)| ≤ C
n+1

, where C is a constant. Deduce convergence.

4.4 The two-point boundary-value problem

− d

dx

(

p(x)
du(x)

dx

)

+ q(x)u(x) = 0, x ∈ [0, 1],

where p(x) > 0, q(x) ≥ 0 and p is differentiable in [0, 1], is solved by the Ritz method with hat
functions. Derive the linear algebraic system of equations (having discretised underlying integrals)
for the following cases: (a) zero boundary conditions; (b) u(0) = a, u(1) = b; and (c) u(0) = a,
u′(1) = 0.

4.5 The Poisson equation in two variables with zero boundary conditions is solved in the unit square by
the Ritz method. Given that pyramid functions form the finite-element basis, obtain the explicit form
of the algebraic equations.

4.6 1. The diffusion equation ut = uxx with Dirichlet initial conditions and zero boundary conditions
in the strip 0 ≤ x ≤ 1, t ≥ 0, is solved in the following manner: we approximate u(x, t) by
U(x, t) :=

∑n

j=1
aj(t)φj(x), where each φj ’s is the hat function with support in ( j−1

n
, j+1

n
), and

use the Galerkin method to derive a system of ordinary differential equations for the functions
a1, . . . , an. Prove that this system is of the form

1
6
a′j−1 + 2

3
a′j + 1

6
a′j+1 = n2 (aj−1 − 2aj + aj+1) , j = 1, 2, . . . , n.

2. The above equations are similar to semi-discretised finite differences and they admit similar
concepts of stability. Thus, rewriting them as Aa′ = Ba, prove that, for all initial conditions
a(0), it is true that limt→∞ ‖a(t)‖ = 0.

4.7 Show that the two-dimensional cubic polynomial has ten terms, to match the ten nodes in the triangle
below. Prove that there is continuity across the edges and show the underlying orders of smoothness
and accuracy.

�
�
�
�
�
�
�

A
A

A
A

A
A

A

r r r r
r

r
r

r
rr

4.8 The square

r r r
r
r r r

r

has 8 interpolation points, rather than the usual 9 interpolation points for a bi-quadratic element.
Therefore we remove the x2y2 term and keep b1 + b2x + b3y + b4x

2 + b5xy + b6y
2 + b7x

2y + b8xy
2.

Find the function that equals 1 at x = y = 0 and vanishes at all other interpolation points.

4.9 We consider the interpolation pattern
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�
�
�
�
�
�
�

A
A

A
A

A
A

A

r r

r

r
d d

d

where, as usual, s denotes interpolation to the function value, whereas rd stands for interpolation to
the function value and its first derivatives. Show that a cubic has the right number of coefficients to fit
this pattern and derive orders of smoothness and accuracy of the underlying finite element functions.

4.10 Form (by specifying interpolation points) a piecewise-linear basis of tetrahedral finite elements in R
3.

Derive its smoothness and accuracy orders.
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5 Solution of sparse algebraic systems

5.1 Fast Poisson solvers

The Hockney method. We solve ∇2u = f with the 5-point formula in a rectangle. Hence Au = b,
where

A=













A I 0
I A I

. . .
. . .

. . .

0 I A













, u=















u1

u2

...
uN−1

uN















, b=















b1

b2

...
bN−1

bN















, A=













−4 1 0
1 −4 1

. . .
. . .

. . .

0 1 −4













,

the matrix A being M ×M . Let A = QDQ, where Qk,l =
√

2
M+1 sin klπ

M+1 , D is diagonal, Dk,k =

−4 + 2 cos 2kπ
M+1 . Set vk := Quk, ck = Qbk, k = 1, . . . , N . This yields













D I 0
I D I

. . .
. . .

. . .

0 I D













v = c. (5.1)

Recall that u and b (and hence v and c) have been obtained by ordering the grid by columns. We
now reorder it by rows, and this permutation yields ṽ and c̃ respectively. After the rearrangement
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(5.1) becomes











Γ1 O
O Γ2 O

. . .
. . .

. . .

O ΓM











ṽ = c, where Γl =













Dl,l 1 0
1 Dl,l 1

. . .
. . .

. . .

0 1 Dl,l













N×N

, k = 1, . . . ,M.

Hence we decouple the system into M tridiagonal subsystems Γlṽl = c̃l.
The computational cost of this algorithm:

• Forming the products ck = Qbk, k = 1, . . . , N O
(

M2N
)

;
• Solving M tridiagonal N ×N systems Γlṽl = c̃l, l = 1, . . . ,M O(MN);
• Forming the products uk = Qvk, k = 1, . . . , N O

(

M2N
)

.

Rearrangements are virtually cost-free, since in reality we store variables in a 2D array anyway.
The ’bottleneck’ are the 2N matrix/vector products.

Fast Fourier transform. The matrix/vector products are of the form

N
∑

l=1

xl sin
klπ

N + 1
= Im

N
∑

l=0

xl exp
iklπ

N + 1
, k = 1, . . . , N,

and these can be performed efficiently by the FFT.
Let Πn be the n-dimensional space of all bi-infinite complex sequences of period n, i.e. x =
{xk}∞k=−∞, xk+n = xk ∀k ∈ Z. Set ωn := exp 2πi

n , a root of unity of degree n. The discrete Fourier
transform (DFT) is a Πn → Πn bijection Fn defined by

Fnx = y, yk =
1

n

n−1
∑

l=0

ω−kl
n xl, k ∈ Z.

It is easy to verify that y ∈ Πn and that the inverse mapping is

F−1
n y = x, xl =

n−1
∑

k=0

ωkln yk, l ∈ Z.

On the face of it, DFT (or its inverse) require O
(

n2
)

operations. However, by using the fast Fourier
transform (FFT) it is possible to reduce this to O(n log2 n) in the special case when n = 2L for any
L ∈ Z+.

Thus, let n = 2L, F̃n := nFn and

x(E) := {x2j}j∈Z, x(O) := {x2j+1}j∈Z, ỹ(E) := F̃n/2x(E), ỹ(O) := F̃n/2x(O).

Hence, letting ỹ = F̃nx, ωn = 1 yields

ỹk =
2L−1
∑

j=0

ω−kj
2L xj =

2L−1−1
∑

j=0

ω−2kj
2L x2j +

2L−1−1
∑

j=0

ω
−(2j+1)k

2L x2j+1

=

2L−1−1
∑

j=0

ω−kj
2L−1x

(E)
j + ω−k

2L

2L−1−1
∑

j=0

ω−kj
2L−1x

(O)
j = ỹ

(E)
k + ω−k

2L ỹ
(O)
k , k = 0, 1, . . . , n− 1.
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Provided that ỹ(E) and ỹ(O) are known, it costs just n products to evaluate ỹ. This can be further
reduced by a factor of two by noticing that, for k ≤ n/2 − 1 = 2L−1 − 1,

ỹk+2L−1 = ỹ
(E)
k − ω−k

2L ỹ
(O)
k .

Hence the product ω−k
2L ỹ

(O)
k need be performed only for k ≤ n/2 − 1.

The algorithm is now clear: starting from F̃1, we assemble vectors by synthesising even and odd
parts and doubling the length. There are L such stages and in each we have 1

2n products, hence
in toto 1

2nL = 1
2n log2 n products.

Suppose that Hockney’s method (with FFT) for 127 × 127 grid takes 1 sec. Then, comparing
the number of operations, ‘naive’ (nonsparse) Gaussian elimination takes 30 days, 10 hours, 3
minutes and 10 sec.

Cyclic Odd-Even Reduction and Factorization (CORF). We wish to solve a block-TST system

Tuj−1 + Suj + Tuj+1 = bj , j = 1, 2, . . . , N, (5.2)

where u0 = uN+1 ≡ 0. Multiply

Tuj−2 + Suj−1 + Tuj = bj−1 by T,

Tuj−1 + Suj + Tuj+1 = bj by −S,
Tuj + Suj+1 + Tuj+2 = bj+1 by T

and add the lot. This yields for m = 1, 2, . . . ,
[

N
2

]

T 2u2(m−1) + (2T 2 − S2)u2m + T 2u2(m+1) = T (b2m−1 + b2m+1) − Sb2m. (5.3)

Note that (5.3), which is also a block-TST system, has half the equations of (5.2). Moreover, sup-
pose that we know the solution of (5.3). Then we can fill-in the gaps in the solution of (5.2) by
computing Su2m+1 = b2m+1 − T (u2m + u2m+2).
Provided that N = 2L+1, L ∈ Z+, we can continue this procedure. Thus, letting S(0) := S,

T (0) := T , b
(0)
j := bj , j = 1, . . . , N , we have for all r = 0, 1, . . . , L,

S(r+1) = 2
(

T (r)
)2

−
(

S(r)
)2

, T (r+1) =
(

T (r)
)2

, (5.4)

and b
(r+1)
j = T (r)

(

b
(r)
j−2r + b

(r)
j+2r

)

− S(r)b
(r)
j . Half of equations are eliminated by each stage, and

they can be recovered by solving

S(r−1)uj2r−2r−1 = b
(r−1)
j2r−2r−1 − T (r−1)

(

uj2r + u(j−1)2r

)

, j = 1, . . . , 2L−r. (5.5)

This is the method of cyclic reduction.

Suppose that S and T are themselves tridiagonal and that they commute. Then S(1) is quindiago-
nal, S(2) has 9 diagonals etc. In general, this causes not just fill-in but, far worse, ill-conditioning.
It is easy to prove inductively that S(r) is a polynomial of degree 2r in S and T ,

S(r) =

2r−1
∑

j=0

c2jS
2jT 2r−2j := Pr(S, T ).

According to (5.4), T (r) = T 2r

and

Pr+1(s, t) = 2t2
r+1 − (Pr(s, t))

2
.
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Thus, letting cos θ := − 1
2
s
t , we obtain by induction that Pr(s, t) = −(2t)2

r

cos 2rθ and we can
factorize

Pr(s, t) = −
2r

∏

j=1

(

s+ 2t cos
(2j − 1)π

2r+1

)

,

hence

S(r) =

2r

∏

j=1

(

S + 2T cos
(2j − 1)π

2r+1

)

. (5.6)

Using the factorization (5.6), we can solve (5.5) stably, as a sequence of tridiagonal systems.

Fast Poisson solver in a disc. Suppose that ∇2u = f is given in the unit disc x2 + y2 < 1,
with Dirichlet b.c. conditions u = g along the circle. We first translate from Cartesian to polar
coordinates. Thus v(r, θ) = u(r cos θ, r sin θ), φ(r, θ) = f(r cos θ, r sin θ) and

∂2

∂r2
v +

1

r

∂

∂r
v +

1

r2
∂2

∂θ2
v = φ, 0 < r < 1, −π ≤ θ ≤ π. (5.7)

The boundary conditions are

1. v(1, θ) = g(cos θ, sin θ), −π ≤ θ ≤ π, inherited from Cartesian coordinates;

2. v(r,−π) = v(r, π), 0 < r < 1;

3. ∂
∂θv(0, θ) ≡ 0, −π ≤ θ ≤ π (since the whole line r = 0 corresponds to a single value at the
centre of the disc).

We Fourier transform (5.7): letting

v̂k(r) :=
1

2π

∫ π

−π
e−ikθv(r, θ) dθ, k ∈ Z,

we obtain

v̂′′k +
1

r
v̂′k −

k2

r2
v̂k = φ̂k, k ∈ Z.

The b.c. are v̂k(1) = ĝk (that’s the obvious bit) and v̂k(0) = 0, k 6= 0, v̂′0(0) = 0. Each wavenumber
yields an uncoupled ODE equation with 2-point b.c. We solve it by central differences (which yield
tridiagonal algebraic systems). Provided that FFT is used to approximate the Fourier transforms
(the numerical error of such procedure decays exponentially with n), the total cost is O

(

n2 log2 n
)

,
where n is the number of Fourier modes and of points in the discretization of the two-point
boundary value problem.

Poisson’s equation in general 2D regions. Embedding R
2 in C, we use conformal maps, exploit-

ing the connection between solutions of the Laplace equation and analytic functions. In other
words, if we can solve Poisson in the unit disc and know (or can find) the conformal map from
the disc to our (simply connected) domain, we can synthetize the solution of ∇2u = f therein.
Rich theory of numerical conformal maps exists, using mainly integral equations and. . . FFT. A
recent alternative, relevant to other equations (e.g. the biharmonic equation) and to higher dimen-
sions, is to use a multipole method, whereby the source term is approximated by a finite number of
point sources, whose contribution (that is, ‘individual’ Green functions) is calculated by a clever
mixture of near-field and far-field expansions.
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5.2 Splitting of evolution operators

Although fast Poisson solvers can be made to cater for more general equations, and even applied
to evolutionary equations in ≥ 2 space dimensions, in the latter case a better approach is to use
dimensional splitting. Suppose, for simplicity, that ut = Lu, with 0 b.c. Here L is linear and acts
in (x, y). Semidiscretizing, we have u′ = (A + B)u, where A and B contain the ‘contribution’
of differentiation in x and y. Note that both A and B are banded (e.g. tridiagonal), up to known
permutation. Consequently, when approximating exp(αA)v and exp(αB)v by rational functions,
we obtain banded algebraic systems.

The solution is u(t) = exp(t(A+B))u(0). Suppose that A and B commute. Then exp t(A+B) =
exp tA × exp tB, hence un+1 can be derived from un very fast. But this is typically false if A and
B fail to commute. In that case we can approximate

1. et(A+B) ≈ etAetB (Beam & Warming’s splitting), first order.

2. et(A+B) ≈ e
1
2 tAetBe

1
2 tA (Strang’s splitting), second order.

3. et(A+B) ≈ 1
2etAetB + 1

2etBetA (parallel splitting), second order.

We say that a splitting is stable if all the coefficients (in front of the exponentials, A and B) are
nonnegative. No stable splittings of order ≥ 3 are possible for linear equations (theorem by
Sheng). An example of a third-order unstable splitting is

et(A+B) ≈ etAetB + e
1
2 tAe−

1
2 tBe−

1
2 tAe

1
2 tB − e

1
2 tBe−

1
2 tAe−

1
2 tBe

1
2 tA.

Inhomogeneous terms and nonzero boundary conditions can be accomodated by discretizing the
integral in the variation of constants formula

un+1 = e(∆t)(A+B)

{

un +

∫ ∆t

0

e−τ(A+B)f(tn + τ) dτ

}

with the trapezoidal rule, say. Similar approach can be extended even to nonlinear equations.

An alternative to dimensional splitting is the more usual operatorial splitting, whereby we partition
the multivariate evolution operator L into L1 + · · ·+Ls, where each Lj depends on just one space
variable. We then approximate Lu = f by the s one-dimensional problems Luj = fj . However,
unlike dimensional splitting, boundary conditions may become a problem.

The Yos̆ida device. Suppose that a numerical method is time symmetric: solving from t0 to t1, say,
and then from t1 back to t0 produces exactly the initial value. (For example, the implicit midpoint
method and, with greater generality, all Gauss–Legendre RK methods.) Such a method is always
of an even order p, say (can you prove it?). Denote the map corresponding to the method by Ψh

(where h is the step size), i.e. yn+1 = Ψh(yn). (Thus, time symmetry means that Ψ−h◦Ψh = Id.) In

that case, letting α = 1/(2−21/(p+1)) > 1, it is true that Ψαh◦Ψ(1−2α)h◦Ψαh is a map corresponding
to a method of order p+2. Moreover, this new method is also time symmetric, hence the procedure
can be repeated. In other words, we execute three steps to advance from tn to tn+1 = tn + h: a
step forward to t(n+α)h > tn+1, a step backward to t(n+1−α)h < tn and, finally, a step forward to
tn+1.

This procedure might destabilise a method when the underlying equation is itself unstable when
integrated backwards (stiff systems, parabolic PDEs), but it is very useful for conservative equa-
tions.
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5.3 Sparse Gaussian elimination

Cholesky factorization. A linear system Ax = b, A symmetric and positive definite, is solved by
Cholesky factorization, whereby we first find A = LL⊤, where L is lower triangular, and then solve
Ly = b and L⊤x = y. In principle, this is equivalent to symmetric Gaussian elimination, except
that we don’t need to recompute L in the ubiquitous problem of solving the sequence Ax[k+1] =

b[k], k ∈ Z+, with x[0] given and b[k] dependent on x[0], . . . ,x[k]. The latter occurs, for example, in
modified Newton–Raphson equations or when time-stepping an implicit discretization of a linear
PDE of evolution with constant coefficients.

If A is banded then both the factorization and the ‘backsolving’ cost O(n) operations for an n ×
n matrix, whereas the count for general dense matrices is O

(

n3
)

and O
(

n2
)

respectively. Our
problem: how to factorize a sparse matrix (not necessarily banded) whilst avoiding fill-in. We
say that the factorization is perfect if it avoids fill-in altogether. Thus, factorization of tridiagonal
systems is perfect.

Matrices and rooted trees. A graph is a collection G = {V,E} of vertices V = {1, 2, . . . , n} and edges
E ⊆ V 2. We express a sparsity pattern of a symmetric n× n matrix A by defining a corresponding
graph G, letting (i, j) ∈ E iff ai,j 6= 0. Examples:

(i) A =













× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×













⇒ ���������������
1 2 3 4 5

(ii) A =













× × × × ×
× × 0 0 0
× 0 × 0 0
× 0 0 × 0
× 0 0 0 ×













⇒ ���
������������

HHHH
A

A
�
�
����

1

2 3 4 5

(iii) A =













× × 0 0 ×
× × × 0 0
0 × × × 0
0 0 × × ×
× 0 0 × ×













⇒ ���
��� ���

���

���
�
��

L
LL

HHH
���

1 2

3

4

5

We say that G is a tree if each two distinct vertices are linked by exactly one path. Given r ∈ V ,
(r,G) is a rooted tree and r is the root. Rooted trees admit partial ordering: Let j ∈ V \ {r} and let
{(r, i1), (i1, i2), . . . , (is, j)} be the path joining r and j. We say that j is the descendant of r, i1, . . . , is
and that r, i1, . . . , is are the ancestors of j. The rooted tree is monotonically ordered if each vertex is
numbered before all its ancestors.

Theorem 27 (Parter) Let A = LL⊤ be a positive definite n× n matrix with a graph that is a monotoni-
cally ordered rooted tree. Then lk,j = ak,j/lj,j , j + 1 ≤ k ≤ n, 1 ≤ j ≤ n− 1. Thus ak,j = 0 ⇒ lk,j = 0
and the matrix admits perfect factorization.

Proof By induction. The statement is true for j = 1, since always lk,1 = ak,1/l1,1. Suppose that
the theorem is true for 1 ≤ j ≤ q− 1. Because of monotone ordering, for every 1 ≤ i ≤ n− 1 there
exists a unique ki, i+ 1 ≤ ki ≤ n, s.t. (i, ki) ∈ E. By the induction assumption, lk,i and ak,i share



Part III: Numerical Solution of Differential Equations 56

the same sparsity structure ∀1 ≤ i ≤ q − 1, i+ 1 ≤ k ≤ n. But

lk,q =
1

lq,q

(

ak,q −
q−1
∑

i=1

lk,ilq,i

)

.

Since, for all q + 1 ≤ k ≤ n,
lk,i 6= 0 for some 1 ≤ i ≤ q − 1 ⇒ (i, k) ∈ E ⇒ (i, q) 6∈ E ⇒ lq,i = 0,
lq,i 6= 0 for some 1 ≤ i ≤ q − 1 ⇒ (i, q) ∈ E ⇒ (i, k) 6∈ E ⇒ lk,i = 0,

it follows that lk,q = ak,q/lq,q and the theorem is true. 2

Unless we can factorize perfectly, good startegies are (i) factorize with small fill-in; or (ii) block-
factorize ‘perfectly’.

Arranging a matrix im a narrow band. A typical approach of this kind is the Cuthill–McKee
algorithm, which aims to order a sparse matrix so that nonzero entries are confined to a narrow
band – needless to say, entries outside the band will not be filled in. Let βk(A) := k − min{l :
ak,l 6= 0}, k = 1, . . . , n. The bandwidth of A is β(A) := maxk=1,...,n βk(A) and we aim to decrease it
by relabelling elements of V .

