3P1c Quantum Field Theory: Example Sheet 4 Michaelmas 2023

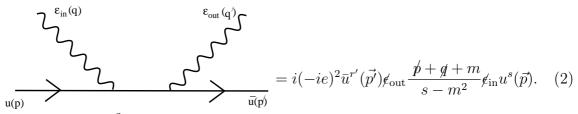
Corrections and suggestions should be emailed to ac2553@cam.ac.uk.

1. The Lagrangian density for a pseudoscalar Yukawa interaction is given by

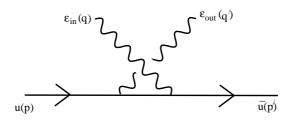
$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} \mu^2 \phi^2 + \bar{\psi} (i \not \partial - m) \psi - \lambda \phi \bar{\psi} \gamma^5 \psi \,. \tag{1}$$

where $\gamma^5 := -i\gamma^0\gamma^1\gamma^2\gamma^3$. Evaluate the amplitude for $\psi\psi \to \psi\psi$ scattering at order λ^2 using Wick's theorem and write down Feynman rules for the theory which reproduce your answer. Use these Feynman rules to write down the amplitude for $\psi\bar{\psi} \to \psi\bar{\psi}$ scattering.

2. Consider Compton scattering in which a photon and an electron scatter off each other. Let the incoming photon have polarisation vector ϵ_{in}^{μ} and the outgoing photon have polarisation ϵ_{out}^{μ} . Use the Feynman rules to derive the following amplitude associated to the lowest order diagram,

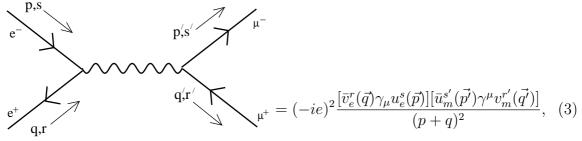


where $s = (p+q)^2$. Also, compute the contribution from the diagram



The complete amplitude at order e^2 is the sum of these two contributions. Show that the total amplitude vanishes if ϵ_{in} is replaced by the incoming photon momentum q. Check that the same holds true if ϵ_{out} is replaced by q'.

- 3. By defining an appropriate covariant derivative write down a gauge invariant Lagrangian for a complex scalar field coupled to the electromagnetic field (scalar QED). Deduce Feynman rules for the interaction vertices of this theory.
- 4. Use the Feynman rules to show that the reduced QED amplitude \mathcal{M} for $e^+e^- \to \mu^+\mu^$ is given at lowest order in e by



where the subscripts e and m denote whether the spinors satisfy the Dirac equation for electrons or for muons, respectively. Compute the spin-summed/averaged squared matrix element,

$$\mathcal{P} := \frac{1}{4} \sum_{s,r,s',r'=1}^{2} |\mathcal{M}|^2$$

Working in the center of momentum frame and in the approximation $m_e = 0$ show that,

$$\mathcal{P} = e^4 \left[\left(1 + \frac{m_{\mu}^2}{E^2} \right) + \left(1 - \frac{m_{\mu}^2}{E^2} \right) \cos^2 \theta \right]$$

where E is the energy of each incident particle and θ is the scattering angle.

5. (*optional*) Calculate the total massless-fermion spin-averaged cross-section at leading order for the process $e^+e^- \rightarrow \mu^+\mu^-$,

$$\sigma_{QED} = \frac{4\pi\alpha^2}{3s}$$

where $s = (p + q)^2$, fermion masses have been neglected (set $m_e = m_\mu = 0$) and $\alpha = e^2/(4\pi)$. This agrees with experimental data:

