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Part II1 Prof. N.S. Manton
Easter Term 2019
Classical and Quantum Solitons
Examples 2 — Sine—Gordon Kinks, Vortices and Rational Maps

. In Sine—Gordon theory, there is a 2-kink solution

vsinh yx

é(x, 1) :4tan_1[ ] v =(1—v?)"12,

cosh yvt

Sketch a graph of vsinhyz for v small and positive, and hence sketch a graph of ¢(z) for
(i) t = 0 and (ii) |¢| large. Estimate the kink separation at closest approach. What are the
velocities of the kinks when [¢| is large?

. Consider the abelian Higgs model in the plane, in polar coordinates, and assume the fields

are initially smooth.

(a) Show that a smooth gauge transformation has zero net winding on the circle at infinity,
and deduce that the winding number of the field, NV, is gauge invariant.

(b) Show that by a smooth gauge transformation, the fields can be transformed to a gauge
where a, = 0. Show that it is not generally possible to transform to a gauge where ay = 0.

. Verify the covariant Leibniz rule

9i(¢"Dj¢) = (Di¢)" D+ ¢"DiD;¢

and also the identity [D;, Dj]¢ = —ifij¢. Use these to complete the derivation of the
Bogomolny energy bound and the Bogomolny equations in the abelian Higgs model.

. The energy of static fields in the abelian Higgs model on a general surface ¥ with coordi-

nates y° : i = 1,2 and metric ds® = g;;dy'dy’ is
1 ik 4l 1 * ij A * 1\ 2 14 2
E= Zfijfklg 9" + §(Di¢) Dj¢g” + g(l —¢*p)” p /detgdy dy”,
b

where det g is the determinant of the metric tensor and g% is the inverse metric tensor.

Find the expression for E in the Euclidean plane, using polar coordinates r,6 and the
appropriate metric. Assuming the fields of a unit winding vortex have the form

CLTZO, a9:f(T), ¢:h(7’)ei9,

simplify the expression for £ and deduce that the field equations reduce to the coupled

ODEs
d*h  1dh 1

A
2 2\ —
= (= ?h+ SR =0,

— — =+ (1-fHK*=0.



Copyright © 2019 University of Cambridge. Not to be quoted or reproduced without permission.

5. The Bogomolny equations for a unit winding vortex, with fields as in Q.4, simplify to

dh 1
———]_— —
(- fh=0,
daf r 2

dr 2( h7) =0

By differentiating, verify that if these are satisfied, then so are the second order ODEs in
Q.4, with A = 1.

By eliminating f, find the radial form of the Taubes equation for u = 2log h.

. Consider a surface ¥ with real coordinates y!,y? and metric ds?> = Q(y!,y?)((dy')? +

(dy?)?). (Actually, by a suitable choice of coordinates, any metric on a surface can be
put in this form locally. 2 is called the conformal factor.) Find the simplified form of
the energy expression E in Q.4 for this metric. When A\ = 1, a variant of the Bogomolny
rearrangement leads to Bogomolny equations where the usual % is replaced by % in the
second equation, and the resulting Taubes equation (ignoring the delta functions) is

Viu—Qe*+0Q=0.

The general formula for the Gaussian curvature of ¥ is K = —%V2 log ). Find the
constant value of K for which the change of variable u = ¢ — log {2 reduces the Taubes
equation to the Liouville equation

V35 —¢” =0.

Verify that the appropriate value of K occurs for Q = ﬁ, where 72 = (y!)? + (y?)?

and 7 < 1. (This is the conformal factor for the Poincaré disc model of the hyperbolic
plane.)

Show that a solution of Liouville’s equation is

32r?
o = log A=z )

and by combining ¢ and €2 appropriately, show that on the Poincaré disc there is a 1-vortex
solution for which the magnitude of the Higgs field is

2r

=T

Check that this satisfies the required boundary conditions.

. On the surface ¥ with real coordinates and metric as in .6, introduce a complex coordinate

z = y! +iy? and its complex conjugate z. Show that

1 1
0. = 51— i), 0: =5 (01 +idy).
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10.

11.

. The Riemann sphere coordinate on S? is z = tan

Let a, = %(al —iag) and az = %(al +ias) and find the relation between f,z = d,as — 0za,
and B = f15. Write the metric and area element on the surface in terms of dz and dz.

Rewrite the Bogomolny equations using Dz¢ and f,z. Solve the first Bogomolny equation,
and rederive the Taubes equation. [You will need to relate 0,0z to the Laplacian.]

gew, where ¥, ¢ are standard polar

coordinates. Show that the standard metric and area 2-form are

4dzdz dz \Ndz
ds? = — " dA=2i—0""_
(1+[z2[*)? (1+[2[*)?

and hence that Re z and Im z are isothermal coordinates.

Let w = R(z) be a rational map from S? to S2. Find the pull-back of the area form on
the w-sphere by R and deduce that R is orientation-preserving.

. Let (21,79, 23) be Cartesian coordinates in R, and S? the unit sphere. Find the formula

for z on the unit sphere in terms of (z1,z2,z3). Find the values of z corresponding to
(£1,0,0), (0,£1,0) and (0,0, £1).

Consider a cube in its standard orientation centred at the origin, with vertices on the
unit sphere. Split the vertices into two sets of four, with each set being the vertices of a
tetrahedron. Find the Cartesian coordinates and hence the value of z at these vertices.

For each tetrahedron, find the monic quartic polynomial (with leading term z*) whose
zeros are the four vertices of the tetrahedron. Find the monic order-8 polynomial whose
zeros are all eight vertices of the cube.

Consider a rational map of degree d,

R(z) =2,

q(z)
where p and q are (generic) polynomials of degree d. The Wronskian of R is the polynomial
W(z) =p'(2)q(z) — ¢'(2)p(z). Verify that the derivative of R vanishes where W vanishes.

Show that W is a polynomial of degree 2d — 2. Show that under a Mobius transformation,
R — M ,
YR +§

the zeros of the Wronskian are unaffected.

How can you interpret a Wronskian that has degree less than 2d — 27 Investigate your

interpretation for the map R(z) = 2.

Consider the 1-parameter family of degree-3 rational maps

_ \/§a22 -1

R(z) = Y242 — 2

2(22 — v/3a)

where a is complex. Find the Wronskian of these maps, and find the values of a for which
the Wronskian is tetrahedrally symmetric.



