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II: Ginzburg Landau Vortices and the Abelian Higgs model

David Stuart

dmas2@cam.ac.uk

These are informal notes for the second part of the course, which concerns vortices in Ginzburg Landau theory.
Precise statements and proofs can be found in the book “Vortices and Monopoles” by Jaffe and Taubes (Birkhauser
1982).

II.1 Ungauged Ginzburg Landau vortices

Consider a Higgs field Φ : R2 → C in 2 spatial dimensions with potential energy

GL(Φ) =
1

2

∫

R
2

{
∣
∣∇Φ

∣
∣
2
+

λ

4

(
1 − |Φ|2

)2
}

d2x . (II.1)

Here, λ > 0 is a real parameter. Minimizers, or more generally stationary points, will satisfy the Euler Lagrange
equation

−△Φ −
λ

2
Φ
(
1 − |Φ|2

)
= 0 . (II.2)

It is natural to impose the boundary condition lim|x|→∞ |Φ(x)| = 1 in view of the form of the self-interaction potential.

The basic vortex solutions have the following form in polar coordinates reiθ = x1 + ix2:

Φ(x) = fN (r)eiNθ , (II.3)

where fN is satisfies

− f ′′
N −

f ′
N

r
+

N2

r2
fN =

λ

2

(
1 − f2

N

)
fN ,

lim
r→0

fN (r) = 0 , lim
r→∞

fN (r) = 1 . (II.4)

The potential itself has a finite piece
∫ (

1 − f2
N

)2
r dr dθ < ∞, but the angular gradient terms make the R

2 integral
diverge at spatial infinity:

∫
∣
∣∇Φ

∣
∣
2
d2x =

∫ (

f ′2
N (r) +

N2

r2
f2
N (r)

)

r dr dθ
r→∞
∼ 2πN2

∞∫

0

dr

r
→ ∞ . (II.5)

The boundary condition at spatial infinity means that the Higgs field defines a map from large circles ‖x‖ = R to the
unit circle (as R → ∞):

Φ

|Φ|
:
{

x : ‖x‖ = R
}

→ S1 =
{

Φ : |Φ| = 1
}

⊂ C . (II.6)

One can associate to such maps an integer called the winding number, given as an integral

w :=
1

2π
lim

R→∞

∮

‖x‖=R

d(argΦ) =
1

2π
lim

R→∞

∮

‖x‖=R

〈iΦ , dΦ〉 , (II.7)

for sufficiently regular fields. For the basic vortex, defined in polar co-ordinates by (II.3) and (II.4), the winding
number clearly equals the number N .

Exercise: use the Stokes-Green identity to obtain an alternative formula for the winding number as a two dimen-
sional integral. (See (II.30) below.)

Exercise: check that if Φ is a smooth solution of (II.2) then w = 1− |Φ|2 verifies −∆w+λ|Φ|2w = 2|∇Φ|2 ≥ 0.
Deduce from the maximum principle that as long as λ ≥ 0, this solution satisfies 0 ≤ |Φ| ≤ 1 in any disc (or arbitrary
regular domain) such that 0 ≤ |Φ| ≤ 1 holds on the boundary of the domain.
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II.2 Gauged Ginzburg Landau vortices

Electromagnetic fields on R
2 can be described by a real 1-form:

A = A1 dx
1 + A2 dx

2 ∈ Ω1(R2) (II.8)

The corresponding magnetic field B is given by the two-dimensional curl B = ∂1A2 − ∂2A1. To understand the
coupling of electromagnetic fields to complex scalar fields such as the Higgs field we introduce the formalism of
gauge theories.

II.2.1 Covariant derivatives and gauge invariance

The covariant derivative of a (complex scalar) Φ : R2 → C is defined as

DΦ :=

2∑

j=1

(
∂Φ

∂xj
− iAj Φ

)

dxj =:

2∑

j=1

(
∇A

)

j
Φ dxj . (II.9)

This definition can be motivated by the gauge principle - the potential (II.1) for Φ has a global gauge invariance

GL(Φ) = GL
(
eiχΦ

)
for χ = const which can be extended to a local gauge invariance in which the phase factor

depends upon x, i.e. χ = χ(x), by introducing the additional field (II.8) with transformaion rule

Φ 7→ eiχ Φ ⇒ A 7→ A + dχ . (II.10)

