Mathematical Tripos Part III Distribution Theory & Applications, Example sheet 2

Michaelmas 2020 Dr A.C.L. Ashton

Comments and corrections to acla2@damtp.cam.ac.uk.

1. Let $u, v \in \mathcal{D}'(\mathbf{R}^n)$, one of which has compact support. Show that the convolution u * v, as defined in your notes, is uniquely defined and gives rise to an element of $\mathcal{D}'(\mathbf{R}^n)$.

2. Show that if $u, v, w \in \mathcal{D}'(\mathbf{R}^n)$ and at least two of them have compact support, than the convolution is associative, i.e. (u * v) * w = u * (v * w).

3. Let $\varphi \in \mathcal{D}(\mathbf{R})$ and choose $\epsilon > 0$ sufficiently small so that $\operatorname{supp}(\varphi) \subset I_{\epsilon}$, where $I_{\epsilon} = (-1/\epsilon, 1/\epsilon)$. Given that φ has a uniformly convergent Fourier series on I_{ϵ} in the form

$$\varphi(x) = \sum_{n \in \mathbf{Z}} c_n e^{i\epsilon\pi nx}, \qquad c_n = \frac{\epsilon}{2} \int \varphi(x) e^{-i\epsilon\pi nx} \, \mathrm{d}x,$$

prove the Fourier inversion theorem on $\mathcal{D}(\mathbf{R})$ by taking a suitable limit.

4. For φ ∈ S(Rⁿ) prove that ∑_m φ(m) = ∑_n φ̂(2πn). This is the famous Poisson summation formula.
5. If u ∈ H^s(Rⁿ) show that D^αu ∈ H^{s-|α|}(Rⁿ). If s > t show that H^s(Rⁿ) ⊂ H^t(Rⁿ).

6. Show that $\mathcal{S}(\mathbf{R}^n)$ is dense in $L^2(\mathbf{R}^n) = H^0(\mathbf{R}^n)$ and deduce that $\mathcal{S}(\mathbf{R}^n)$ is dense in $H^s(\mathbf{R}^n)$, i.e. prove that for each $u \in H^s(\mathbf{R}^n)$ there is a sequence $\{\varphi_m\}_{m\geq 1}$ in $\mathcal{S}(\mathbf{R}^n)$ such that

$$\lim_{m \to \infty} \|u - \varphi_m\|_{H^s} = 0$$

[Hint: Use Parseval's theorem.]

7. Prove that multiplication by a Schwartz function gives rise to a continuous map from $H^s(\mathbf{R}^n)$ to itself, i.e. $\|\varphi u\|_{H^s} \lesssim \|u\|_{H^s}$ for $\varphi \in \mathcal{S}(\mathbf{R}^n)$. You may assume Peetre's inequality: for $\lambda, \mu \in \mathbf{R}^n$ and $s \in \mathbf{R}$

$$\left(\frac{1+|\lambda|^2}{1+|\mu|^2}\right)^s \le 2^{|s|}(1+|\lambda-\mu|^2)^{|s|}.$$

8. For $u \in \mathcal{S}'(\mathbf{R}^n)$ show that $(D^{\alpha}u)^{\hat{}} = \lambda^{\alpha}\hat{u}$ and $(x^{\beta}u)^{\hat{}} = (-D)^{\beta}\hat{u}$ for all multi-indices α, β .

9. For $u \in \mathcal{E}'(\mathbf{R}^n)$ show that $\hat{u}(\lambda) = \langle u(x), e^{-i\lambda \cdot x} \rangle$. Deduce that if $u \in \mathcal{E}'(\mathbf{R}^n)$ there exists some $t \in \mathbf{R}$ such that $u \in H^t(\mathbf{R}^n)$.

10. Suppose that $u_1, u_2 \in \mathcal{S}'(\mathbf{R}^n)$ and at least one of u_1 and u_2 has compact support. Show that their convolution $u_1 * u_2 \in \mathcal{S}'(\mathbf{R}^n)$ and $(u_1 * u_2)^{\hat{}} = \hat{u}_1 \hat{u}_2$.

11. Show that $e^{-\epsilon x}H \to H$ in $\mathcal{S}'(\mathbf{R})$ as $\epsilon \to 0$. Hence show

$$\hat{H} = \pi \delta_0 - \text{ip.v.}\left(\frac{1}{x}\right)$$

in $\mathcal{S}'(\mathbf{R})$.

12. The Riemann-Lebesgue lemma states that if $u \in L^1(\mathbf{R})$ then $|\hat{u}(\lambda)| \to 0$ as $|\lambda| \to \infty$. Prove this result by considering the substitution $x = x' + \pi/\lambda$ in the integral defining $\hat{u}(\lambda)$.

13. If $u \in H^m(\mathbf{R}^n)$ with $m \in \mathbf{N}$, use Parseval's theorem to show that

$$\sum_{|\alpha| \le m} \int |D^{\alpha}u|^2 \, \mathrm{d}x < \infty.$$

Prove the converse.

14. Let $\mathcal{O}(\mathbf{R}^n)$ denote the space of smooth functions that grow no faster than a polynomial. Show that $\mathcal{O}(\mathbf{R}^n) \subset \mathcal{S}'(\mathbf{R}^n)$. Fix $\varphi \in \mathcal{S}(\mathbf{R}^n)$ with $\varphi(0) = 1$. For $u \in \mathcal{O}(\mathbf{R}^n)$ we define

$$\hat{u}_{\epsilon}(\lambda) = \int e^{-\mathrm{i}\lambda \cdot x} \varphi(\epsilon x) u(x) \,\mathrm{d}x.$$

Show that $\hat{u} = \lim_{\epsilon \to 0} \hat{u}_{\epsilon}$ in $\mathcal{S}'(\mathbf{R}^n)$.

15. Compute the Fourier transform in $\mathcal{S}'(\mathbf{R})$ of the function

$$u(x) = \frac{x}{1+x^2}.$$

For which $s \in \mathbf{R}$ is $u \in H^s(\mathbf{R})$?

16. Prove that $D^{\alpha}\delta_0 \in H^s(\mathbf{R}^n)$ if and only if $s < -|\alpha| - \frac{1}{2}n$.

17. Let $\Gamma = \{x \in \mathbf{R}^n : x \cdot n = 0\}$ be a hyperplane with surface element $d\sigma$ and normal n. Let $\chi \in \mathcal{S}(\mathbf{R}^n)$ be a fixed Schwartz function and set $d\mu = \chi d\sigma$. This defines a distribution $\mu_{\Gamma} \in \mathcal{S}'(\mathbf{R}^n)$ by

$$\langle \mu_{\Gamma}, \varphi \rangle = \int_{\Gamma} \varphi \, \mathrm{d} \mu$$

for each $\varphi \in \mathcal{S}(\mathbf{R}^n)$. Prove that

$$\hat{\mu}_{\Gamma}(\lambda) = \int_{\Gamma} e^{-i\lambda \cdot x} d\mu(x).$$

Classify the large $|\lambda|$ behaviour of $\hat{\mu}_{\Gamma}$. For which $s \in \mathbf{R}$ is $\mu_{\Gamma} \in H^{s}(\mathbf{R}^{n})$?

18. Suppose that $u \in \mathcal{S}'(\mathbb{R}^n)$ and $\Delta^2 u + u \in H^s(\mathbb{R}^n)$. Prove that $u \in H^{s+4}(\mathbb{R}^n)$.

19. Compute the Fourier transforms of the functions

(a) $\operatorname{sgn}(x)$, (b) $\operatorname{arctan}(x)$, (c) $x \log |x| - x$, (d) $\exp(i\omega x^2)$

in $\mathcal{S}'(\mathbf{R})$, where $\omega \in \mathbf{R}$.

20. Show that the Fourier transform of $(x_1 + ix_2)^{-1}$ is proportional to itself and find the constant of proportionality.

21. Suppose $f \in C(\mathbf{R})$ and $f(x) - 1/x = O(1/x^2)$ as $|x| \to \infty$. Prove that

$$\lim_{\epsilon \to 0} \left[\hat{f}(-\epsilon) - \hat{f}(+\epsilon) \right] = 2\pi i.$$

22. If $\varphi \in \mathcal{D}(\mathbf{R}^n)$ and $\operatorname{supp}(\varphi) \subset B_{\delta}$ show that $\hat{\varphi}(z)$ is an entire function and there exist constants C_m such that

$$\left|\hat{\varphi}(z)\right| \le C_m \left(1 + |z|\right)^{-m} e^{\delta |\operatorname{Im} z|}$$

for $m = 0, 1, 2, \ldots$ and $z \in \mathbb{C}^n$. Prove the converse.