
PART I: Symmetries and particles.

NOTES BY PROF. HUGH OSBORN

Books

Books developing group theory by physicists from the perspective of particle physics are

H. F. Jones, Groups, Representations and Physics, 2nd ed., IOP Publishing (1998).
A fairly easy going introduction.
H. Georgi, Lie Algebras in Particle Physics, Perseus Books (1999).
Describes the basics of Lie algebras for classical groups.
J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations, 2nd ed., CUP
(2003).
This is more comprehensive and more mathematically sophisticated, and does not describe
physical applications in any detail.
Z-Q. Ma, Group Theory for Physicists, World Scientific (2007).
Quite comprehensive.
P. Ramond, Group Theory: A Physicist’s Survey. (CUP, 2010).
A new book. Excellent and original style. Contains significant material beyond the course.

The following books contain useful discussions, in chapter 2 of Weinberg there is a proof
of Wigner’s theorem and a discussion of the Poincaré group and its role in field theory,
and chapter 1 of Buchbinder and Kuzenko has an extensive treatment of spinors in four
dimensions.
S. Weinberg, The Quantum Theory of Fields, (vol. 1), CUP (2005).
J. Buchbinder and S. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, or
a Walk Through Superspace, 2nd ed., Institute of Physics Publishing (1998).

They are many mathematical books with titles containing reference to Groups, Represen-
tations, Lie Groups and Lie Algebras. The motivations and language is often very different,
and hard to follow, for those with a traditional theoretical physics background. Particular
books which may be useful are
B.C. Hall, Lie Groups, Lie Algebras, and Representations, Springer (2004), for an earlier
version see arXiv:math-ph/0005032.
This focuses on matrix groups.
More accessible than most
W. Fulton and J. Harris, Representation Theory, Springer (1991).

Historically the following book, first published in German in 1931, was influential in showing
the relevance of group theory to atomic physics in the early days of quantum mechanics.
For an English translation
E.P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spec-
tra, Academic Press (1959).
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Prologue

The following excerpts are from Strange Beauty, by G. Johnson, a biography of Murray
Gell-Mann1, the foremost particle physicist of the 1950’s and 1960’s who proposed SU(3)
as a symmetry group for hadrons and later quarks as the fundamental building blocks. It
reflects a time when most theoretical particle physicists were unfamiliar with groups beyond
the rotation group, and perhaps also a propensity for some to invent mathematics as they
went along.

As it happened, SU(2) could also be used to describe the isospin symmetry- the group
of abstract ways in which a nucleon can be “rotated” in isospin space to get a neutron or
a proton, or a pion to get negative, positive or neutral versions. These rotations were what
Gell-Mann had been calling currents. The groups were what he had been calling algebras.

He couldn’t believe how much time he had wasted. He had been struggling in the dark
while all these algebras, these groups- these possible classification schemes- had been studied
and tabulated decades ago. All he would have to do was to go to the library and look them
up.

In Paris, as Murray struggled to expand the algebra of the isospin doublet, SU(2), to
embrace all hadrons, he had been playing with a hierarchy of more complex groups, with
four, five, six, seven rotations. He now realized that they had been simply combinations
of the simpler groups U(1) and SU(2). No wonder they hadn’t led to any interesting new
revelations. What he needed was a new, higher symmetry with novel properties. The next
one in Cartan’s catalogue was SU(3), a group that can have eight operators.

Because of the cumbersome way he had been doing the calculations in Paris, Murray
had lost the will to try an algebra so complex and inclusive. He had gone all the way up to
seven and stopped.

1Murray Gell-Mann, 1929-, American, Nobel prize 1969.
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0 Notational Conventions

Hopefully we use standard conventions. For any Mij , i belonging to an ordered set with
m elements, not necessarily 1, . . .m, and similarly j belonging to an ordered set with n
elements, M = [Mij ] is the corresponding m×n matrix, with of course i labelling the rows,
j the columns. I is the unit matrix, on occasion In denotes the n× n unit matrix.

For any multi-index Ti1...in then T(i1...in), T[i1...in] denote the symmetric, antisymmetric
parts, obtained by summing over all permutations of the order of the indices in Ti1...in ,
with an additional −1 for odd permutations in the antisymmetric case, and then dividing
by n!. Thus for n = 2,

T(ij) = 1
2(Tij + Tji) , T[ij] = 1

2(Tij − Tji) . (0.1)

We use µ, ν, σ, ρ as space-time indices, i, j, k are spatial indices while α, β, γ are spinorial
indices.

For a set of elements x then {x : P} denotes the subset satisfying a property P .

A vector space V may be defined in terms of linear combinations of basis vectors {vr},
r = 1, . . . ,dimV so that an arbitrary vector can be expressed as

∑
r arvr. For two vector

spaces V1, V2 with bases {v1r}, {v2s} we may define the tensor product space V1 ⊗ V2 in
terms of the basis of pairs of vectors {v1rv2s} for all r, s. An arbitrary vector in V1 ⊗ V2

is a linear combination v =
∑

r,s ars v1rv2s and dim(V1 ⊗ V2) = dimV1 dimV2. The direct
sum V1 ⊕ V2 is defined so that if v ∈ V1 ⊕ V2 then v = v1 + v2 with vi ∈ Vi. It has a basis
{v1r, v2s} and dim(V1 ⊕ V2) = dimV1 + dimV2.
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1 Introduction

There are nowadays very few papers in theoretical particle physics which do no not mention
groups or Lie algebras and correspondingly make use of the mathematical language and
notation of group theory, and in particular of that for Lie groups. Groups are relevant
whenever there is a symmetry of a physical system, symmetry transformations correspond
to elements of a group and the combination of one symmetry transformation followed by
another corresponds to group multiplication. Associated with any group there are sets
of matrices which are in one to one correspondence with each element of the group and
which obey the same the same multiplication rules. Such a set a of matrices is called a
representation of the group. An important mathematical problem is to find or classify all
groups within certain classes and then to find all possible representations. How this is
achieved for Lie groups will be outlined in these lectures although the emphasis will be
on simple cases. Although group theory can be considered in the abstract, in theoretical
physics finding and using particular matrix representations are very often the critical issue.
In fact large numbers of groups are defined in terms of particular classes of matrices.

Group theoretical notions are relevant in all areas of theoretical physics but they are
particularly important when quantum mechanics is involved. In quantum theory physical
systems are associated with vectors belonging to a vector space and symmetry transforma-
tions of the system are associated with linear transformations of the vector space. With a
choice of basis these correspond to matrices so that directly we may see why group repre-
sentations are so crucial. Historically group theory as an area of mathematics particularly
relevant in theoretical physics first came to the fore in the 1930’s directly because of its ap-
plications in quantum mechanics (or matrix mechanics as the Heisenberg formulation was
then sometimes referred to). At that time the symmetry group of most relevance was that
for rotations in three dimensional space, the associated representations, which are associ-
ated with the quantum mechanical treatment of angular momentum, were used to classify
atomic energy levels. The history of nuclear and particle physics is very much a quest to
find symmetry groups. Initially the aim was to find a way of classifying particles with
nearly the same mass and initially involved isospin symmetry. This was later generalised to
the symmetry group SU(3), the eightfold way, and famously led to the prediction of a new
particle the Ω−. The representations of SU(3) are naturally interpreted in terms of more
fundamental particles the quarks which are now the basis of our understanding of particle
physics.