The covariant derivative (II.9) then transforms to

D̃Φ̃ =
2∑

j=1

(
∂

∂xj
− iÃj − i∂jχ

)

Φ̃ dxj =
2∑

j=1

(
∂

∂xj
− iAj

)
(
eiχ Φ

)
dxj

= eiχ
2∑

j=1

(
∂

∂xj
− iAj

)

Φ dxj = eiχ DΦ . (II.11)

Since
∣
∣D̃Φ̃

∣
∣
2
=
∣
∣DΦ

∣
∣
2
, one can easily construct gauge invariant theories from the former which also involve a gauge

invariant field strength B:

Vλ(A,Φ) =
1

2

∫

R
2

{

B2 +
∣
∣DΦ

∣
∣
2
+

λ

4

(
1 − |Φ|2

)
}

d2x = Vλ(Ã, Φ̃) (II.12)

B dx1 ∧ dx2 = dA =

(
∂A2

∂x1
−

∂A1

∂x2

)

dx1 ∧ dx2 (II.13)

The integral (II.12) defines the Abelian Higgs functional Vλ.

II.2.2 Geometric interpretation of gauge fields

We briefly relate gauge theories to the formalism of connections on vector bundles described in differential geometry.

The set F of physical fields - in this case complex-valued functions Φ : R2 → C - forms a vector space1. One can

multiply elements of F by real-valued functions f ∈ C∞(M) defined on the spatial domain M = R
2, i.e. f · Φ ∈ F

for Φ ∈ F - they have the structure of a module over C∞(M). We define an inner product

〈· , ·〉 : F × F → C∞(M) , 〈Φ , Ψ〉 :=
1

2

(
Φ∗ Ψ + ΦΨ∗

)
. (II.14)

The covariant derivative operator (II.9) is constructed (as a map from F to the space Ω1(F) of 1-forms taking values
in F) which satisfies:

D
(
f Φ
)

= df · Φ + f ·DΦ Leibnitz proprety (II.15)

d〈Φ , Ψ〉 = 〈DΦ , Ψ〉 + 〈Φ , DΨ〉 unitarity (II.16)

1Ignoring boundary conditions

2
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In the geometrical view of this formalism, one regards the fields as sections of a vector bundle over the spatial manifold

(base space) M , in this case R
2. A vector bundle V with base space R

2 and fibre C
j means that we have

• total space V := R
2 × C

j

• projection map π : V → R
2

The set π−1(x) ∼= C
j is the fibre over x ∈ M , and has the structure of a vector space. (If curves in M are not

contractible to points (e.g. on the torus), then V may well have more structure than a mere product space.) A crucial
point is that we do not have a pre-determined way to relate points on different fibres, i.e. there is no given identification

of π−1(x) and π−i(y). A connection gives a way to relate fibres over different points in the base space, i.e.

F = Γ(V ) := sections of V =
{

functions s : M → V : π
(
s(x)

)
= x

}

. (II.17)

Given a pointwise inner product on F , a unitary connection is characterized by properties (II.15) and (II.16).
A connection gives a way to ”lift” a curve t 7→ x(t) ∈ M to a curve in total space t 7→ Φ(t) ∈ V , given Φ(0) such
that

π
(
Φ(t)

)
= x(t) ∀ t ∈ R . (II.18)

From this point of view, a connection corresponds to the specification of a family of horizontal subspaces Hp ⊂ TpV
with dimHp = dimM , which can be used to define an identification of fibres over different points of the base space

lying on a curve. In our case at p = (x,Φ) ∈ V , introduce the 2 (real) dimensional target space

Hp :=
{

(ẋ, Φ̇) ∈ TpV : Φ̇ − iAj ẋ
jΦ = 0

}

, (II.19)

then t 7→ Φ(t) is a lift of the curve t → x(t) ∈ M if

dΦ

dt
− iAj Φ

dxj

dt
=

∂Φ

∂xj

dxj

dt
− iAj Φ

dxj

dt
= 0

⇒ ẋ ·DΦ = 0 , (II.20)

using the chain rule.
The section Φ(t) so constructed is a horizontal lift of the curve x(t). The phrase parallel transport is also used. For
a full development of this formalism, see “Bleecker, Gauge theory and variational principle” or “Jost, Riemannian
geometry and geometric analysis”.
The notion of curvature can be introduced in analogous fashion to Riemannian geometry, as the commutator of co-
variant derivatives:

DjDkΦ − DkDjΦ = −i
(

∂jAk − ∂kAj

)

Φ (II.21)

In R
2, there is only one algebraically independent component

D1D2Φ − D2D1Φ = −iB Φ . (II.22)

II.2.3 Finite energy critical points of the gauge invariant potential

We are interested in field configurations (A,Φ) which make the potential Vλ(A,Φ) given by (II.12) stationary and
finite, i.e. impose boundary conditions

lim
‖x‖→∞

B(x) = 0 , lim
‖x‖→∞

∣
∣DΦ(x)

∣
∣ = 0 , lim

‖x‖→∞

∣
∣Φ(x)

∣
∣
2

= 1 . (II.23)

Critical points have to satisfy the Euler Lagrange equations:

−
(
(D1)

2 + (D2)
2
)
Φ =

λ

2

(
1 − |Φ|2

)
Φ

∂2 B = −〈iΦ , D1Φ〉

∂1 B = +〈iΦ , D2Φ〉 (II.24)

3
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Single vortex solutions are of the form

Φ(x) = fN (r) eiNθ , A(x) = N αN (r) dθ , (II.25)

where the exclusively r dependent functions fN , αN are determined by ordinary differential equations resulting
from (II.24), subject to the boundary conditions limr→∞ fN (r) = limr→∞ αN (r) = 1 and limr→0 fN (r) =
limr→0 αN (r) = 0, which can be seen to be the natural conditions for finite energy (exercise).

The winding number can alternatively be computed in terms of the gauge field A: indeed, assume that ∃ δ >
0, C > 0 such that

∣
∣DΦ

∣
∣ +

∣
∣1 − |Φ|2

∣
∣ ≤

C

(1 + r)1+δ
. (II.26)

then

N =
1

2π
lim

R→∞

∮

‖x‖=R

〈iΦ , dΦ〉 =
1

2π
lim

R→∞

∮

‖x‖=R

A

=
1

2π
lim

R→∞

∮

‖x‖=R

(
A1 dx

1 + A2 dx
2
)

=
1

2π

∫

R
2

B dx1 ∧ dx2 . (II.27)

The proof is based on the identity

∮

‖x‖=R

〈iΦ , dΦ〉 =

∮

‖x‖=R

〈iΦ , DΦ + iAΦ〉 =

∮

‖x‖=R

〈iΦ , DΦ〉
︸ ︷︷ ︸

=O(R−δ)

+

∮

‖x‖=R

∣
∣Φ
∣
∣
2

︸︷︷︸
→1

A . (II.28)

and then using Stoke’s theorem to arrive at the magnetic field B. In the geometric picture, N gives the degree of the
line bundle of which Φ in section. For finite action solutions to the Euler Lagrange equations (II.24), the fields |B|,
|DΦ| and

∣
∣1− |Φ|2

∣
∣ decay exponentially fast as ‖x‖ → ∞, and so the above calculation is certainly justified.

Finally, regarding Φ as a function R
2 → C ∼= R

2, we can use the Jacobian of the derivative to introduce the
topological charge density:

j0(Φ) = det

(
∂Φ1

∂x1

∂Φ1

∂x2

∂Φ2

∂x1

∂Φ2

∂x2

)

=

〈

i
∂Φ

∂x1
,
∂Φ

∂x2

〉

=
1

2

{
∂

∂x1

〈

iΦ ,
∂Φ

∂x2

〉

−
∂

∂x2

〈

iΦ ,
∂Φ

∂x1

〉}

=
1

2
ǫabǫij

∂Φa

∂xi

∂Φb

∂xj
(II.29)

to derive another expression for N by Stoke’s theorem:

1

2π

∮

‖x‖=R

〈iΦ , dΦ〉 =
1

2π

∮

‖x‖=R

{〈

iΦ ,
∂Φ

∂x1

〉

dx1 +

〈

iΦ ,
∂Φ

∂x2

〉

dx2

}

=
1

π

∫

‖x‖≤R

j0(Φ) dx1 ∧ dx2 ,

which implies that

N = lim
R→∞

1

2π

∮

‖x‖=R

〈iΦ , dΦ〉 =
1

π

∫

R
2

j0(Φ) dx1 ∧ dx2 . (II.30)