Let us suppose that G is connected, i.e. that each two distinct vertices k, l ∈ V are linked by a path,
and define the distance dk,l as the length of the shortest path connecting k and l. The quantity
ek := max{dk,l : l ∈ V \ {k}} is the distance from k to the ‘remotest’ vertex, whereas δ(G) :=
maxk∈V ek is called the eccentricity of G – in essence, it is the length of the longest path(s) in the
graph. Each k ∈ V such that ek = δ(G) is called a peripheral vertex.

Let Adj (k) := {l ∈ V \ {k} (k, l) ∈ E} be the set of vertices that adjoin k = 1, . . . , n. We let deg(k)
be the number of elements in Adj (k). Note that the bandwidth can be expressed by using this
terminology,

β(A) = max{0,max{k − l : l ∈ Adj(k), k ∈ V }}.
In the Cuthill–McKee algorithm we choose k1 ∈ V as a peripheral vertex, label it by “1” and
proceed by induction. Having already labelled k1, . . . , kr as “1”,. . . ,“r” respectively, in such a
manner that all the members of Adj (kl) have been labelled for l = 1, . . . , q, q = 1, . . . , r − 1, we
find all the unlabelled elements of Adj (kq+1) and label them in an increasing order of degree.

Example: Our point of departure is a matrix with the graph

A =





















× × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ × ×
× × × ◦ ◦ × ◦ ◦ ◦ ◦ × ◦
◦ × × × × ◦ ◦ ◦ ◦ × × ◦
◦ ◦ × × × ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ × × × × ◦ ◦ × ◦ ◦ ◦
◦ × ◦ ◦ × × × × × ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ × × × ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ × × × × ◦ ◦ ◦
◦ ◦ ◦ ◦ × × ◦ × × × × ◦
◦ ◦ × ◦ ◦ ◦ ◦ ◦ × × × ◦
× × × ◦ ◦ ◦ ◦ ◦ × × × ×
× ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ × ×





















⇔

���
12 ���

11 ���
10 ���

9 ���
8

���
1 ���

2 ���
3 ���

5 ���
6 ���

7

���
4

�� AA �� �� AA �� AA ��

�� AA

�
�

��

AA ��

�
�
�
�

A
A

A
A

We commence with the peripherial node 7, thus 7∼“1”. Since Adj (7) = {6, 8} and deg(8) = 3 <
5 = deg(6), we label 8∼“2” and 6∼“3”. The single unlabelled neighbour of 8 is labelled next,
9∼“4”, and then we proceed to the unlabelled members of Adj (6). Since deg(2) = 4 = deg(5), we
have two options and we set, arbitrarily, 5∼“5” and 2∼“6”. Next in line is 9, with two available
neighbours – deg(10) = 3, deg(11) = 6, hence 10∼“7” and 11∼“8”. Progressing in that manner,
we finally obtain the Cuthill–McKee ordering,
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A =





















× × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
× × × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
× × × × × × ◦ ◦ ◦ ◦ ◦ ◦
◦ × × × × ◦ × × ◦ ◦ ◦ ◦
◦ ◦ × × × ◦ ◦ ◦ × × ◦ ◦
◦ ◦ × ◦ ◦ × ◦ × ◦ × × ◦
◦ ◦ ◦ × ◦ ◦ × × ◦ × ◦ ◦
◦ ◦ ◦ × ◦ × × × ◦ × × ×
◦ ◦ ◦ ◦ × ◦ ◦ ◦ × × ◦ ◦
◦ ◦ ◦ ◦ × × × × × × ◦ ◦
◦ ◦ ◦ ◦ ◦ × ◦ × ◦ ◦ × ×
◦ ◦ ◦ ◦ ◦ ◦ ◦ × ◦ ◦ × ×





















⇔

���
12 ���

8 ���
7 ���

4 ���
2

���
11 ���

6 ���
10 ���

5 ���
3 ���

1

���
9

�� AA �� �� AA �� AA ��

�� AA

�
�

��

AA ��

�
�
�
�

A
A

A
A

The bandwidth is now β(A) = 5, clearly superior to the original ordering. Superior but not
optimal, however! Typically to combinatorial techniques, the best is the worse enemy of the good
– finding the optimal ordering out of 12! combinations will take rather longer than solving the
system with any ordering. . .

5.4 Iterative methods

Let Ax = b. We consider iterative schemes x(k+1) = Hk(x
(0), . . . ,x(k)). There are three consider-

ations: (a) does x(k) converge to x? (b) what is the speed of convergence? (c) what is the cost of
each iteration?

Linear stationary one-step schemes. Here Hk(x
(0), . . . ,x(k)) = Hx(k) + v. It is known from

introductory numerical analysis courses that convergence ⇔ ρ(H) < 1 and that true solution is
obtained if v = (I −H)A−1b.

Regular splittings. We split A = P −N , where P is a nonsingular matrix, and iterate

Px(k+1) = Nx(k) + b, k ∈ Z+. (5.8)

In other words, H = P−1N . (Of course, the underlying assumption is that a system of the form
Py = c can be solved easily.)

Theorem 28 Suppose that both A and P + P⊤ − A are symmetric and positive definite. Then, with the
above splitting, ρ(H) < 1.

Proof Let λ and v be an eigenvalue and a corresponding eigenvector of H = I − P−1A. Multi-
plying by P ,

(I − P−1A)v = λv ⇒ (1 − λ)Pv = Av.

In particular, detA 6= 0 implies that λ 6= 1.
Since A is symmetric,

R ∋ v∗Av = (1 − λ)v∗Pv = (1 − λ)v∗Pv = (1 − λ̄)v∗P⊤v.

Consequently (recall that λ 6= 1),

(

1

1 − λ
+

1

1 − λ̄
− 1

)

v∗Av = v∗(P + P⊤ −A)v. (5.9)

Let v = vR + ivI , vR,vI ∈ R
d. Taking the real part in (5.9) yields

1 − |λ|2
|1 − λ|2

{

v⊤
RAvR + v⊤

I AvI
}

=
{

v⊤
R(P + P⊤ −A)vR + v⊤

I (P + P⊤ −A)vI
}

.
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Since A and P + P⊤ − A are positive definite, necessarily w⊤Aw,w⊤(P + P⊤ − A)w > 0 for all

w ∈ R
d \ {0}, and we deduce that 1 − |λ|2 > 0 for all λ ∈ σ(I − P−1A). Since this is true for all

λ ∈ σ(H), the theorem follows. 2

Classical methods. Let A = D − L0 − U0, where −L0, −U0 and D are the lower △, upper △ and
diagonal parts respectively. We assume that Di,i 6= 0 ∀i and let L := D−1L0, U := D−1U0. The
following regular splittings are important:

0 50 100 150 200 250 300
-12

-10

-8

-6

-4

-2

0

2

4
Converegence of iterative schemes

SOR

Gauss-Seidel

Jacobi

Figure 5.1 Convergence of iterative schemes. log10 of the error
is displayed for the first 300 iterations.

Jacobi:
P = D H = B := L+ U v = D−1b,

Gauss–Seidel:
P = D − L0 H = L := (I − L)−1U v = (I − L)−1D−1b,

Successive over-relaxation (SOR):
P = ω−1D − L0 H = Lω := (I − ωL)−1((1 − ω)I + ωU) v = ω(I − ωL)−1D−1b.

Figure 5.1 displays the growth in the number of significant digits in the first 300 iterations of the
system

xk−1 − 2xk + xk+1 = k, k = 1, 2, . . . , n,

where x0 = xn+1 = 0 and n = 25, by the three aforementioned methods, with the optimal choice
of ω in SOR. Identical type of information features in Figure 5.2, except that now only SOR is
used (with optimal choices of the parameter) and n ∈ {25, 50, 75, 100}. These figures illustrate
behaviour that will be made more explicit in the text.
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Example: The 5-point formula in square geometry with natural ordering:

J: u(k+1)
m,n = 1

4

(

u
(k)
m+1,n + u

(k)
m−1,n + u

(k)
m,n+1 + u

(k)
m,n−1 − (∆x)2fm,n

)

,

GS: u(k+1)
m,n = 1

4

(

u
(k)
m+1,n + u

(k+1)
m−1,n + u

(k)
m,n+1 + u

(k+1)
m,n−1 − (∆x)2fm,n

)

,

SOR: u(k+1)
m,n = u(k)

m,n + ω
4

(

−4u(k)
m,n + u

(k)
m+1,n + u

(k+1)
m−1,n + u

(k)
m,n+1 + u

(k+1)
m,n−1 − (∆x)2fm,n

)

.

Given an N ×N grid, the spectral radii are

J: ρ(B) = cos
π

N + 1
≈ 1 − π2

2N2 ,

GS: ρ(L) = cos2
π

N + 1
≈ 1 − π2

N2 ,

SOR: ωopt =
2

1 + sin π
N+1

, ρ(Lωopt
) =

1 − sin π
N+1

1 + sin π
N+1

≈ 1 − 2π

N
.

Convergence. A matrix A = (ak,l)
d
k,l=1 is said to be strictly diagonally dominant provided that

|ak,k| ≥
∑

l 6=k |ak,l|, k = 1, . . . , d, and the inequality is sharp for at least one k ∈ {1, . . . , d}.

Theorem 29 If A is strictly diagonally dominant then the Jacobi method converges.

Proof An easy consequence of the Gerschgorin disc theorem is that ρ(B) < 1, hence convergence.
2

Similar theorem can be proved (with more effort) for Gauss–Seidel.

Theorem 30 (The Stein–Rosenberg theorem) Suppose that ak,k 6= 0, k = 1, . . . , n, and that all the
entries of B are nonnegative. Then

either ρ(L) = ρ(B) = 0 or ρ(L) < ρ(B) < 1
or ρ(L) = ρ(B) = 1 or ρ(L) > ρ(B) > 1.

Hence, the Jacobi and Gauss–Seidel methods are either simultaneously convergent or simultaneously di-
vergent.

In special cases, more powerful comparison is available:

Theorem 31 Suppose that A is a tridiagonal matrix with a nonvanishing diagonal. Then λ ∈ σ(B) ⇒
λ2 ∈ σ(L), whereas µ ∈ σ(L), µ 6= 0 ⇒ ±√

µ ∈ σ(B).

Corollary 6 For tridiagonal matrices Jacobi and Gauss–Seidel methods converge (or diverge) together and

ρ(L) = [ρ(B)]
2.

Hence, if ρ(B) < 1 it is always preferable (in serial computer architecture) to use Gauss–Seidel
within the above framework. Of course, the Gauss–Seidel iteration has the added advantage of
having only half the computer memory requirements of Jacobi.

Convergence of SOR. Recall the association of sparse matrices with graphs in §5.3. Since we now
wish to extend the framework to nonsymmetric matrices, we say that (k, l) ∈ E if either ak,l 6= 0
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Figure 5.2 Convergence of SOR. log10 of the error is displayed
for the first 300 iterations.

or al,k 6= 0.

j ∈ Z
d is said to be an ordering vector if for every (k, l) ∈ E it is true that |jk − jl| = 1. It is said to

be a compatible ordering vector if, for all (k, l) ∈ E,

k ≥ l + 1 ⇒ jk − jl = 1,

k ≤ l − 1 ⇒ jk − jl = −1.

Lemma 32 If A has an ordering vector then there exists a permutation matrix P such that PAP−1 has a
compatible ordering vector.

Proof Since each similarity transformation by a permutation matrix is merely a relabelling of

variables, the graph of Ã := PAP−1 is simply G̃ = {π(V ), π(E)}, where π is a permutation of
{1, . . . , d}. Thus, π(V ) = {π(1), . . . , π(d)} etc.
Denote the ordering vector by J and let ik := jπ−1(k), k = 1, . . . , d. It is trivial that i is an ordering

vector of Ã: if (k, l) ∈ π(E) then (π−1(k), π−1(l)) ∈ E, hence
∣

∣jπ−1(k) − jπ−1(l)

∣

∣ = 1. By definition
of i, this gives |ik − il| = 1.
We choose a permutation π such that i1 ≤ i2 ≤ · · · ≤ id. In that event, given (k, l) ∈ E, k ≥ l + 1,
we obtain ik − il = 1. Similarly, ik − il = −1 if k ≤ l − 1. 2
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Lemma 33 Suppose that A has a compatible ordering vector. Then the function

g(s, t) := det

(

tL0 +
1

t
U0 − sD

)

is independent of t ∈ R \ {0}.

Proof It follows from the definition that the matrix tL0 + 1
tU0 − sD also possesses a compatible

ordering vector.
According to the definition of the determinant,

g(s, t) = (−1)d
∑

π∈Πd

(−1)|π|
(

d
∏

k=1

ak,π(k)

)

tdL(π)−dU (π)sd−dL(π)−dU (π), (5.10)

where Πd is the set of all permutations of {1, 2, . . . , d}, |π| is the sign of the permutation π, whereas
dL(π) and dU (π) denote the number of values of elements l such that l > π(l) and l < π(l)
respectively. Let j be a compatible ordering vector. Then, unless ak,π(k) = 0 for some k,

dL(π) =

d
∑

l=1
π(l)<l

(

jl − jπ(l)

)

, dU (π) =

d
∑

l=1
π(l)>l

(

jπ(l) − jl
)

.

Hence, π being a permutation,

dL(π) − dU (π) =
d
∑

l=1
l 6=π(l)

(jl − jπ(l)) =
d
∑

l=1

(jl − jπ(l)) = 0

and, by (5.10), g is independent of t. 2

Theorem 34 Provided that A has a compatible ordering vector, it is true that
(a) If µ ∈ σ(B) of multiplicity q then so is −µ;
(b) Given µ ∈ σ(B) and ω ∈ (0, 2), every λ that obeys the equation

λ+ ω − 1 = ωµλ
1
2 (5.11)

belongs to σ(Lω);
(c) If ω ∈ (0, 2) and λ ∈ σ(Lω) then there exists µ ∈ σ(B) so that (5.11) holds.

