Classical and Quantum Solitons Examples 1 – Kinks

1. Suppose that $U(\phi) \ge 0$ and that U = 0 at one or more vacuum values of ϕ .

(a) Show that for a kink satisfying a Bogomolny equation $\frac{d\phi}{dx} = \pm \frac{dW}{d\phi}$, the static field equation

$$\frac{d^2\phi}{dx^2} = \frac{dU}{d\phi}$$

is automatically satisfied, where $U(\phi) = \frac{1}{2} \left(\frac{dW}{d\phi}\right)^2$.

(b) Show that the equation $\frac{d^2\phi}{dx^2} = \frac{dU}{d\phi}$ can be interpreted as the equation for particle motion in the inverted potential -U.

(c) Assuming that the vacua of U are quadratic minima (i.e. with positive second derivative), find the generic form of $\phi(x)$ as ϕ approaches one of the vacua. Suppose U has quadratic vacua at ϕ_1 , ϕ_2 and ϕ_3 in increasing order. Show that there is no static kink connecting ϕ_1 and ϕ_3 . (Hint: Think about the interpretation in terms of particle motion.)

2. (Derrick's theorem for kinks) The energy of a static kink is $E = E_1 + E_2$, where

$$E_1 = \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{d\phi}{dx}\right)^2 dx, \qquad E_2 = \int_{-\infty}^{\infty} U(\phi) dx$$

Show that replacing the kink $\phi(x)$ by a rescaled field configuration $\phi(\lambda x)$, with λ a positive constant, changes the energy to $E = \lambda E_1 + \frac{1}{\lambda} E_2$. Deduce that for the kink, $E_1 = E_2 = \frac{1}{2}E$.

Deduce that for a kink moving non-relativistically, with field $\phi(x - vt)$, where $\phi(x)$ is the static kink, the kinetic energy is $T = \frac{1}{2}Mv^2$, where M is the mass of the kink.

3. Starting with the Lagrangian density of the Sine-Gordon theory

$$\mathcal{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}\phi'^2 - (1 - \cos\beta\phi),$$

derive the Sine-Gordon field equation. Find the function W, as defined in Q.1, and use it to find a static kink solution of the Sine-Gordon theory. Use the Bogomolny bound to find its energy. How many types of kink and antikink are there? How do your results change if ϕ is regarded as an angle in the range $0 \le \phi < 2\pi/\beta$.

4. The Lagrangian density for a complex scalar field ϕ in 1 + 1 dimensions is

$$\mathcal{L} = \frac{1}{2} \left| \frac{\partial \phi}{\partial t} \right|^2 - \frac{1}{2} \left| \frac{\partial \phi}{\partial x} \right|^2 - \frac{1}{2} \lambda^2 (a^2 - |\phi|^2)^2.$$

Verify that the field equation is

$$\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} - 2\lambda^2 (a^2 - |\phi|^2)\phi = 0$$

and that it has the real kink $\phi_0(x) = a \tanh \lambda ax$ as a solution. Now consider a small pure imaginary perturbation $\phi(x,t) = \phi_0(x) + i\eta(x,t)$, with η real. Find the linear equation for η . By considering η of the form $\operatorname{sech}(\alpha x)e^{\omega t}$, show that the kink is unstable. Is there a topological argument suggesting that the kink is either stable or unstable?

5. Study the kinks of the ϕ^6 theory, with a triple well potential $U(\phi) = \frac{1}{2}\lambda^2\phi^2(\phi^2 - a^2)^2$. How many types of kink are there? What are their energies?