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Part III Prof. N.S. Manton

Easter Term 2019

Classical and Quantum Solitons

Examples 2 – Sine–Gordon Kinks, Vortices and Rational Maps

1. In Sine–Gordon theory, there is a 2-kink solution

φ(x, t) = 4 tan−1

[

v sinh γx

cosh γvt

]

, γ = (1− v2)−1/2 .

Sketch a graph of v sinh γx for v small and positive, and hence sketch a graph of φ(x) for
(i) t = 0 and (ii) |t| large. Estimate the kink separation at closest approach. What are the
velocities of the kinks when |t| is large?

2. Consider the abelian Higgs model in the plane, in polar coordinates, and assume the fields
are initially smooth.

(a) Show that a smooth gauge transformation has zero net winding on the circle at infinity,
and deduce that the winding number of the field, N , is gauge invariant.

(b) Show that by a smooth gauge transformation, the fields can be transformed to a gauge
where ar = 0. Show that it is not generally possible to transform to a gauge where aθ = 0.

3. Verify the covariant Leibniz rule

∂i(φ
∗Djφ) = (Diφ)

∗Djφ+ φ∗DiDjφ ,

and also the identity [Di, Dj ]φ = −ifijφ. Use these to complete the derivation of the
Bogomolny energy bound and the Bogomolny equations in the abelian Higgs model.

4. The energy of static fields in the abelian Higgs model on a general surface Σ with coordi-
nates yi : i = 1, 2 and metric ds2 = gijdy

idyj is

E =

∫

Σ

{

1

4
fijfkl g

ikgjl +
1

2
(Diφ)

∗Djφ gij +
λ

8
(1− φ∗φ)2

}

√

det g dy1dy2 ,

where det g is the determinant of the metric tensor and gij is the inverse metric tensor.

Find the expression for E in the Euclidean plane, using polar coordinates r, θ and the
appropriate metric. Assuming the fields of a unit winding vortex have the form

ar = 0 , aθ = f(r) , φ = h(r)eiθ ,

simplify the expression for E and deduce that the field equations reduce to the coupled
ODEs

d2h

dr2
+

1

r

dh

dr
− 1

r2
(1− f)2h+

λ

2
(1− h2)h = 0 ,

d2f

dr2
− 1

r

df

dr
+ (1− f)h2 = 0 .
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5. The Bogomolny equations for a unit winding vortex, with fields as in Q.4, simplify to

dh

dr
− 1

r
(1− f)h = 0 ,

df

dr
− r

2
(1− h2) = 0 .

By differentiating, verify that if these are satisfied, then so are the second order ODEs in
Q.4, with λ = 1.

By eliminating f , find the radial form of the Taubes equation for u = 2 log h.

6. Consider a surface Σ with real coordinates y1, y2 and metric ds2 = Ω(y1, y2)((dy1)2 +
(dy2)2). (Actually, by a suitable choice of coordinates, any metric on a surface can be
put in this form locally. Ω is called the conformal factor.) Find the simplified form of
the energy expression E in Q.4 for this metric. When λ = 1, a variant of the Bogomolny
rearrangement leads to Bogomolny equations where the usual 1

2 is replaced by Ω
2 in the

second equation, and the resulting Taubes equation (ignoring the delta functions) is

∇2u− Ωeu +Ω = 0 .

The general formula for the Gaussian curvature of Σ is K = − 1
2Ω∇2 log Ω. Find the

constant value of K for which the change of variable u = σ − log Ω reduces the Taubes
equation to the Liouville equation

∇2σ − eσ = 0 .

Verify that the appropriate value of K occurs for Ω = 8
(1−r2)2 , where r2 = (y1)2 + (y2)2

and r < 1. (This is the conformal factor for the Poincaré disc model of the hyperbolic
plane.)

Show that a solution of Liouville’s equation is

σ = log

(

32r2

(1− r4)2

)

,

and by combining σ and Ω appropriately, show that on the Poincaré disc there is a 1-vortex
solution for which the magnitude of the Higgs field is

|φ| = 2r

1 + r2
.

Check that this satisfies the required boundary conditions.

7. On the surface Σ with real coordinates and metric as in Q.6, introduce a complex coordinate
z = y1 + iy2 and its complex conjugate z̄. Show that

∂z =
1

2
(∂1 − i∂2) , ∂z̄ =

1

2
(∂1 + i∂2) .
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Let az = 1
2 (a1− ia2) and az̄ = 1

2 (a1+ ia2) and find the relation between fzz̄ = ∂zaz̄ −∂z̄az
and B = f12. Write the metric and area element on the surface in terms of dz and dz̄.

Rewrite the Bogomolny equations using Dz̄φ and fzz̄. Solve the first Bogomolny equation,
and rederive the Taubes equation. [You will need to relate ∂z∂z̄ to the Laplacian.]

8. The Riemann sphere coordinate on S2 is z = tan ϑ
2 eiϕ, where ϑ, ϕ are standard polar

coordinates. Show that the standard metric and area 2-form are

ds2 =
4dzdz̄

(1 + |z|2)2 , dA = 2i
dz ∧ dz̄

(1 + |z|2)2 ,

and hence that Re z and Im z are isothermal coordinates.

Let w = R(z) be a rational map from S2 to S2. Find the pull-back of the area form on
the w-sphere by R and deduce that R is orientation-preserving.

9. Let (x1, x2, x3) be Cartesian coordinates in R
3, and S2 the unit sphere. Find the formula

for z on the unit sphere in terms of (x1, x2, x3). Find the values of z corresponding to
(±1, 0, 0), (0,±1, 0) and (0, 0,±1).

Consider a cube in its standard orientation centred at the origin, with vertices on the
unit sphere. Split the vertices into two sets of four, with each set being the vertices of a
tetrahedron. Find the Cartesian coordinates and hence the value of z at these vertices.

For each tetrahedron, find the monic quartic polynomial (with leading term z4) whose
zeros are the four vertices of the tetrahedron. Find the monic order-8 polynomial whose
zeros are all eight vertices of the cube.

10. Consider a rational map of degree d,

R(z) =
p(z)

q(z)
,

where p and q are (generic) polynomials of degree d. The Wronskian of R is the polynomial
W (z) = p′(z)q(z)− q′(z)p(z). Verify that the derivative of R vanishes where W vanishes.
Show that W is a polynomial of degree 2d− 2. Show that under a Möbius transformation,

R → αR+ β

γR+ δ
,

the zeros of the Wronskian are unaffected.

How can you interpret a Wronskian that has degree less than 2d − 2? Investigate your
interpretation for the map R(z) = zd.

11. Consider the 1-parameter family of degree-3 rational maps

R(z) =

√
3az2 − 1

z(z2 −
√
3a)

where a is complex. Find the Wronskian of these maps, and find the values of a for which
the Wronskian is tetrahedrally symmetric.