Apart from symmetries describing observed particles, group theory is of fundamental
importance in gauge theories. All field theories which play a role in high energy physics are
gauge field theories which are each associated with a particular gauge group. Gauge groups
are Lie groups where the group elements depend on the space-time position and the gauge
fields correspond to a particular representation, the adjoint representation. To understand
such gauge field theories it is essential to know at least the basic ideas of Lie group theory,
although active research often requires going considerably further.
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1.1 Basic Definitions and Terminology

A group G is a set of elements {gi} (here we suppose the elements are labelled by a discrete
index i but the definitions are easily extended to the case where the elements depend on
continuously varying parameters) with a product operation such that

gi, gj ∈ G ⇒ gigj ∈ G . (1.1)

Further we require that there is an identity e ∈ G such that for any g ∈ G

eg = ge = g , (1.2)

and also g has an inverse g−1 so that

gg−1 = g−1g = e . (1.3)

Furthermore the product must satisfy associativity

gi(gjgk) = (gigj)gk for all gi, gj , gk ∈ G , (1.4)

so that the order in which a product is evaluated is immaterial. A group is abelian if

gigj = gjgi for all gi, gj ∈ G . (1.5)

For a discrete group with n elements then n = |G| is the order of the group.

Two groups G = {gi} and G′ = {g′i} are isomorphic, G ≃ G′, if there is a one to one
correspondence between the elements consistent with the group multiplication rules.

For any group G a subgroup H ⊂ G is naturally defined as a set of elements belonging
to G which is also a group. For any subgroup H we may an equivalence relation between
gi, g

′
i,

gi ∼ g′i ⇔ gi = g′ih for h ∈ H . (1.6)

Each equivalence class defines a coset and has |H| elements. The cosets form the coset space
G/H,

G/H ≃ G/ ∼ , dimG/H = |G|/|H| . (1.7)

In general G/H is not a group since gi ∼ g′i, gj ∼ g′j does not imply gigj ∼ g′ig
′
j .

A normal or invariant subgroup is a subgroup H ⊂ G such that

gHg−1 = H for all g ∈ G . (1.8)

In this case G/H becomes a group since for g′i = gihi, g
′
j = gjhj , with hi, hj ∈ H, then

g′ig
′
j = gigjh for some h ∈ G. For an abelian group all subgroups are normal subgroups.

The centre of a group G, Z(G), is the set of elements which commute with all elements
of G. This is clearly an abelian normal subgroup. For an abelian group Z(G) ≃ G.

For two groups G1, G2 we may define a direct product group G1 ⊗ G2 formed by pairs
of elements {(g1i, g2k)}, belonging to (G1, G2), with the product rule (g1i, g2k)(g1j , g2l) =
(g1ig1j , g2kg2l). Clearly the identity element is (e1, e2) and (g1i, g2k)−1 = (g−1

1i , g
−1
2k ). So long

as it is clear which elements belong to G1 and which to G2 we may write the elements of
G1 ⊗G2 as just g1g2 = g2g1. For finite groups |G1 ⊗G2| = |G1| |G2|.

2



1.2 Particular Examples

It is worth describing some particular finite discrete groups which appear frequently.

The group Zn is defined by integers 0, 1, . . . n − 1 with the group operation addition
modulo n and the identity 0. Alternatively the group may be defined by the complex
numbers e2πir/n, of modulus one, under multiplication. Clearly it is abelian. Abstractly it
consists of elements ar with a0 = an = e and may be generated just from a single element
a satisfying an = e.

The dihedral group Dn, of order 2n, is the symmetry group for a regular n-sided polygon
and is formed by rotations through angles 2πr/n together with reflections. The elements
are then {ar, bar} where an = e, b2 = e and we require ba = an−1b. For n > 2 the group is
non abelian, note that D2 ≃ Z2 ⊗ Z2.

The remaining frequently occurring group is the permutation group Sn on n objects. It
is easy to see that the order of Sn is n!.

1.3 Further Definitions

Here we give some supplementary definitions connected with groups which are often nota-
tionally convenient.

If gj = ggig
−1 for some g ∈ G then gj is conjugate to gi, gj ∼ gi. The equivalence

relation ∼ divides G into conjugacy classes Cr. Clearly the identity is in a conjugacy class
by itself, for an abelian group all elements have their own conjugacy class.

For a subgroup H ⊂ G then the elements g ∈ G such that ghg−1 ∈ H for all h ∈ H, or
gHg−1 = H, form a subgroup of G, which contains H itself, called the normaliser of H in
G, written NG(H). If H is a normal subgroup, NG(H) = G.

An automorphism of a group G = {gi} is defined as a mapping between elements,
gi → g′i, such that the product rule is preserved, i.e.

g′ig
′
j = (gigj)′ for all gi, gj ∈ G , (1.9)

so that G′ = {g′i} ≃ G. Clearly we must have e′ = e. In general for any fixed g ∈ G we
may define an inner automorphism by g′i = ggig

−1. It is straightforward to see that the
set of all automorphisms of G itself forms a group AutG which must include G/Z(G) as a
normal subgroup.

IfH ⊂ AutG, so that for any h ∈ H and any g ∈ G we have g →
h
gh with g1hg2h = (g1g2)h

and (gh1)h2 = gh1h2 , we may define a new group called the semi-direct product of H with G,
denoted HnG. As with the direct product this is defined in terms of pairs of elements (h, g)
belonging to (H,G) but with the rather less trivial product rule (h, g)(h′, g′) = (hh′, gg′h).
Note that (h, g)−1 = (h−1, (g−1)h

−1
). It is often convenient to write the elements of H nG

as simple products so that (h, g) → hg = ghh. For the semi-direct product H n G, G is a
normal subgroup since hgh−1 = gh ∈ G and hence H ≃ H nG/G.
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As a simple illustration we have Dn ≃ Z2 n Zn where Z2 = {e, b} with b2 = e and
Zn = {ar : r = 0, . . . n− 1} with an = e and we define, for any g = ar ∈ Zn, gb = g−1.

1.4 Representations

For any group G a representation is a set of non singular (i.e. non zero determinant) square
matrices {D(g)}, for all g ∈ G, such that

D(g1)D(g2) = D(g1g2) , (1.10)
D(e) = I , (1.11)

D(g−1) = D(g)−1 , (1.12)

where I denotes the unit matrix. If the matrices D(g) are n × n the representation has
dimension n.

The representation is faithful if D(g1) ̸= D(g2) for g1 ̸= g2. There is always a trivial
representation or singlet representation in which D(g) = 1 for all g. If the representation is
not faithful then if D(h) = I for h ∈ H it is easy to see that H must be a subgroup of G,
moreover it is a normal subgroup.

For complex matrices the conjugate representation is defined by the matrices D(g)∗.
The matrices (D(g)−1)T also define a representation.

Since

det
(
D(g1)D(g2)

)
= detD(g1) detD(g2) , det I = 1 , detD(g)−1 =

(
detD(g)

)−1 ,
(1.13)

{detD(g)} form a one-dimensional representation of G which may be trivial and in general
is not faithful.

Two representations of the same dimension D(g) and D′(g) are equivalent if

D′(g) = SD(g)S−1 for all g ∈ G . (1.14)

For any finite group G = {gi} of order n we may define the dimension n regular repre-
sentation by considering the action of the group on itself

ggi =
∑
j

gjDji(g) , (1.15)

where [Dji(g)] are representation matrices with a 1 in each column and row and with all
other elements zero. As an example for D3 = {e, a, a2, b, ba, ba2}, where a3 = b2 = e, ab =
ba2, then

Dreg(a) =

 0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 , Dreg(b) =

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (1.16)
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A representation of dimension n acts on an associated n-dimensional vector space V, the
representation space. For any vector v ∈ V we may define a group transformation acting on
v by

v →
g
vg = D(g)v . (1.17)

Transformations as in (1.14) correspond to a change of basis for V. A representation is
reducible if there is a subspace U ⊂ V, U ̸= V, such that

D(g)u ∈ U for all u ∈ U , (1.18)

otherwise it is an irreducible representation or irrep. For a reducible representation we may
define a representation of lower dimension by restricting to the invariant subspace. More
explicitly with a suitable choice of basis we may write, corresponding to (1.18),

D(g) =
(
D̂(g) B(g)

0 C(g)

)
for u =

(
û
0

)
, (1.19)

where the matrices D̂(g) form a representation of G. If, for any invariant subspace, we may
restrict the representation matrices to the form shown in (1.19) with B(g) = 0 for all g the
representation is completely reducible.

For an abelian group G all irreducible representations are one-dimensional since all
matrices D(g) commute for all g ∈ G and they may be simultaneously diagonalised. For
the n-dimensional translation group Tn, defined by n-dimensional vectors under addition
(with 0 as the unit), then for a representation it necessary, for a ∈ Rn, a→ D(a) satisfying
D(a1)D(a2) = D(a1 + a2). Irreducible representations are all of the form D(a) = eb·a, for
any n-vector b dual to a.

Representations need not be completely reducible, if {R} are n× n matrices forming a
group GR and a is a n-component column vector then we may define a group in terms of
the matrices

D(R, a) =
(
R a
0 1

)
, (1.20)

with the group multiplication rule

D(R1, a1)D(R2, a2) = D(R1R2, R1a2 + a1) , (1.21)

which has the abelian subgroup Tn for R = I. The group defined by (1.21) is then GR nTn
with aR = Ra.

In general for a completely reducible representation the representation space V decom-
poses into a direct sum of invariant spaces Ur which are not further reducible, V ≃ ⊕k

r=1Ur,
and hence there is a matrix S such that

SD(g)S−1 =


D1(g) 0

0 D2(g)
. . .

Dk(g)

 , (1.22)
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and where Dr(g) form irreducible representations for each r. Writing R for the representa-
tion given by the matrices D(g) and Rr for the irreducible representation matrices Dr(g)
then (1.22) is written as

R = R1 ⊕ · · · ⊕ Rk . (1.23)

Useful results, which follow almost directly from the definition of irreducibility, charac-
terising irreducible representations are:

Schur’s Lemmas. If D1(g), D2(g) form two irreducible representations then (i)

SD1(g) = D2(g)S , (1.24)

for all g requires that the two representation are equivalent or S = 0. Also (ii)

SD(g) = D(g)S , (1.25)

for all g for an irreducible representation D(g) then S ∝ I.

To prove (i) suppose V1,V2 are the representation spaces corresponding to the repre-
sentations given by the matrices D1(g), D2(g), so that V1 →

S
V2. Then the image of S,

ImS = {v : v = Su, u ∈ V1}, is an invariant subspace of V2, D2(g) ImS = ImS D2(g), by
virtue of (1.24). Similarly the kernel of S, KerS = {u : Su = 0, u ∈ V1} forms an invariant
subspace of V1, both sides of (1.24) giving zero. For both representations to be irreducible
we must have ImS = V2, KerS = 0, so that S is invertible, detS ̸= 0, (this is only possible
if dimV2 = dimV1). Since then D2(g) = SD1(g)S−1 for all g the two representations are
equivalent.

To prove (ii) suppose the eigenvectors of S with eigenvalue λ span a space Vλ. Applying
(1.25) to Vλ shows thatD(g)Vλ are also eigenvectors of S with eigenvalue λ so thatD(g)Vλ ⊂
Vλ and consequently Vλ is an invariant subspace unless Vλ = V and then S = λI.

1.4.1 Induced Representations

A representation of a group G also gives a representation when restricted to a subgroup H.
Conversely for a subgroup H ⊂ G then it is possible to obtain representations of G in terms
of those for H by constructing the induced representation. Assume

v →
h
D(h)v , h ∈ H , v ∈ V , (1.26)

with V the representation space for this representation of H. For finite groups the cosets
forming G/H may be labelled by an index i so that for each coset we may choose an element
gi ∈ G such that all elements belonging to the i’th coset can be expressed as gih for some
h ∈ H. The choice of gi is arbitrary to the extent that we may let gi → gihi for some fixed
hi ∈ H. For any g ∈ G then

ggi = gjh for some h ∈ H , i, j = 1, . . . , N , N = |G|/|H| . (1.27)
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Assuming (1.27) determines h the induced representation is defined so that that under the
action of a group transformation g ∈ G,

vi →
g
D(h)vj , vi = (gi, v) , D(h)vj = (gj , D(h)v) . (1.28)

In (1.28) h depends on i as well as g and vi ∈ Vi which is isomorphic to V for each i so
that the representation space for the induced representation is the N -fold tensor product
V⊗N . The representation matrices for the induced representation are then given by N ×N
matrices whose elements are D(h) for some h ∈ H,

Dji(g) =

{
D(h) , gj

−1g gi = h ∈ H ,

0 , gj
−1g gi /∈ H .

(1.29)

To show that (1.28) is in accord with the group multiplication rule we consider a subsequent
transformation g′ so that

vi →
g
D(h)vj →

g′
D(h′)D(h)vk = D(h′h)vk for g′gj = gkh

′ ⇒ (g′g)gi = gkh
′h . (1.30)

If H = {e}, forming a trivial subgroup of G, and D(h) → 1, the induced representation
is identical with the regular representation for finite groups.

As a simple example we consider G = Dn generated by elements a, b with an = b2 =
e, ab = ban−1. H is chosen to be the abelian subgroup Zn = {ar : r = 0, . . . , n − 1}. This
has one-dimensional representations labelled by k = 0, 1, . . . , n− 1 defined by

v →
a
e

2πik
n v . (1.31)

With this choice for H there are two cosets belonging to Dn/Zn labelled by i = 1, 2 and we
may take g1 = e, g2 = b. Then for v1 = (e, v) transforming as in (1.31) then with v2 = (b, v)
(1.28) requires, using ab = ba−1,

(v1, v2) →
a

(e
2πki

n v1, e
− 2πki

n v2) = (v1, v2)A , (v1, v2) →
b

(v2, v1) = (v1, v2)B , (1.32)

for 2 × 2 matrices A,B,

A =

(
e

2πik
n 0
0 e−

2πik
n

)
, B =

(
0 1
1 0

)
, (1.33)

which satisfy An = I, B2 = I, AB = BAn−1 and so give a two dimensional representation
of Dn for each k. By considering A→ BAB it is clear that the representation for k → n−k
is equivalent to that in (1.33).

1.4.2 Unitary Representations

For application in quantum mechanics we are almost always interested in unitary represen-
tations where the matrices are require to satisfy

D(g)† = D(g−1) = D(g)−1 . (1.34)
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For such representation then the usual scalar product on V is invariant, for transformations
as in (1.17) v1g†v2g = v2

†v1. If U is an invariant subspace then the orthogonal subspace U⊥,
as defined by the scalar product, is also an invariant subspace. Hence unitary representations
are always completely reducible.

Theorem: For a finite group all representations are equivalent to unitary representations.

To show this define
S =

∑
i

D(gi)†D(gi) , (1.35)

where the sum is over all elements of the group G = {gi}. Noting that for any g, {gig} =
{gi}, since if gjg = gig then gj = gi, we have

SD(g)−1 = SD(g−1) =
∑
i

D(gi)†D(gig−1)

=
∑
i

D(gig)†D(gi)

= D(g)†
∑
i

D(gi)†D(gi) = D(g)†S , (1.36)

using that D(g) form a representation and also (AB)† = B†A†. Hence if we define ⟨v1, v2⟩ =
v1

†Sv2 then we have ⟨v1, D(g−1)v2⟩ = (D(g)v1, v2) or ⟨v1g, v2g⟩ = ⟨v1, v2⟩. With respect to
this scalar product D(g) is unitary (or we may define D′(g) = S

1
2D(g)S− 1

2 and then show
D′(g)†D′(g) = I).

1.4.3 Orthogonality Relations

Schur’s lemmas have an important consequence in that the matrices for irreducible repre-
sentations obey an orthogonality relation. To derive this let

A(R′,R) =
∑
i

D(R′)(gi−1)AD(R)(gi) , B(R,R′) =
∑
i

D(R)(gi)BD(R′)(gi−1) , (1.37)

where D(R)(g), D(R′)(g) are the matrices corresponding to the irreducible representation
R,R′, and A,B are arbitrary matrices of the appropriate dimension. Then

A(R′,R)D(R)(g) = D(R′)(g)A(R′,R) , D(R)(g)B(R,R′) = B(R,R′)D(R)(g′) , (1.38)

for any g ∈ G. The proof of (1.38) follows exactly in the fashion as in (1.36), essentially
since {gi} = {gig}. Schur’s lemmas then require that A(R′,R),B(R,R′) = 0 unless R′ = R

when both A(R′,R),B(R,R′) are proportional to the identity. Hence we must have

S(R′,R)
rs,uv =

∑
i

D(R′)
rv (gi−1)D(R)

us (gi) =
|G|
nR

δR′R δrs δuv , (1.39)

where nR is the dimension of the representation R. The constant in (1.39) is determined
by considering S(R,R)

ru,us =
∑

iD
(R)
rs (e) = |G| δrs.
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1.4.4 Characters

For any representation R the character is defined by

χR(g) = tr
(
D(R)(g)

)
. (1.40)

Since traces are unchanged under cyclic permutations χR(g′gg′−1) = χR(g) so that the
character depends only on the conjugacy classes of each element. Similarly the character is
unchanged when calculated for any representations related by an equivalence transformation
as in (1.14). Since for a finite group any representation is equivalent to a unitary one we
must also have

χR(g−1) = χR(g)∗ . (1.41)

As a consequence of the orthogonality relations, (1.37) and (1.39), then using (1.41) for
two irreducible representations R,R′∑

i

χR′(gi)∗ χR(gi) = |G| δR′R . (1.42)

For an induced representation as in (1.29) if for the subgroup representation

χ(h) = tr
(
D(h)

)
, (1.43)

then
χinduced rep.(g) =

∑
i

χ(gi−1g gi)
∣∣
gi
−1g gi∈H

. (1.44)

If this is applied to the case when H = {e} giving the regular representation we get

χregular rep.(g) =

{
|G| , g = e

0 , g ̸= e .
(1.45)

1.4.5 Tensor Products

If V1,V2 are representation spaces for representations R1,R2, given by matrices D1(g),
D2(g), for a group G then we may define a tensor product representation R1 ⊗ R2 in
terms of the matrices D(g) = D1(g) ⊗ D2(g) acting on the tensor product space V1 ⊗ V2

where D(g)v =
∑

r,s arsD1(g)v1rD2(g)v2s. Since dimV = dimV1 dimV2 the tensor product
matrices have dimensions which are the products of the dimensions of the matrices forming
the tensor product. If D1(g), D2(g) are unitary then so is D(g).

In general the tensor product representation R1 ⊗ R2 for two representations R1,R2 is
reducible and may be decomposed into irreducible ones. If the irreducible representations
are listed as Rr then in general for the product of any two irreducible representations

Rr ⊗ Rs ≃ Rs ⊗ Rr ≃
⊕
t

nrs,t Rt , (1.46)
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where nrs,t are integers, which may be zero, and nrs,t > 1 if the representation Rt occurs
more than once. For non finite groups there are infinitely many irreducible representations
but the sum in (1.46) is finite for finite dimensional representations. The trace of a tensor
product of matrices is the product of the traces of each individual matrix, in consequence
trVr⊗Vs

(
D(Rr)(g) ⊗ D(Rs)(g)

)
= trVr

(
D(Rr)(g)) trVs(D

(Rs)(g)
)
, so that, in terms of the

characters χRr(g) = trVr

(
D(Rr)(g)

)
, (1.46) is equivalent to

χRr(g)χRs(g) =
∑
t

nrs,t χRt(g) . (1.47)

Using (1.42) the coefficients nrs,t can be determined by

nrs,t =
1
|G|

∑
i

χRt(gi)
∗χRr(gi)χRs(gi) . (1.48)

The result (1.46) is exactly equivalent to the decomposition of the associated represen-
tation spaces, with the same expansion for Vr ⊗ Vs into a direct sum of irreducible spaces
Vt. If Rr ⊗ Rs contains the trivial or singlet representation then it is possible to construct
a scalar product ⟨v, v′⟩ between vectors v ∈ Vr, v′ ∈ Vj which is invariant under group
transformations, ⟨D(Ri)(g)v,D(Rj)(g)v′⟩ = ⟨v, v′⟩.

1.5 Matrix Groups

It is easy to see that any set of non singular matrices which are closed under matrix multi-
plication form a group since they satisfy (1.2),(1.3),(1.4) with the identity e corresponding
to the unit matrix and the inverse of any element given by the matrix inverse, requiring
that the matrix is non singular so that the determinant is non zero. Many groups are de-
fined in terms of matrices. Thus Gl(n,R) is the set of all real n× n non singular matrices,
Sl(n,R) are those with unit determinant and Gl(n,C), Sl(n,C) are the obvious extensions
to complex numbers. Since det(M1M2) = detM1 detM2 and detM−1 = (detM)−1 the
matrix determinants form an invariant abelian subgroup unless the the conditions defining
the matrix group require unit determinant for all matrices.

Matrix groups of frequent interest are

O(n), real orthogonal n× n matrices {M}, so that

MTM = I . (1.49)

This set of matrices is closed under multiplication since (M1M2)T = M2
TM1

T . For SO(n)
detM = 1. A general n×n real matrix has n2 real parameters while a symmetric matrix has
1
2n(n+1). MTM is symmetric so that (1.49) provides 1

2n(n+1) conditions. Hence O(n), and
also SO(n), have 1

2n(n− 1) parameters. If v, v′ belong to the n-dimensional representation
space for O(n) or SO(n) then scalar product v′T v is invariant under v →Mv, v′ →Mv′.

For n even ±I ∈ SO(n) and these form the centre of the group so long as n > 2. Thus
Z(SO(2n)) ≃ Z2, n = 2, 3, . . . , while Z(SO(2n+ 1)) = {I}, n = 1, 2, . . . is trivial although
Z(O(2n+ 1)) = {±I} ≃ Z2, n = 1, 2, . . . .
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U(n), complex unitary n× n matrices, so that

M †M = I . (1.50)

Closure follows from (M1M2)† = M2
†M1

†. For SU(n) detM = 1. A general n×n complex
matrix has 2n2 real parameters while a hermitian matrix has n2. M †M is hermitian so that
U(n) has n2 parameters. (1.50) requires |detM | = 1 so imposing detM = 1 now provides
one additional condition so that SU(n) has n2 − 1 parameters. The U(n) invariant scalar
product for complex n-dimensional vectors v, v′ is v′†v.

The centre of U(n) or SU(n) consists of all elements proportional to the identity, by
virtue of Schur’s lemma, so that Z(SU(n)) = {e2πri/nI : r = 0, . . . n − 1} ≃ Zn, while
Z(U(n)) = {eiαI : 0 ≤ α < 2π} ≃ U(1).

Note that SO(2) ≃ U(1) since a general SO(2) matrix(
cos θ − sin θ
sin θ cos θ

)
, 0 ≤ θ < 2π , (1.51)

is in one to one correspondence with a general element of U(1),

eiθ , 0 ≤ θ < 2π . (1.52)

Sp(2n,R) and Sp(2n,C), symplectic 2n× 2n real or complex matrices satisfying

MTJM = J , (1.53)

where J is a 2n× 2n antisymmetric matrix with the standard form

J =


0 1
−1 0 0
0 0 1

−1 0
. . .

0 1
−1 0

 . (1.54)

In this case MTJM is antisymmetric so that (1.53) provides n(2n − 1) conditions and
hence Sp(2n,R) has n(2n + 1) parameters. For symplectic transformations there is an
antisymmetric invariant form ⟨v′, v⟩ = −⟨v, v′⟩ = v′TJv.

The condition (1.53) requires detM = 1 so there are no further restrictions as for O(n)
and U(n). To show this we define the Pfaffian1 for 2n× 2n antisymmetric matrices A by

Pf(A) =
1

2nn!
εi1...i2nAi1i2 . . . Ai2n−1i2n , (1.55)

with εi1...i2n the 2n-dimensional antisymmetric symbol, ε1...2n = 1. The Pfaffian is essentially
the square root of the usual determinant since

detA = Pf(A)2 , (1.56)
1Johann Friedrich Pfaff, 1765-1825, German.
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and it is easy to see that
Pf(J) = 1 . (1.57)

The critical property here is that

Pf(MTAM) = detM Pf(A) since εi1...i2nMi1j1 . . .Mi2nj2n = detM εj1...j2n . (1.58)

Applying (1.58) with A = J to the definition of symplectic matrices in (1.53) shows that
we must have detM = 1.

Since both ±I belong to Sp(2n,R) then the centre Z(Sp(2n,R)) ≃ Z2.

The matrix groups SO(n) and SU(n) are compact, which will be defined precisely later
but which for the moment can be taken to mean that the natural parameters vary over a
finite range. Sp(2n,R) is not compact, which is evident since matrices of the form(

cosh θ sinh θ
sinh θ cosh θ

)
, −∞ < θ <∞ . (1.59)

belong to Sp(2,R).

A compact Sp group, denoted Sp(n) or sometimes USp(2n), can be obtained by consid-
ering matrices belonging to both U(2n) and Sp(2n,C). An alternative characterisation of
Sp(n) is in terms of n×n quaternionic unitary matrices. A basis for quaternionic numbers,
denoted H after Hamilton2 and extending C, is provided by the unit imaginary quaternions
i, j, k, satisfying i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j, together with the real 1. A
general quaternion is a linear combination q = x1 + yi+ uj + vk, for x, y, u, v ∈ R, and the
conjugate q̄ = x1 − yi− uj − vk, q̄q = |q|21. A n× n quaternionic matrix M has the form

M = a1 + bi+ cj + dk , a, b, c, d real n× n matrices , (1.60)

and the adjoint is
M̄ = aT 1 − bT i− cT j − dTk . (1.61)

Sp(n) ≃ U(n,H) is defined in terms of n× n quaternion matrices with the property

M̄M = In 1 , (1.62)

for In the unit n × n matrix. A general quaternionic n × n M then has 4n2 parameters
whereas U = M̄M = Ū is a hermitian quaternion matrix which has n real diagonal elements
and 1

2n(n− 1) independent off diagonal quaternionic numbers giving n(2n− 1) parameters
altogether. Hence (1.62) provides n(2n− 1) conditions so that Sp(n) has n(2n+ 1) param-
eters.

To show the correspondence of U(n,H) with USp(2n) we replace the quaternions by
2 × 2 matrices according to

1 →
(

1 0
0 1

)
, i→

(
0 i
i 0

)
, j →

(
0 1
−1 0

)
, k →

(
i 0
0 −i

)
, (1.63)

2William Rowan Hamilton, 1805-65, Irish.
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so that any n× n quaternion matrix M becomes a 2n× 2n complex matrix M,

M → M , M̄ → M† , In1 → I2n , Inj → J ⇒ M† = −JMTJ . (1.64)

(1.62) then ensures M†M = I2n so that M ∈ U(2n) and furthermore (1.64) requires also
that M obeys (1.53).

There are also various extensions which also arise frequently in physics. Suppose g is
the diagonal (n+m) × (n+m) matrix defined by

g =
(
In 0
0 −Im

)
, (1.65)

then the pseudo-orthogonal groups O(n,m), and hence SO(n,m), are defined by real ma-
trices M such that

MT gM = g . (1.66)

The invariant form in this case is v′T gv. Similarly we may define U(n,m) and SU(n,m).
It is easy to see that O(n,m) ≃ O(m,n) and similarly for other analogous cases. The
parameter count for these groups is the same as for the corresponding O(n+m) or U(n+m),
SU(n+m). Note that matrices belonging to SO(1, 1) are just those given in (1.59).

For each matrix group the definition of course provides a representation which is termed
the fundamental representation.

1.6 Symmetries and Quantum Mechanics

A symmetry of a physical system is defined as a set of transformations acting on the system
such that the physical observables are invariant. In quantum mechanics the state of a
particular physical system is represented by a vector |ψ⟩ belonging to a vector (or Hilbert)
space H. The essential observables are then the probabilities, given that the system is
in a state |ψ⟩, of finding, under some appropriate measurement, the system in a state
|ϕ⟩. Assuming |ψ⟩, |ϕ⟩ are both normalised this probability is |⟨ϕ|ψ⟩|2. For a symmetry
transformation |ψ⟩ → |ψ′⟩ we must require

|⟨ϕ|ψ⟩|2 = |⟨ϕ′|ψ′⟩|2 for all |ψ⟩, |ϕ⟩ ∈ H . (1.67)

Any quantum state vector is arbitrary up to a complex phase |ψ⟩ ∼ eiα|ψ⟩. Making use of
this potential freedom Wigner3 proved that there is an operator U such that

U |ψ⟩ = |ψ′⟩ , (1.68)

and either ⟨ϕ′|ψ′⟩ = ⟨ϕ|ψ⟩ with U linear

U
(
a1|ψ1⟩ + a2|ψ2⟩

)
= a1U |ψ1⟩ + a2U |ψ2⟩ , (1.69)

or ⟨ϕ′|ψ′⟩ = ⟨ϕ|ψ⟩∗ = ⟨ψ|ϕ⟩ with U anti-linear

U
(
a1|ψ1⟩ + a2|ψ2⟩

)
= a1

∗U |ψ1⟩ + a2
∗U |ψ2⟩ . (1.70)

3Eugene Paul Wigner, 1902-1995, Hungarian until 1937, then American. Nobel Prize 1962.
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Thus U is unitary linear or unitary anti-linear. Mostly the anti-linear case is not relevant,
if U is continuously connected to the identity it must be linear. For the discrete symmetry
linked to time reversal t→ −t the associated operator T must be anti-linear, in order for the
Schrödinger equation i ∂∂t |ψ⟩ = H|ψ⟩ to be invariant when THT−1 = H (we must exclude
the alternative possibility THT−1 = −H since energies should be positive or bounded
below).

For a symmetry group G = {g} then we must have unitary operators U [g] where we
require U [e] = 1, U [g−1] = U [g]−1. Because of the freedom of complex phases we may relax
the product rule and require only

U [gi]U [gj ] = eiγ(gi,gj)U [gigj ] . (1.71)

If the phase factor eiγ is present this gives rise to a projective representation. However the
associativity condition (1.4) ensures γ(gi, gj) must satisfy consistency conditions,

γ(gi, gjgk) + γ(gj , gk) = γ(gigj , gk) + γ(gi, gj) . (1.72)

There are always solutions to (1.72) of the form

γ(gi, gj) = α(gigj) − α(gi) − α(gj) , (1.73)

for any arbitrary α(g) depending on g ∈ G. However such solutions are trivial since in this
case we may let eiα(g)U [g] → U [g] to remove the phase factor in (1.71). For most groups
there are no non trivial solutions for γ(gi, gj) so the extra freedom allowed by (1.71) may
be neglected so there is no need to consider projective representations, although there are
some cases when it is essential.

If G is a symmetry for a physical system with a Hamiltonian H we must require

U [g]HU [g]−1 = H for all g ∈ G . (1.74)

If H has energy levels with degeneracy so that

H|ψr⟩ = E|ψr⟩ , r = 1, . . . , n , (1.75)

then it is easy to see that
H U [g]|ψr⟩ = E U [g]|ψr⟩ . (1.76)

Hence we must have

U [g]|ψr⟩ =
n∑
s=1

|ψs⟩Dsr(g) , (1.77)

and furthermore the matrices [Dsr(g)] form a n-dimensional representation of G. If {|ψr⟩}
are orthonormal, ⟨ψr|ψs⟩ = δrs, then the matrices are unitary. The representation need not
be irreducible but, unless there are additional symmetries not taken into account or there is
some accidental special choice for the parameters in H, in realistic physical examples only
irreducible representations are relevant.
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2 Rotations and Angular Momentum, SO(3) and SU(2)

Symmetry under rotations in three dimensional space is an essential part of general physical
theories which is why they are most naturally expressed in vector notation. The fundamental
property of rotations is that the lengths, and scalar products, of vectors are invariant.

Rotations correspond to orthogonal matrices, since acting on column vectors v, they are
the most general transformations leaving vT v invariant, for real v the length |v| is given by
|v|2 = vT v. For any real orthogonal matrixM then if v is an eigenvector, in general complex,
Mv = λv we also have Mv∗ = λ∗v∗, so that if λ is complex both λ, λ∗ are eigenvalues, and
(Mv∗)TMv = |λ|2v†v = v†v so that we must have |λ|2 = 1.

2.1 Three Dimensional Rotations

Rotations in three dimensions are then determined by matrices R ∈ O(3) and hence satis-
fying

RTR = I . (2.1)

The eigenvalues of R can only be eiθ, e−iθ and 1 or −1 so that a general R can therefore be
reduced, by a real transformation S, to the form

SRS−1 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 ±1

 . (2.2)

For detR = 1, so that R ∈ SO(3), we must have the +1 case when

trR = 2 cos θ + 1 . (2.3)

Acting on a spatial vector x the matrix R induces a linear transformation

x →
R

x′ = xR , (2.4)

where, for i, j, three dimensional indices, we have

x′i = Rijxj , (2.5)

For detR = −1 the transformation involves a reflection.

A general R ∈ SO(3) has 3 parameters which may be taken as the rotation angle θ and
the unit vector n, which is also be specified by two angles, and is determined by Rn = n.
n defines the axis of the rotation. The matrix may then be expressed in general as

Rij(θ, n) = cos θ δij + (1 − cos θ)ninj − sin θ εijknk , (2.6)

where εijk is the three dimensional antisymmetric symbol, ε123 = 1. The parameters (θ, n)
cover all rotations if

n ∈ S2 , 0 ≤ θ ≤ π , (π, n) ≃ (π,−n) , (2.7)
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with S2 the two-dimensional unit sphere. For an infinitesimal rotation R(δθ, n) acting on a
vector x and using standard vector notation we then have

x −−−−−→
R(δθ,n)

x′ = x + δθ n × x . (2.8)

It is easy to see that x′2 = x2 + O(δθ2).

For a vector product (n × x)R = nR × xR so that making use of (2.8)

x −−−−−−−−→
RR(δθ,n)R−1

x′ = x + δθ nR × x , (2.9)

so that we must have
RR(δθ, n)R−1 = R(δθ,Rn) . (2.10)

Furthermore we must then have RR(θ, n)R−1 = R(θ,Rn), so that all rotations with the
same θ belong to a single conjugacy class.

2.2 Isomorphism of SO(3) and SU(2)/Z2

SO(3) ≃ SU(2)/Z2, where Z2 is the centre of SU(2) which is formed by the 2× 2 matrices
I,−I, is of crucial importance in understanding the role of spinors under rotations. To
demonstrate this we introduce the standard Pauli4 matrices, a set of three 2 × 2 matrices
which have the explicit form

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.11)

These matrices satisfy the algebraic relations

σiσj = δij I + i ϵijkσk , (2.12)

and also are traceless and hermitian. Adopting a vector notation σ = (σ1, σ2, σ3), so that
(2.12) is equivalent to a · σ b · σ = a · b I + ia × b · σ, we have

σ† = σ , tr(σ) = 0 . (2.13)

Using (2.12) then gives
tr(σiσj) = 2δij , (2.14)

which ensures that any 2 × 2 matrix A can be expressed in the form

A = 1
2tr(A) I + 1

2tr(σA) · σ , (2.15)

since the Pauli matrices form a complete set of traceless and hermitian 2 × 2 matrices.

The Pauli matrices ensure that there is a one to one correspondence between real three
vectors and hermitian traceless 2 × 2 matrices, given explicitly by

x → x · σ = (x · σ)† , x = 1
2tr(σ x · σ) , (2.16)

4Wolfgang Ernst Pauli, 1900-58, Austrian. Nobel prize 1945.
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Furthermore x · σ satisfies the matrix equation

(x · σ)2 = x2I . (2.17)

From (2.17) and (2.13) the eigenvalues of x ·σ must be ±
√

x2 and in consequence we have

det(x · σ) = −x2 . (2.18)

For any A ∈ SU(2) we can then define a linear transformation x → x′ by

x′ · σ = Ax · σA† , (2.19)

since we may straightforwardly verify that Ax ·σA† is hermitian and is also traceless, using
the invariance of any trace of products of matrices under cyclic permutations and

AA† = I . (2.20)

With, x′ defined by (2.19) and using (2.18),

x′2 = −det(x′ · σ) = −det(Ax · σA†) = −det(x · σ) = x2 , (2.21)

using det(XY ) = detX detY and from (2.20) detA detA† = 1. Hence, since this shows
that |x′| = |x|,

x′i = Rijxj , (2.22)

with [Rij ] an orthogonal matrix. Furthermore since as A → I, Rij → δij we must have
det[Rij ] = 1. Explicitly from (2.19) and (2.14)

σiRij = AσjA
† ⇒ Rij = 1

2 tr(σiAσjA†) . (2.23)

To show the converse then from (2.23), using (note σjσiσj = −σi) σjA†σj = 2 tr(A†)I−A†,
we obtain

Rjj = |tr(A)|2 − 1 , σiRijσj = 2 tr(A†)A− I . (2.24)

For A ∈ SU(2), tr(A) = tr(A†) is real (the eigenvalues of A are e±iα giving tr(A) = 2 cosα)
so that (2.24) may be solved for tr(A) and then A,

A = ± I + σiRijσj

2(1 +Rjj)
1
2

. (2.25)

The arbitrary sign, which cancels in (2.23), ensures that in general ±A↔ Rij .

For a rotation through an infinitesimal angle as in (2.8) then from (2.6)

Rij = δij − δθ εijknk , (2.26)

and it is easy to obtain, assuming A→ I as δθ → 0,

A = I − 1
2δθ in · σ . (2.27)

Note that since det(I+X) = 1+trX, to first order inX, for any matrix then the tracelessness
of the Pauli matrices is necessary for (2.27) to be compatible with detA = 1. For a finite
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rotation angle θ then, with (2.3), (2.24) gives |tr(A)| = 2| cos 1
2θ| and the matrix A can be

found by exponentiation, where corresponding to (2.6),

A(θ, n) = e−
1
2
iθ n·σ = cos 1

2θ I − sin 1
2θ in · σ . (2.28)

The parameters (θ, n) cover all SU(2) matrices for

n ∈ S2 , 0 ≤ θ < 2π , (2.29)

in contrast to (2.7).

2.3 Infinitesimal Rotations and Generators

To analyse the possible representation spaces for the rotation group it is sufficient to consider
rotations which are close to the identity as in (2.8). If consider two infinitesimal rotations
R1 = R(δθ1, n1) and R2 = R(δθ2, n2) then it is easy to see that

R = R2
−1R1

−1R2R1 = I + O(δθ1δθ2) . (2.30)

Acting on a vector x and using (2.8) and keeping only terms which are O(δθ1δθ2) we find

x →
R

x′ = x + δθ1δθ2
(
n2 × (n1 × x) − n1 × (n2 × x)

)
= x + δθ1δθ2 (n2 × n1) × x , (2.31)

using standard vector product identities.

Acting on a quantum mechanical vector space the corresponding unitary operators are
assumed to be of the form

U [R(δθ, n)] = 1 − iδθ n · J , (2.32)

J are the generators of the rotation group. Since U [R(δθ, n)]−1 = 1 + iδθ n · J + O(δθ2) the
condition for U to be a unitary operator becomes

J† = J , (2.33)

or each Ji is hermitian. If we consider the combined rotations as in (2.30) in conjunction
with (2.31) and (2.32) we find

U [R] = 1 − iδθ1δθ2 (n2 × n1) · J
= U [R2]−1U [R1]−1U [R2]U [R1]
= 1 − δθ1δθ2 [n2 · J , n1 · J] , (2.34)

where it is only necessary to keep O(δθ1δθ2) contributions as before. Hence we must have

[n2 · J , n1 · J] = i (n2 × n1) · J , (2.35)

or equivalently
[Ji, Jj ] = i εijkJk . (2.36)
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Although (2.32) expresses U in terms of J for infinitesimal rotations it can be extended
to finite rotations since

U [R(θ, n)] = exp(−iθ n · J) = lim
N→∞

(
1 − i

θ

N
n · J

)N
. (2.37)

Under rotations J is a vector since, from (2.10), U [R]U [R(δθ, n)]U [R]−1 = U [R(δθ,Rn)]
which in turn from (2.32) implies

U [R]JiU [R]−1 = (R−1)ijJj . (2.38)

For a physical system the vector operator, rotation group generator, J is identified as
that corresponding to the total angular momentum of the system and then (2.36) are the
fundamental angular momentum commutation relations. It is important to recognise that
rotational invariance of the Hamiltonian is equivalent to conservation of angular momentum
since

U [R]HU [R]−1 = H ⇔ [J,H] = 0 . (2.39)

This ensures that the degenerate states for each energy must belong to a representation
space for a representation of the rotation group.

2.4 Representations of Angular Momentum Commutation Relations

We here describe how the commutation relations (2.36) can be directly analysed to deter-
mine possible representation spaces V on which the action of the operators J is determined.
First we define

J± = J1 ± iJ2 , (2.40)

and then (2.36) is equivalent to

[J3, J±] = ± J± , (2.41a)
[J+, J−] = 2J3 . (2.41b)

The hermeticity conditions (2.33) then become

J+
† = J− , J3

† = J3 . (2.42)

A basis for a space on which a representation for the angular momentum commutation
relations is defined in terms of eigenvectors of J3. Let

J3|m⟩ = m|m⟩ . (2.43)

Then from (2.41a) it is easy to see that

J±|m⟩ ∝ |m± 1⟩ or 0 , (2.44)

so that the possible J3 eigenvalues form a sequence . . . ,m− 1,m,m+ 1 . . . .
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If the states |m± 1⟩ are non zero we define

J−|m⟩ = |m− 1⟩ , J+|m⟩ = λm|m+ 1⟩ , (2.45)

and hence
J+J−|m⟩ = λm−1|m⟩ , J−J+|m⟩ = λm|m⟩ . (2.46)

By considering [J+, J−]|m⟩ we have from (2.41b), if |m± 1⟩ are non zero,

λm−1 − λm = 2m. (2.47)

This can be solved for any m by

λm = j(j + 1) −m(m+ 1) , (2.48)

for some constant written as j(j+1). For sufficiently large positive or negative m we clearly
have λm < 0. The hermeticity conditions (2.42) require that J+J− and J−J+ are of the
form O†O and so must have positive eigenvalues with zero possible only if J− or respectively
J+ annihilates the state (⟨ψ|O†O|ψ⟩ ≥ 0, if 0 then O|ψ⟩ = 0). Hence there must be both a
maximum mmax and a minimum mmin for m requiring

J+|mmax⟩ = 0 ⇒ λmmax = (j −mmax)(j +mmax + 1) = 0 , (2.49a)
J−|mmin⟩ = 0 ⇒ λmmin−1 = (j +mmin)(j −mmin + 1) = 0 , (2.49b)

where also
mmax −mmin = 0, 1, 2, . . . . (2.50)

Taking j ≥ 0 the result (2.48) then requires

mmax = j , mmin = −j . (2.51)

For this to be possible we must have

j ∈ {0, 1
2 , 1,

3
2 , . . . } , (2.52)

and then for each value of j

m ∈ {−j,−j + 1, . . . j − 1, j} . (2.53)

The corresponding states |m⟩ form a basis for a (2j + 1)-dimensional representation space
Vj .