Proof According to the last lemma,

det(L0 + U0 + µD) = g(µ, 1) = g(µ,−1) = det(−L0 − U0 + µD) = (−1)d det(L0 + U0 − µD).

Thus, (a) follows from

det(B − µI) =
det(L0 + U0 − µD)

detD
= (−1)d det(B + µI).

Since det(I − ωL) ≡ 1, we have

det(Lω − λI) = det
(

(I − ωL)−1(ωU + (1 − ω)I) − λI
)

= det(ωU + ωλL− (λ+ ω − 1)I). (5.12)



Part III: Numerical Solution of Differential Equations 62

If λ = 0 lies in σ(Lω) then det(ωU − (ω − 1)I) = 0 means that (ω, λ) = (1, 0) obeys (5.11).
Conversely, if λ = 0 satisfies (5.11) then ω = 1 and 0 ∈ σ(Lω). In the remaining case λ 6= 0, and
then, by Lemma 32 and (5.12),

1

ωdλ
1
2d

det(Lω − λI) = det

(

λ
1
2L+ λ−

1
2U − λ+ µ− 1

ωλ
1
2

I

)

= det

(

L+ U − λ+ ω − 1

ωλ
1
2

I

)

.

Hence λ ∈ σ(Lω) iff (5.11) holds for some µ ∈ σ(B). 2

Corollary 7 The existence of a compatible ordering vector implies ρ(L) = [ρ(B)]2. (Compare with Theo-
rem 30.)

Theorem 35 ρ(Lω) < 1 implies that ω ∈ (0, 2). Moreover, if A has a compatible ordering vector then
SOR converges for all ω ∈ (0, 2) iff ρ(B) < 1 and ρ(B) ⊂ R.

Proof Letting σ(Lω) = {λ1, . . . , λd}, we have

(−1)d
d
∏

k=1

λk = detLω = det(ωU + (1 − ω)I) + (1 − ω)d,

therefore

ρ(Lω) ≥
(

|1 − ω|d
)

1
d = |1 − ω|.

Hence, ρ(Lω) < 1 is possible only if ω ∈ (0, 2).

If A has a compatible ordering vector then, by Theorem 33, for all λ ∈ σ(Lω) there exists µ ∈ σ(B)

such that p(
√
λ) = 0, where p(z) = z2 − ωµz + ω − 1. Using the Cohn–Schur criterion, we can

easily verify that both zeros of p lie in the open unit disc iff ω ∈ (0, 2) and |µ| < 1. This completes
the proof. 2

Property A. It should be clear by now that the existence of a compatible ordering vector is impor-
tant in convergence analysis of SOR. But how to check for this condition?

We say that the matrix A possesses property A if there exists a partition V = S1 ∪ S2, S1 ∩ S2 = ∅,
such that for all (k, l) ∈ E either k ∈ S1, l ∈ S2 or l ∈ S1, k ∈ S2.

Lemma 36 A has property A iff it has an ordering vector.

Proof If property A holds then we set jk = 1 if k ∈ S1 and jk = 2 otherwise. Then, for every
(k, l) ∈ E, it is true that |jk − jl| = 1, hence j is an ordering vector.

To prove in the other direction we let j be an ordering vector and set

S1 := {k ∈ V : jk odd}, S2 := {k ∈ V : jk even}.

Clearly, {S1, S2} is a partition of V . Moreover, provided that (k, l) ∈ E, it is easy to verify that k
and l belong to distinct members of this partition. hence property A. 2

It is, in general, easier to check for property A than for the existence of an ordering vector.

Example: The five-point formula on a rectangular grid.
It is usual to order the grid points columnwise – this is the natural ordering. An alternative is to
let each (m,n) grid point into S1 if m+ n is even and into S2 otherwise. Subsequent columnwise
ordering, first of S1 and then of S2, gives that red-black ordering. For example, a 3 × 3 grid yields
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× × ◦ × ◦ ◦ ◦ ◦ ◦
× × × ◦ × ◦ ◦ ◦ ◦
◦ × × ◦ ◦ × ◦ ◦ ◦
× ◦ ◦ × × ◦ × ◦ ◦
◦ × ◦ × × × ◦ × ◦
◦ ◦ × ◦ × × ◦ ◦ ×
◦ ◦ ◦ × ◦ ◦ × × ◦
◦ ◦ ◦ ◦ × ◦ × × ×
◦ ◦ ◦ ◦ ◦ × ◦ × ×

























































× ◦ ◦ ◦ ◦ × × ◦ ◦
◦ × ◦ ◦ ◦ × ◦ × ◦
◦ ◦ × ◦ ◦ × × × ×
◦ ◦ ◦ × ◦ ◦ × ◦ ×
◦ ◦ ◦ ◦ × ◦ ◦ × ×
× × × ◦ ◦ × ◦ ◦ ◦
× ◦ × × ◦ ◦ × ◦ ◦
◦ × × ◦ × ◦ ◦ × ◦
◦ ◦ × × × ◦ ◦ ◦ ×





























Natural ordering Red-black ordering

It is easy to verify that the red-black ordering is consistent with property A. Hence, the five-point
matrix in a rectangle (and, for that matter, any TST matrix) has property A and, according to
Lemmas 31 and 35, can be permuted so that PAP−1 has a compatible ordering vector.

Optimal parameter ω. If A has a compatible ordering vector, σ(B) ⊂ R and µ̄ := ρ(B) < 1, then it
is possible to determine the value of ωopt such that ρ(Lω) > ρ(Lωopt

) for all ω 6= ωopt. Specifically,

ωopt =
2

1 +
√

1 − µ̄2
= 1 +

(

µ̄

1 +
√

1 − µ̄2

)2

∈ (1, 2).

To prove this, we exploit Theorem 33 to argue that, σ(B) being real, each λ ∈ σ(Lω) is of the form

λ = 1
4

{

ω|µ| +
√

(ωµ)2 − 4(ω − 1)
}2

.

Hence, as long as 2
(

1 −
√

1 − µ2
)

/µ2 ≤ ω < 2, the argument of the square root is nonpositive,

hence |λ| = ω − 1. Thus, in this interval ρ(Lω) increases strictly monotonically in ω.

Otherwise, if 0 < ω ≤ 2
(

1 −
√

1 − µ2
)

/µ2, then |λ| = 1
4 [F (ω, |µ|)]2, where

F (ω, t) := ωt+
√

(ωt)2 − 4(ω − 1).

