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QFT: Decay Rates and Cross Sections

B.C. Allanach

So far, we have considered transition amplitudes between |i〉 and |f〉 asymp-
totic states of definite momententum: the probability is expressed in terms of
the transition amplitude part of the S-matrix

〈f |(S − 1)|i〉 = iM(2π)4δ4(pi −
n
∑

r=1

qr), (1)

for n final state particles. pi is the total 4-momentum of the initial state. The
probability of transition for i→ f will be

P =
|〈f |S − 1|i〉|2
〈f |f〉〈i|i〉 . (2)

Examining Eq. 1, we see that there will be two momentum preserving delta
functions in P , which is one too many. Really, this has come about because
we have pretended that the external states are pure momentum eigenstates.
This is an approximation: they are really a very sharply peaked superposition

of momentum eigenstates. When we take this fact into account, it ends up
absorbing the extraneous delta function.

Cross Sections

Now, we consider 2 particle beams colliding. The kinematics is depicted in
Fig. 1. The initial state is depicted in the rest frame of particle 1 in Fig. 2, with
the incoming beam of particle 2. See the Standard Model course next term (or

p2,m2

p1,m1 q1,m
′

1

q2,m
′

2

qn,m
′

n

Figure 1: Kinematics of 2 → n scattering.
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Figure 2: In the rest frame of initial particle 1, whose strength of interaction is
as if it presents an effective cross-sectional area (dσ) for scattering into f .

Peskin and Schroeder) for a derivation of the result

dσ =
(2π)4

F δ4(p1 + p2 −
n
∑

i=1

qi)|M|2, (3)

where F = 4
√

(p1.p2)2 −m2

1
m2

2
is known as the flux factor1.

In order to find the integrated cross-section for i → f , we must sum over
the possible momenta of final states in the usual Lorentz invariant manner

σ =
1

F

∫

dpf |M|2 (4)

where we have defined the total 4-momentum conserving integral over the final
state momenta pf

∫

dpf ≡ (2π)4
∫

(

n
∏

r=1

d3qr
(2π)32Eqr

)

δ4

(

pi −
n
∑

r=1

qr

)

. (5)

However, sometimes we may wish to obtain the differential cross-section, in
order to examine its behaviour as a function of a kinematical variable.

2 to 2 Scattering

2 to 2 scattering is an important example: let us examine the cross section with
respect to variations of Mandlestam variable

t ≡ (p1 − q1)
2 = m2

1
+m′

1

2 − 2Ep1Eq1 + 2p1.q1 ⇒ dt

d cos θ
= 2|p1||q1|, (6)

where cos θ is the angle between p1 and q1. cos θ is a frame-dependent quantity,
so we must be careful to define the frame (often, the centre of mass frame is
used). s = (p1 + p2)

2 is usually considered to be a constant of the scattering:

1Note that in the massless limit m1,2 ≪ E1,2, F = 2s, where s = (p1 + p2)
2.
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the centre of mass energy. u = (p1 − q2)
2 is a dependent variable: it can be

phrased in terms of cos θ and
√
s, or in terms of s, t,mi and m

′

i. We also write

d3q2
2Eq2

= d4q2δ(q
2

2
−m′

2

2
)θ(q0

2
) (7)

where θ(x) is the Heaviside theta function (i.e. θ(x) = 0 for x < 0 and θ(x) = 1
for x ≥ 0) and

d3q1
2Eq1

=
q1

2d|q1|d cos θdφ
2Eq1

=
1

4|p1|
dEq1dφdt. (8)

Then, performing the q2 and φ integrals,

dσ

dt
=

1

8πF|p1|

∫

dEq1|M|2δ(s−m′

2

2
+m′

1

2 − 2q1.(p1 + p2)). (9)

To get a simple expression, we now boost to the centre of mass frame, so
that if pµ

1
= (
√

p1
2 +m2

1
,p1) then pµ

2
= (
√

p1
2 +m2

2
,−p1). Considering the

Mandlestam variable s = (
√

p1
2 +m2

1
+
√

p1
2 +m2

2
)2,

⇒ |p1| =
λ1/2(s,m2

1
,m2

2
)

2
√
s

, F = 2λ1/2(s,m2

1
,m2

2
) (10)

where λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. Then

(

dσ

dt

)

=
|M|2

16πλ(s,m2

1
,m2

2
)
. (11)

Decay Rates

Here we again omit the derivation, leaving interested students to peruse Peskin
and Schroeder or the Standard Model course. The partial decay rate (or ‘partial
width’) for i→ f is:

Γf =
1

2Epi

∫

dpf |M|2 . (12)

We note that Γf is not Lorentz invariant, transforming as one over the energy
(1/Epi) of the decaying particle i. It is however conventional to quote decay
widths in the rest frame of the decaying particle, where then Epi = m, its mass.
The total decay rate is Γ =

∑

f Γf , whereas the branching ratio for a final state
f is BR(i→ f) = Γf/Γ. Putting in the correct units, we have lifetime

τ = 6.58× 10−25
1 GeV

Γ
seconds.
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