Mathematical Tripos Part III
 Distribution Theory \& Applications, Example sheet 3

Michaelmas 2020
Dr A.C.L. Ashton

Comments and corrections to acla2@damtp.cam.ac.uk.

1. Write the following distributions as sums of derivatives of continuous functions
(a) δ_{0},
(b) $\operatorname{sgn}(x)$,
(c) p.f. $\left(\frac{1}{x^{2}}\right)$.
2. For an N th order polynomial P in n-variables set $P^{(\alpha)}(\lambda)=\partial^{\alpha} P(\lambda)$. Show that

$$
P(D)[\varphi \psi]=\sum_{|\alpha| \leq N} \frac{1}{\alpha!} D^{\alpha}(\varphi) P^{(\alpha)}(D)(\psi)
$$

for all test functions $\psi, \varphi \in \mathcal{D}\left(\mathbf{R}^{n}\right)$.
3. Let $\left\{\Delta_{i}\right\}_{i \geq 1}$ and $\left\{c_{i}\right\}_{i \geq 1}$ be as in the proof of the Malgrange-Ehrenpreis theorem. Prove that

$$
\varphi \mapsto\langle E, \varphi\rangle=\sum_{i=1}^{\infty} \int_{\Delta_{i}}\left(\int_{\operatorname{Im} \lambda_{n}=c_{i}} \frac{\hat{\varphi}\left(-\lambda^{\prime},-\lambda_{n}\right)}{P\left(\lambda^{\prime}, \lambda_{n}\right)} \mathrm{d} \lambda_{n}\right) \mathrm{d} \lambda^{\prime}
$$

defines an element of $\mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$.
4. Let A be a symmetric $n \times n$ matrix with $\operatorname{det} A \neq 0$ and $\operatorname{Re} A \geq 0$ (i.e. $\operatorname{Re} A$ is positive semi-definite). Construct, explicitly, a fundamental solution to the operator

$$
L=\frac{\partial}{\partial t}-\sum_{i, j=1}^{n} A_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} .
$$

[Hint: if A is the identity then L is just the heat operator, so we know the fundamental solution in this case. The fundamental solution for the general case looks similar.]
5. Suppose $L=P\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right)$ is an N th order elliptic partial differential operator with constant coefficients. Given $(\lambda, c) \in S^{n-1} \times \mathbf{R}$, show that for R sufficiently large the function

$$
u(x ; \lambda, c)=\frac{1}{2 \pi \mathrm{i}} \oint_{|z|=R} \frac{e^{z(x \cdot \lambda-c)}}{z P(z \lambda)} \mathrm{d} z
$$

satisfies $L[u]=1$ with $u=0$ on the surface $x \cdot \lambda=c$. Here the integral is taken in the complex z-plane around a circle centred at the origin with radius R. How $\operatorname{big} \operatorname{did} R$ need to be?
6. Let P be an N th order polynomial in n-variables and suppose that there exists $C, \delta>0$ such that $\left|P^{(\alpha)}(\lambda)\right| \leq C|\lambda|^{-\delta|\alpha|}|P(\lambda)|$ for all multi-indices α when $|\lambda|$ is sufficiently large. Show

$$
P(D) u \in H_{\mathrm{loc}}^{s}(X) \Rightarrow u \in H_{\mathrm{loc}}^{s+\delta N}(X) .
$$

Deduce that $P(D)$ is hypoelliptic, i.e. $P(D) u \in C^{\infty}(X) \Rightarrow u \in C^{\infty}(X)$.
7. Give an example of an operator $P(D)$ that is hypoelliptic but not elliptic.
8. Does there exist a polynomial P of positive degree that satisfies a (C, δ)-estimate given in question 6 with $\delta>1$? What can you say about $P(D)$ if the polynomial P satisfies the (C, δ)-estimate with $\delta=1$?
9. If $a \in \operatorname{Sym}\left(X, \mathbf{R}^{k}, N\right)$ show that $D_{x}^{\alpha} D_{\theta}^{\beta} a \in \operatorname{Sym}\left(X, \mathbf{R}^{k}, N-|\beta|\right)$. If a_{1}, a_{2} belong to $\operatorname{Sym}\left(X, \mathbf{R}^{k} ; N_{1}\right)$ and $\operatorname{Sym}\left(X, \mathbf{R}^{k} ; N_{2}\right)$ respectively, show that $a_{1} a_{2} \in \operatorname{Sym}\left(X, \mathbf{R}^{k} ; N_{1}+N_{2}\right)$.
10. Define the differential operator

$$
L=\sum_{j=1}^{k} a_{j}(x, \theta) \frac{\partial}{\partial \theta_{j}}+\sum_{j=1}^{n} b_{j}(x, \theta) \frac{\partial}{\partial x_{j}}+c(x, \theta)
$$

where $a_{j} \in \operatorname{Sym}\left(X ; \mathbf{R}^{k} ; 0\right), b_{j} \in \operatorname{Sym}\left(X, \mathbf{R}^{k} ;-1\right)$ and $c \in \operatorname{Sym}\left(X, \mathbf{R}^{k} ;-1\right)$. Show that the formal adjoint L^{*} has the same form with coefficients in the same spaces of symbols.
11. Consider the oscillatory integral defined by the phase function Φ and the symbol $a \in \operatorname{Sym}\left(X, \mathbf{R}^{k} ; N\right)$ where $X \subset \mathbf{R}^{n}$. Suppose that Φ is non-degenerate, i.e. the differentials $\mathrm{d}\left(\partial \Phi / \partial \theta_{j}\right)$, $(1 \leq j \leq k)$, are linearly independent. Prove that the set

$$
M(\Phi)=\left\{(x, \theta): x \in X, \theta \in \mathbf{R}^{k} \backslash\{0\}, \nabla_{\theta} \Phi(x, \theta)=0\right\}
$$

is an smooth n-dimensional submanifold of $X \times\left(\mathbf{R}^{k} \backslash\{0\}\right)$. If you have experience with geometry, prove that the set

$$
S P(\Phi)=\left\{\left(x, \nabla_{x} \Phi(x, \theta)\right):(x, \theta) \in M(\Phi)\right\}
$$

is a Lagrangian submanifold of $T^{*} X \backslash\{0\}$ (the cotangent bundle over X). If you don't have experience with geometry, but have access to the Internet, Google the phrase "Lagrangian submanifold".
12. Let $p=(\omega, \mathbf{p})$ and $x=(t, \mathbf{x})$ be coordinates in \mathbf{R}^{4}. Show that the distribution ${ }^{1} \Delta_{F}$ defined by

$$
\hat{\Delta}_{F}(p)=\lim _{\epsilon \rightarrow 0} \frac{1}{-\omega^{2}+|\mathbf{p}|^{2}+m^{2}-\mathrm{i} \epsilon}
$$

is a fundamental solution to the Klein-Gordon operator $\partial_{t}^{2}-\Delta_{\mathbf{x}}+m^{2}$. Set $\omega_{\mathbf{p}}=\sqrt{m^{2}+|\mathbf{p}|^{2}}$ and show

$$
\Delta_{F}(x)=\frac{\mathrm{i}}{2(2 \pi)^{3}} \int \frac{e^{-\mathrm{i} \omega_{\mathbf{p}}|t|+\mathrm{i} \mathbf{p} \cdot \mathbf{x}}}{\omega_{\mathbf{p}}} \mathrm{d} \mathbf{p}
$$

when interpreted as the sum of an ordinary function and an oscillatory integral. Show that the oscillatory integral has symbol belonging to $\operatorname{Sym}\left(\mathbf{R}^{+} \times \mathbf{R}^{3}, \mathbf{R}^{3} ;-1\right)$. Show that the singular support of the Feynman propagator is contained in the light cone $|t|=|\mathbf{x}|$.

[^0]
[^0]: ${ }^{1}$ This is the Feynman propagator. This distribution, and ones closely related to it, are of central importance in theoretical physics - see Quantum Field Theory courses.