4
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II.3 λ = 1: the Bogomolny argument for self-dual vortices

For λ = 1 the gauge invariant potential can be put into the form

V1(A,Φ) =
1

2

∫

R
2

{(

B −
1 − |Φ|2

2

)2

+ 4
∣
∣∂̄AΦ

∣
∣
2

}

dx1 ∧ dx2 + Nπ , (II.31)

where the differential operator ∂̄A is defined by

∂̄A Φ :=
1

2

(
D1Φ + iD2Φ

)
. (II.32)

In order to prove the identity (II.31), we first of all expand the two expressions in the integrand on the right hand side:

(

B −
1 − |Φ|2

2

)2

= B2 +
1

4

(
1 − |Φ|2

)2
− B

(
1 − |Φ|2

)
(II.33)

4
∣
∣∂̄AΦ

∣
∣
2

=
∣
∣D1Φ

∣
∣
2
+
∣
∣D2Φ

∣
∣
2
+ 2 〈D1Φ , iD2Φ〉 (II.34)

The R
2 integral of the mixed term B

(
1 − |Φ|2

)
in (II.33) can be rewritten by integration by parts

∫

‖x‖≤R

B
(
1 − |Φ|2

)
dx1 ∧ dx2 =

∫

‖x‖≤R

(
∂A2

∂x1
−

∂A1

∂x2

)
(
1 − |Φ|2

)
dx1 ∧ dx2

= −

∫

‖x‖≤R

A2
∂

∂x1

(
1 − |Φ|2

)
dx1 ∧ dx2

+

∫

‖x‖≤R

A1
∂

∂x2

(
1 − |Φ|2

)
dx1 ∧ dx2

+

∮

‖x‖=R

(
1 − |Φ|2

) (
A1 dx

1 + A2 dx
2
)
. (II.35)

When extending the integral to R
2, i.e. sending the the circle radius R → ∞, the surface term vanishes and we are

left with
∫

R
2

B
(
1 − |Φ|2

)
dx1 ∧ dx2 = 2

∫

R
2

{

A2

〈

Φ ,
∂Φ

∂x1

〉

− A1

〈

Φ ,
∂Φ

∂x2

〉}

dx1 ∧ dx2 . (II.36)

Up to a Jacobian j0(Φ), this is cancelled by the R
2 integral of the D1 ↔ D2 mixing terms which arise due to (II.34):

2

∫

R
2

〈D1Φ , iD2Φ〉 dx
1 ∧ dx2 = −2

∫

R
2

{

A1

〈

−iΦ , i
∂Φ

∂x2

〉

+

〈
∂Φ

∂x1
, A2 Φ

〉}

dx1 ∧ dx2

− 2

∫

R
2

j0(Φ) dx1 ∧ dx2 (II.37)

Altogether, (II.31), (II.36) and (II.37) imply that

1

2

∫

R
2

{

4
∣
∣∂̄AΦ

∣
∣
2
+

(

B −
1 − |Φ|2

2

)2
}

dx1 ∧ dx2 = V1(A,Φ) −

∫

R
2

j0(Φ) dx1 ∧ dx2

= V1(A,Φ) − Nπ . (II.38)

cf. (II.30) for the j0(Φ) integral.

Remark II.1 The identity (II.38)should be regarded as analogous to the identity

1

2

∫

R

dθ

dx

2

+ 2(1− cos θ) dx =
1

2

∫

R

(
dθ

dx
− 2 sin

θ

2
)2 dx + 8

which provides the identification of the kinks set of kinks {θK(· − X)}
X∈R with arbitrary centre X as the set of

all minimizers of the sine-Gordon potential energy with boundary conditions θ → 2π as x → +∞ and θ → 0 as
x → −∞.

5
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We rewrite the identity as

V1(A,Φ) =
1

2

∫

R
2

∥
∥B(A,Φ)

∥
∥
2
dx1 ∧ dx2 + Nπ

B(A,Φ) =
(

B − 1
2

(
1 − |Φ|2

)
, 2 ∂̄AΦ

)

, (II.39)

with a two component Bogomolny operator B(A,Φ). It shows that if there exists a solution of B(A,Φ) = 0 then it
minimizes the energy amongst configurations of winding number N ∈ N, and we say the Bogomolny bound V1 ≥ Nπ
is saturated. {

(A,Φ) : B(A,Φ) = 0
}

⊂
{

(A,Φ) : V1(A,Φ) = Nπ
}

. (II.40)

If we change signs in the computations (II.34) and (II.37), we obtain

V1(A,Φ) =
1

2

∫

R
2

{(

B −
1 − |Φ|2

2

)2

+ 4
∣
∣∂AΦ

∣
∣
2

}

dx1 ∧ dx2 − Nπ

∂AΦ :=
1

2

(
D1Φ − iD2Φ

)
. (II.41)

When N > 0, the first version (II.39) is appropriate and we will only consider this case. If N < 0, one could use the
related formula (II.41) with sign changes to deduce completely analogous results.

II.4 The Self-dual case: Finite energy solutions to the Bogomolny equations

Theorem: Fix N ∈ N0, then for any choice z = (z1, z2, ..., zN ) of N unordered, possibly repeated points zj ∈ C ∼=
R

2, there is a smooth, uniquely determined pair of functions a, φ with

(i) V1

(
a(·; z), φ(·, z)

)
= Nπ

(ii) B
(
a(·; z), φ(·, z)

)
= 0

(iii) a(·; z) and φ(·, z) solve the Euler Lagrange equations (II.24) at λ = 1. Conversely, all the solutions of

(II.24)

∣
∣
∣
λ=1

with finite action and winding number N solve B = 0 and are gauge equivalent to one of the
(
a(·; z), φ(·, z)

)
.

(iv) Φ ≈ cj(z − zj)
nj as z → zj where cj ∈ C and nj is the number of times zj appears in the list z.

(v) ∃ positive numbers k1, k2, k3 and δ < 1 such that
∣
∣DΦ(x)

∣
∣ ≤ k1

(
1 − |Φ|2

)
≤ k2 e

−(1+δ)‖x‖

0 ≤ B =
(
1 − |Φ|2

)
≤ k3 e

−(1+δ)‖x‖ . (II.42)

(vi) The winding number N can be expressed as

N =
1

2π
lim

R→∞

∮

‖x‖=R

〈iΦ , dΦ〉 =
1

π

∫

R
2

dΦ ∧ dΦ =
1

2π

∫

R
2

B dx1 ∧ dx2 . (II.43)

(vii) At N = 0, all the solutions of (II.24)

∣
∣
∣
λ=1

are gauge equivalent to a = 0 and φ = 1.

(viii) For N < 0, there are completely analogous solutions as we discussed above.

(ix) Note that the zeros of φ are unchanged by gauge transformations since
∣
∣eiχ

∣
∣ = 1.

To interpret generic (a, φ) solutions physically, keep in mind that Φ = fN (r)eiNθ behaves like Φ ≈ cNrNeiNθ =
cNzN as r → 0. Thus regard the a(·; z) and φ(·, z) as being non-linear superpositions of N vortices of arbitrary

locations z1,...,zN ∈ R
2. At the very special self dual value λ = 1, single vortices can be interpreted as non-

interacting. At the level of the energy, the total energy of these solutions is Nπ which is precisely N times the energy
π of one vortex.

6
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II.4.1 Sketch of the proof

For the complete proof of this theorem, see chapter III of the book of “Jaffe Taubes”. We will just discuss the most
important ingredients.

(i) The second component of the Bogomolny equation B = 0, namely,

∂̄AΦ =
1

2

(
D1 + iD2

)
Φ =

1

2

(
∂

∂x1
+ i

∂

∂x2

)

Φ −
i

2

(
A1 + iA2

)
Φ

=:
∂Φ

∂z̄
− iᾱΦ = 0 , where ᾱ =

A1 + iA2

2
, (II.44)

almost takes the form of the holomorphicity condition ∂Φ
∂z̄

= 0. To get rid of the ᾱ perturbation, use the method

of integrating factors. If we can solve ∂w
∂z̄

= iᾱ, then

∂

∂z̄

(
e−iw Φ

)
= e−w

(
∂Φ

∂z̄
− iᾱΦ

)

= 0 , (II.45)

i.e. f = e−wΦ is holomorphic. Now recall the proposition from complex analysis that, if a function f is

holomorphic ∂f
∂z̄

= 0, then the zeros {zj ∈ C : f(zj) = 0} of f are isolated. Near zj , f has the local form

f(z) ≈ cj(z − zj)
nj , nj ≡ multiplicity, cj ∈ C . (II.46)

from which we can read off the local behaviour of Φ near its zeros. The solution of ∂
∂z̄

= iᾱ can be written as

w(z) =
1

2πi

∫

|u−z|<ε

iᾱ(u, ū)

u − z
du ∧ dū (II.47)

since 1
u−z

is the Green function of the ∂
∂z̄

operator

∂

∂z̄

1

u − z
= 2πi δ(z − u) , (II.48)

see the introduction to Principles of algebraic geometry by “Griffiths & Harris”.

