3P1b Quantum Field Theory: Example Sheet 2
 Michaelmas 2023

Corrections and suggestions should be emailed to ac2553@cam.ac.uk.

1. Consider a real scalar field with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} \tag{1}
\end{equation*}
$$

Show that, after normal ordering, the conserved four-momentum $P^{\mu}=\int d^{3} x T^{0 \mu}$ takes the operator form

$$
\begin{equation*}
P^{\mu}=\int \frac{d^{3} p}{(2 \pi)^{3}} p^{\mu} a_{\vec{p}}^{\dagger} a_{\vec{p}} \tag{2}
\end{equation*}
$$

where $p^{0}=E_{\vec{p}}$ in this expression. From Eq. (2), verify that if $\phi(x)$ is now in the Heisenberg picture, then

$$
\left[P^{\mu}, \phi(x)\right]=-i \partial^{\mu} \phi(x) .
$$

2* Show that in the Heisenberg picture,

$$
\dot{\phi}(x)=i[H, \phi(x)]=\pi(x) \quad \text { and } \quad \dot{\pi}(x)=i[H, \pi(x)]=\nabla^{2} \phi(x)-m^{2} \phi(x) .
$$

Hence show that the operator $\phi(x)$ satisfies the Klein-Gordon equation.
3. Let $\phi(x)$ be a real scalar field in the Heisenberg picture. Show that the relativistically normalised states $|p\rangle=\sqrt{2 E_{\vec{p}}} a_{\vec{p}}^{\dagger}|0\rangle$ satisfy

$$
\langle 0| \phi(x)|p\rangle=e^{-i p \cdot x} .
$$

4. In Example Sheet 1, you showed that the classical angular momentum of a field is given by

$$
Q_{i}=\frac{1}{2} \epsilon_{i j k} \int d^{3} x\left(x^{j} T^{0 k}-x^{k} T^{0 j}\right) .
$$

Write down the explicit form of the angular momentum for a free real scalar field with Lagrangian as in Eq.(1). Show that, after normal ordering, the quantum operator Q_{i} can be written as

$$
Q_{i}=\frac{i}{2} \epsilon_{i j k} \int \frac{d^{3} p}{(2 \pi)^{3}} a_{\vec{p}}^{\dagger}\left(p^{j} \frac{\partial}{\partial p_{k}}-p^{k} \frac{\partial}{\partial p_{j}}\right) a_{\vec{p}} .
$$

Hence confirm that the quanta of the scalar field have spin zero (i.e. a one-particle state $|\vec{p}\rangle$ has zero angular momentum in its rest frame).
5. Show that the time ordered product $\mathrm{T}\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right)$ and the normal ordered product : $\phi\left(x_{1}\right) \phi\left(x_{2}\right)$: are both symmetric under the interchange of x_{1} and x_{2}. Deduce that the Feynman propagator $\Delta_{F}\left(x_{1}-x_{2}\right)$ has the same symmetry property.
6. The Schwinger-Dyson equation states that

$$
\begin{align*}
\left(\square_{x}+m^{2}\right)\left\langle\phi_{x} \phi_{1} \ldots \phi_{n}\right\rangle= & \left\langle\mathcal{L}_{\text {int }}^{\prime}\left[\phi_{x}\right] \phi_{1} \ldots \phi_{n}\right\rangle \\
& -i \sum_{j=1}^{n} \delta^{(4)}\left(x-x_{j}\right)\left\langle\phi_{1} \ldots \phi_{j-1} \phi_{j+1} \ldots \phi_{n}\right\rangle, \tag{3}
\end{align*}
$$

where $\phi_{j} \equiv \phi\left(x_{j}\right)$ and $\phi_{x} \equiv \phi(x)$. Recall that the brackets stand for a shorthand of time-ordering, i.e.,

$$
\left\langle\phi_{1} \ldots \phi_{n}\right\rangle \equiv\langle\Omega| \mathrm{T}\left(\phi_{1} \ldots \phi_{n}\right)|\Omega\rangle
$$

and for simplicity we are assuming that the interacting part of the Lagrangian $\left(\mathcal{L}_{\text {int }}\right)$ does not include derivatives of the fields.
In lectures we showed (3) for two fields for a QFT that is local and causal. Derive explicitly (3) for three fields by using the same assumptions.
7. Examine $\langle 0| \hat{S}|0\rangle$ to order λ^{2} in ϕ^{4} theory. Identify the different contributions arising from an application of Wick's theorem and derive Feynman rules representing these contributions as diagrams. Confirm that to order λ^{2}, the combinatoric factors work out so that the vacuum to vacuum amplitude is given by the following diagramatic expression,

$$
\langle 0| \hat{S}|0\rangle=\exp (\wp+\zeta+\circlearrowleft+\ldots)
$$

corresponding to the exponential of the sum of distinct vacuum bubble diagrams.
8. Consider the scalar Yukawa theory given by the Lagrangian

$$
\mathcal{L}=\partial_{\mu} \psi^{*} \partial^{\mu} \psi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-M^{2} \psi^{*} \psi-\frac{1}{2} m^{2} \phi^{2}-g \psi^{*} \psi \phi .
$$

Calculate the amplitude for meson decay $\phi \rightarrow \psi \bar{\psi}$ to leading order in g. Show that the amplitude is only non-zero for $m>2 M$ and explain the physical interpretation of this condition using conservation laws.