It is trivial to ascertain that, for all t ∈ [0, 1) and ω in the aforementioned range, F increases strictly

monotonically as a function of t. Thus, the spectral radius of Lω in ω ∈ (0, 2(1 −
√

1 − µ̄2)/µ̄2] =
(0, ωopt] is 1

4 [F (ω, µ̄)]2.
Next we verify by elementary means that F decreases strictly monotonically as a function of ω.
Thus, it attains its minimum at ω = ωopt. We deduce that, for ω ∈ (0, 2),

ρ(Lω) =

{

1
4

{

ωµ̄+
√

(ωµ̄)2 − 4(ω − 1)
}2

: 0 < ω ≤ ωopt,

ω − 1 : ωopt ≤ ω < 2

and, for every ω 6= ωopt,

ρ(Lω) > ρ(Lωopt
) =

(

µ̄

1 +
√

1 − µ̄2

)2

.
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5.5 Multigrid

Consider the model problem of ∇2u = f in a square, solved with the 5-point formula and Gauss–

Seidel. Denote by um,n the exact solution of the linear system, let ε
(k)
m,n = u

(k)
m,n−um,n, and subtract

−4u
(k+1)
m,n + u

(k)
m+1,n + u

(k+1)
m−1,n + u

(k)
m,n+1 + u

(k+1)
m,n−1 = (∆x)2fm,n,

− −4um,n + um+1,n + um−1,n + um,n+1 + um,n−1 = (∆x)2fm,n,

= −4ε
(k+1)
m,n + ε

(k)
m+1,n + ε

(k+1)
m−1,n + ε

(k)
m,n+1 + ε

(k+1)
m,n−1 = 0.

Note that ε
(k)
m,n satisfies zero boundary conditions.

Hand-waiving, we assume that Fourier harmonics of the error are uncoupled (this would have

been true had we had periodic boundary conditions!) and represent ε
(k)
m,n = r

(k)
θ,ψei(mθ+nψ). Sub-

stituting in the above expression,

(

4 − e−iθ − e−iψ
)

r
(k+1)
θ,ψ = (eiθ + eiψ)r

(k)
θ,ψ.

Thus, the local attenuation is

ρ
(k+1)
θ,ψ :=

∣

∣

∣

∣

∣

r
(k+1)
θ,ψ

r
(k)
θ,ψ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

eiθ + eiψ

4 − eiθ − eiψ

∣

∣

∣

∣

.

As min{|θ|, |ψ|} = O(∆x) it follows, unsurprisingly, that ρ
(k+1)
θ,ψ ≈ 1−c(∆x)2, the slow attenuation

rate predicted by the GS theory. However,

max
π
2 ≤max{|θ|,|ψ|}≤π

ρ
(k+1)
θ,ψ = ρπ

2 ,arctan
3
4

= 1
2 .

In other words, the upper half of Fourier frequencies attenuate very fast!

The multigrid method is based on the realization that different grids cover the range of frequen-
cies differently – thus, having nested grids Gr ⊂ Gr−1 ⊂ · · · ⊂ G0, the ranges of ‘fast’ frequencies
are

? ?

Gr

? ?

Gr−1

? ?

Gr−2

· · ·

We cover the range of relevant Fourier numbers by this hierarchy of grids. A typical multigrid
sweep starts at the finest grid, travels to coarsest (on which we solve directly) and back to finest.
Each coarsening stage involves computing the residual vector rh = b − Ahxh and restricting it to
the coarse grid r2h = Crh, where we are solving the residual equation A2hy2h = r2h etc. Likewise,
refinement involves a prolongation yh = Py2h and a correction xnew

h = xh + yh. A good choice of
a restriction matrix linearly combines 9 ‘fine’ values according to the rule

v v v

v v v

v v v

1
16

1
16

1
16

1
16

1
8

1
8

1
8

1
8

1
4
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and prolongation by piecewise-linear interpolation reverses this procedure.

The V-cycle Typical implementation of multigird is with the V-cycle

J
J

J
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r
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J
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rp

p

p
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Each coarsening stage typically involves ≈ 5 iterations (i.e., not letting the slow asymptotic atten-
uation ‘take over’) and each refinement ≈ 3 iterations. We don’t check for convergence, except on
the finest grid. Typically, one or two sweeps of multigrid are sufficient for convergence and the
cost is often linear in the number of variables.

5.6 Conjugate gradients

Let A be symmetric and positive definite. In order to solve Ax = b we choose ν ∈ Z+ and let

fν(u) := 1
2u⊤Aνu − b⊤Aν−1u. Thus,

∇fν(u) = Aνu −Aν−1b = Aν−1r(u),

where r(u) := Au − b is the residual. Since A is positive definite, so is ∇2fν(u) and

min fν(u) = fν(x) ⇔ r(x) = 0 ⇔ Ax = b.

fν(u) can be rewritten as 1
2 (u − x)⊤Aν(u − x) − 1

2x⊤Aνx, and its minimization is the same as
minimizing

Fν(u) := 1
2 (u − x)⊤Aν(u − x) = 1

2r(u)⊤Aν−2r(u).

We iterate u(k+1) = u(k) + λkd
(k). Thus, the residual obeys r(k+1) = r(k) + λkAd(k), k ∈ Z+.

Substituting in Fν yields the quadratic

Fν(u
(k+1)) = Fν(u

(k) + λkd
(k)) = 1

2

{

r(k)⊤Aν−2r(k) + 2λkd
(k)⊤Aν−1r(k) + λ2

kd
(k)⊤Aνd(k)

}

,

which, since A is pos. def., is minimized when

λk = −d(k)⊤Aν−1r(k)

d(k)⊤Aνd(k)
.

The main idea of the conjugate gradient method lies in choosing the search direction d(k) = −r(k)+

βkd
(k−1), where

βk =
r(k)⊤Aνd(k−1)

d(k−1)⊤Aνd(k−1)
.
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It follows at once from the construction that d(k)⊤Aνd(k−1) = 0 and it is possible to prove that,

actually, d(k)⊤Aνd(l) = 0 for all l = 0, 1, . . . , k − 1. In other words, the search directions are
orthogonal w.r.t. the weighted inner product (u,v) = u⊤Aνv. In particular, it follows that (in
exact arithmetic) the iteration must reach the exact solution in ≤ n iterations, where A is n× n.

Preconditioned conjugate gradients. The effective number of iterations of the CG method de-
pends on the number of clusters of eigenvalues of A – each iteration ‘takes care’ of a single cluster.
An efficient method to cluster eigenvalues lies in preconditioning CG with Gaussian elimination:

Suppose that we can solve easily by elimination a ‘neighbour’ system Ãx̃ = b, where Ã ≈ A.

Solving Ax = b is identical to solving Ã−1Ax = Ã−1b = x̃ and the matrix Ã−1A is likely to

have few clusters of eigenvalues (in the extreme – and nonsensical – case Ã = A it has just one
eigenvalue at 1). Practical computation requires Gaussian elimination of the ‘easy’ system in each

CG step, to evaluate the residual: r := Ã−1Ax − x̃ = Ã−1(Ax − b).

Nonsymmetric matrices. A classical approach is to solveA⊤Ax = b. Of course, we never actually

form A⊤A (which is both very expensive and destroys sparsity) – e.g., instead of r(k)⊤A⊤Ad(k−1)

(i.e. with ν = 1) we evaluate the identical expression (Ar(k))⊤(Ad(k−1)).
A more modern approach is to use special nonsymmetric versions of CG (e.g. GMRES of Saad &
Schultz). The latter can be represented in an equivalent form as follows. Consider the iterative
procedure

x(k+1) = Hx(k) + b, k ∈ Z+. (5.13)

Let r(k) = (I −H)x(k) − b be the residual in the kth iteration. Having performed m steps of (5.13),
where m ≥ 2 is a given integer, we seek α0, α1, . . . , αm ∈ R,

∑m
k=0 αk = 1, that minimize

∥

∥

∥

∥

∥

m
∑

k=0

αkr
(k)

∥

∥

∥

∥

∥

(‖ · ‖ is the ℓ2 norm) and restart (5.13) with the new initial value

m
∑

k=0

αkx
(k).

This procedure is repeated until – hopefully – convergence takes place. Note, however, that imple-
mentation of GMRES is considerably more complicated than naively solving (e.g. with Lagrange
multipliers) the above minimization problem.2

Nonlinear equations. The CG method can be generalized to nonlinear systems of equations – in
fact, it follows the same logic as other standard methods of unconstrained optimization (steepest
descent, variable metric methods etc.): we first choose a direction for the next step and then select
a good step-size. Widely used nonlinear CG algorithms are due to Fletcher & Reeves and to
Polack & Ribiére.

Exercises

5.1 Show how to modify the Hockney method to evaluate numerically

1. A solution of the Poisson equation in a square with a Mehlerstellenverfahren scheme.

2. A solution of the Poisson equation with Dirichlet boundary conditions in a three-dimensional
cube.

2Practical computation should avoid formation of inner products, which are prone to considerable roundoff errors.
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5.2 Outline a fast solver for the Poisson equation with Dirichlet boundary conditions in cylindrical geom-
etry.

5.3 Describe a fast solver for the Helmholtz equation ∇2u + λu = 0, λ ≥ 0, with Dirichlet boundary
conditions in the unit disc.

5.4 F (t) := etAetB is the first-order Beam–Warming splitting of et(A+B).

1. Prove that

F (t) = et(A+B) +

∫ t

0

e(t−τ)(A+B)
(

eτAB −BeτA
)

eτB dτ.

[Hint: Find explicitly G(t) := F ′(t) − (A+B)F (t) and express the solution of the linear matrix ODE
F ′ = (A+B)F +G, F (0) = I , using variation of constants.]

2. Suppose that a norm ‖ · ‖ is given and that there exist real constants µA, µB and µA+B such that

‖etA‖ ≤ eµAt, ‖etB‖ ≤ eµBt, ‖et(A+B)‖ ≤ eµA+Bt.

Prove that

‖F (t) − et(A+B)‖ ≤ 2‖B‖e(µA+µB)t − eµA+Bt

µA + µB − µA+B
.

Hence, if µA, µB < 0 then the splitting error remains relatively small even for large t.

5.5 Discuss the solution of PDEs of evolution (in several space variables) by the combination of semidis-
cretization, dimensional splitting and the ODE solver

yn+1 = ehA
yn +

1

2
h
(

ehA + I
)

(f (yn) −Ayn), (5.14)

where A is the Jacobian matrix or an approxomation thereof. The method (5.14) can be justified as
follows:

y
′ = f (y) ≈ Ay + (f (yn) −Ayn).

This, in tandem with the variation of constants formula and the trapezoidal rule for integration, moti-
vate

y(tn+1) ≈ ehA
yn +

∫ h

0

e(h−τ)A dτ(f (yn) −Ayn)

≈ ehA
yn +

1

2

(

ehA + I
)

(f (yn) −Ayn) := yn+1.

5.6 Let F (t) = etA/2etBetA/2 (the Strang splitting).

1. Prove that F (t) = et(A+B) + Ct3 + O
(

t4
)

for some matrix C = C(A,B).

2. Prove that there exists α ∈ R such that G(t) = et(A+B) + O
(

t4
)

, where

G(t) = F (αt)F ((1 − 2α)t)F (αt)

(the Yošida device).

5.7 We define the bandwidth of a symmetric n-by-n matrix A as

β(A) := max
i=1,...,n

βi(A),

where βi(A) := i − min {j : ai,j 6= 0} , i = 1, . . . , n. Show that, subject to β(A) << n, if symmetric
Cholesky factorization is applied to A with due regard to the banded structure then the operation
count is of the order of magnitude of (β(A))2 n.

5.8 A two-dimensional Poisson equation is solved in a square by the nine-point formula. What is the
graph of the underlying matrix?
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5.9 A three-dimensional Poisson equation is solved in a cube by the seven-point formula (the 3D cousin
of the five-point formula). Find the graph of the matrix.

5.10 Prove the convergence of Jacobi and Gauss–Seidel methods, as applied to the Poisson equation in a
square, discretized with the five-point formula.

5.11 Given Ax = b, we consider the following iterative scheme (Richardson’s method): choosing arbitrary
x(0), let

x
(n+1) = x

(n) − αn(Ax
(n) − b), n = 0, 1, . . . , (5.15)

where α0, α1, . . . are real constants.

1. Let rn := Ax(n) − b be the remainder in the nth iterant. Prove that

rn =

n−1
∏

j=0

(I − αjA)r0.

2. Integer m > 0 is specified and we assume that αm+j = αj for all j = 0, 1, . . .. Set p(z) :=
∏m

j=0
(1 − αjz) and prove that (5.15) converges to the correct solution for every starting value if

|p(λk)| < 1 for all λk ∈ σ(A).

3. Let D be a complex, bounded, convex domain. We say that Tm is the mth Chebyshev polynomial
with respect to D if Tm( · ,D) is mth degree, monic and

max{|Tm(z;D)| : z ∈ D} = min
deg q=m, q monic

max{|q(z)| : z ∈ D}.

Suppose that all that is known about the eigenvalues of A is that σ(A) ⊆ D. Prove that the
best choice of α0, . . . , αm−1 is as the reciprocals of the zeros of Tm( · ,D) and that the iteration
converges if

ρm(D) :=
max{|Tm(z;D)| : z ∈ D}

|Tm(0,D)| < 1.

4. Let Tm be the ‘usual’ Chebyshev polynomial (of the first kind), Tm(cos θ) = cosnθ. Then
2−m+1Tm (the scaling renders the polynomial monic!) is precisely Tm( · , [−1, 1]). Thereby find
explicitly Tm( · , [a, b]) and ρm([a, b]) for any real interval [a, b].

5. Suppose that σ(A) ∈ [a, b], where 0 < a < b. Prove that the method (with the optimal choice of
αjs) converges. Discuss briefly the speed of convergence.
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