(ii) Once Φ is known, A1, A2 are determined by ∂Φ
∂z̄

− iᾱΦ = 0:

ᾱ = −i
∂

∂z̄
lnΦ , α = +i

∂

∂z
lnΦ . (II.49)

Using a polar decomposition for Φ, the phase Θ is given by the arguments of z − zj ,

Φ = exp

(
1

2
(u + iΘ)

)

⇒ Θ(z) = 2
N∑

j=1

arg(z − zj) , (II.50)

and we can solve for the radial part u using (II.49):

A1 =
1

2

(
∂2u + ∂1Θ

)
, A2 = −

1

2

(
∂1u − ∂2Θ

)
. (II.51)

(iii) The magnetic field is in principle determined by (II.51), but it is a bit delicate to treat because Θ is not a
smooth function due to (II.50), in particular its second derivatives do not commute on the full complex plane, as
indicated by an application of the Stokes-Green identity:

∫

|z−zj |≤ε

(
∂2Θ

∂x1 ∂x2
−

∂2Θ

∂x2 ∂x1

)

dx1 ∧ dx2 =

∮

|z−zj |=ε

dΘ = 4π nj . (II.52)
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More precisely, (II.52) demonstrates their difference to equal a sum of delta functions:

∂2Θ

∂x1 ∂x2
−

∂2Θ

∂x2 ∂x1
= 4π

N∑

j=1

δ(z − zj) (II.53)

From (II.51) and (II.53), we can compute the magnetic field as

B = ∂1A2 − ∂2A1 = −
1

2
△u +

1

2

(
∂2Θ

∂x1 ∂x2
−

∂2Θ

∂x2 ∂x1

)

= −
1

2
△u + 2π

N∑

j=1

δ(z − zj) . (II.54)

On the other hand, the first component Bogomolny equation fixes B as

B =
1

2

(

1 − |Φ|2
)

=
1

2

(

1 − eu
)

, (II.55)

so putting (II.54) and (II.55) together, we arrive at the non-linear partial differential equation:

−△u + eu − 1 = −4π
N∑

j=1

δ(z − zj) (II.56)

Explicit solutions (II.56) are unknown so far, but one can bring (II.56) into a finite form by regularization: If we
introduce

v := u − u0 , u0 := −

N∑

j=1

ln

(

1 +
µ

|z − zj |2

)

, µ ≫ 1 , (II.57)

then (II.56) reads

−△v + eu0 ev = 1 − 4

N∑

j=1

ln

(

1 +
µ

|z − zj |2

)

=: g0 . (II.58)

This modified equation (II.58) has a unique C∞ solution for any z1, ..., zN obtained by minimizing the func-
tional

I[v] =

∫

R
2

{
1

2

∣
∣∇v

∣
∣
2
+ (g0 − 1) v + eu (ev − 1)

}

d2x (II.59)

see chapter III in the book of Jaffe and Taubes.

A generalization to curved spaces In the article of Witten, (PRL (1977) Vol.38, 121-124), the Bogomolny argument
was carried out on the Poincare unit disc, i.e. the domain

Σ :=
{

z ∈ C : |z| < 1
}

(II.60)

with metric

ds2 =
8
(
dx2 + dy2

)

(1 − |z|2)2
=: e2ρ

(
dx2 + dy2

)
. (II.61)

Let Φ denote a section of V → Σ with Φ(x) ∈ C and A = A1dx+A2dy a connection 1 form, moreover define

Ω0(Σ) ≡ set of functions Σ → R ≡ zero forms

Ω1(Σ) ≡
{

A1 dx + A2 dy
}

, Ai : Σ → R ≡ 1 forms

Ω2(Σ) ≡
{

f dx ∧ dy
}

, f : Σ → R ≡ 2 forms . (II.62)
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