2.5 The |j m⟩ basis

It is more convenient to define an orthonormal basis for Vj in terms of states {|j m⟩}, with
j,m as in (2.52) and (2.53), satisfying

⟨j m|j m′⟩ = δmm′ . (2.54)
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These are eigenvectors of J3 as before

J3|j m⟩ = m|j m⟩ . (2.55)

and j may be defined as the maximum value of m so that

J+|j j⟩ = 0 . (2.56)

A state satisfying both (2.55) and (2.56) is called a highest weight state. In this case the
action of J± gives

J±|j m⟩ = N±
jm|j m±1⟩ , (2.57)

where N±
jm are determined by requiring (2.54) to be satisfied. From (2.46) and (2.48) we

must then have

|N+
jm|

2 = λm = (j −m)(j +m+ 1) , |N−
jm|

2 = λm−1 = (j +m)(j −m+ 1) . (2.58)

By convention N±
jm are chosen to real and positive so that

N±
jm =

√
(j ∓m)(j ±m+ 1) . (2.59)

In general we may then define the the states {|j m⟩} in terms of the highest weight state by

(J−)n|j j⟩ =
(
n! (2j)!
(2j−n)!

)1
2 |j j − n⟩ , n = 0, 1, . . . , 2j . (2.60)

An alternative prescription for specifying the states |j m⟩ is to consider the operator
J2 = J1

2 + J2
2 + J3

2. In terms of J±, J3 this can be expressed in two alternative forms

J2 =

{
J−J+ + J3

2 + J3 ,

J+J− + J3
2 − J3 .

(2.61)

With the first form in (2.61) and using (2.56) we then get acting on the highest weight state

J2|j j⟩ = j(j + 1)|j j⟩ . (2.62)

Moreover J2 is a rotational scalar and satisfies

[J2 , Ji] = 0 , i = 1, 2, 3 . (2.63)

In particular J− commutes with J2 so that the eigenvalue is the same for all m. Hence the
states |j m⟩ satisfy

J2|j m⟩ = j(j + 1)|j m⟩ , (2.64)

as well as (2.55). Nevertheless we require (2.57), with (2.59), to determine the relative
phases of all states.
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2.5.1 Representation Matrices

Using the |j m⟩ basis it is straightforward to define corresponding representation matrices
for each j belonging to (2.52). For the angular momentum operator

J(j)
m′m = ⟨j m′|J|j m⟩ (2.65)

or alternatively
J|j m⟩ =

∑
m′

|j m′⟩J(j)
m′m . (2.66)

The (2j + 1) × (2j + 1) matrices J(j) = [J(j)
m′m] then satisfy the angular momentum

commutation relations (2.36). From (2.55) and (2.57)

J
(j)
3 m′m = mδm′,m , J

(j)
± m′m =

√
(j ∓m)(j ±m+ 1) δm′,m±1 . (2.67)

For R a rotation then
D

(j)
m′m(R) = ⟨j m′|U [R]|j m⟩ , (2.68)

defines (2j + 1) × (2j + 1) matrices D(j)(R) = [D(j)
m′m(R)] forming a representation of the

the rotation group corresponding to the representation space Vj ,

U [R]|jm⟩ =
∑
m′

|jm′⟩D(j)
m′m(R) . (2.69)

Note that D(0)(R) = 1 is the trivial representation and for an infinitesimal rotation as in
(2.8)

D(j)
(
R(δθ, n)

)
= I2j+1 − iδθ n·J(j) . (2.70)

To obtain explicit forms for the rotation matrices it is convenient to parameterise a
rotation in terms of Euler angles ψ, θ, ϕ when

R = R(ϕ, e3)R(θ, e2)R(ψ, e3) , (2.71)

for e2, e3 corresponding to unit vectors along the 2, 3 directions Then

U [R] = e−iϕJ3 e−iθJ2 e−iψJ3 , (2.72)

so that in (2.68)

D
(j)
m′m(R) = e−im

′ϕ−imψ d
(j)
m′m(θ) , d

(j)
m′m(θ) = ⟨j m′|e−iθJ2 |j m⟩ . (2.73)

For the special cases of θ = π, 2π,

d
(j)
m′m(π) = (−1)j−mδm′,−m , d

(j)
m′m(2π) = (−1)2jδm′,m . (2.74)

In general D(j)(R(2π, n)) = (−1)2jI2j+1, which for j a 1
2 -integer is not the identity. For

representations of SO(3) it would be necessary to take j to be an integer but in quantum
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mechanics any j given by (2.52) is allowed since we require representations only up to a
phase factor. From the result for θ = π we have

e−iπJ2 |j m⟩ = (−1)j−m|j−m⟩ . (2.75)

Using this and e−iπJ3 |j m⟩ = e−iπm|j m⟩ with e−iπJ3J2e
iπJ3 = −J2 we must have from the

definition in (2.73)

d
(j)
m′m(θ) = (−1)m

′−md
(j)
−m′ −m(θ) = (−1)m

′−md
(j)
m′m(−θ) = (−1)m

′−md
(j)
mm′(θ) . (2.76)

For the simplest case j = 1
2 , it is easy to see from (2.67) that

J
( 1
2
)

+ =
(

0 1
0 0

)
, J

( 1
2
)

− =
(

0 0
1 0

)
, J

( 1
2
)

3 =
1
2

(
1 0
0 −1

)
, (2.77)

and hence we have
J( 1

2
) = 1

2 σ , (2.78)

where σi, i = 1, 2, 3 are the Pauli matrices as given in (2.11). It is clear that 1
2σi must satisfy

the commutation relations (2.36). The required commutation relations are a consequence
of (2.12). For j = 1

2 we also have

d( 1
2
)(θ) =

(
cos 1

2θ − sin 1
2θ

sin 1
2θ cos 1

2θ

)
. (2.79)

With the definition of characters in (1.40) the rotation group characters

χj(θ) = tr
(
D(j)(R(θ, n))

)
, (2.80)

depend only on the rotation angle θ. Hence they may be easily calculated by considering

χj(θ) =
j∑

m=−j
⟨j m|e−iθJ3 |j m⟩ =

j∑
m=−j

e−imθ =
sin(j + 1

2)θ
sin 1

2θ
. (2.81)

2.6 Tensor Products and Angular Momentum Addition

The representation space Vj , which has the orthonormal basis {|j m⟩}, determines an irre-
ducible representation of SU(2) and also the commutation relations (2.36) of the generators
or physically the angular momentum operators. The tensor product Vj1 ⊗Vj2 of two repre-
sentation spaces Vj1 ,Vj2 has a basis

|j1m1⟩1|j2m2⟩2 . (2.82)

Associated with Vj1 ,Vj2 there are two independent angular operators J1,J2 both satisfying
the commutation relations (2.36)

[J1,i , J1,j ] = iεijkJ1,k ,

[J2,i , J2,j ] = iεijkJ2,k . (2.83)
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They may be extended to act on Vj1 ⊗ Vj2 since with the basis (2.82)

J1 ≡ J1 ⊗ 12 , J1

(
|j1m1⟩1 |j2m2⟩2

)
= J1|j1m1⟩1 |j2m2⟩2 ,

J2 ≡ 11 ⊗ J2 , J2

(
|j1m1⟩1 |j2m2⟩2

)
= |j1m1⟩1 J2|j2m2⟩2 . (2.84)

With this definition it is clear that they commute

[J1,i , J2,j ] = 0 . (2.85)

The generator for the tensor product representation, or the total angular momentum oper-
ator, is then defined by

J = J1 + J2 . (2.86)

It is easy to see that this has the standard commutation relations (2.36).

In the space Vj1 ⊗ Vj2 we may construct states which are standard basis states for the
total angular momentum |JM⟩ labelled by the eigenvalues of J2, J3,

J3|JM⟩ = M |JM⟩ ,
J2|JM⟩ = J(J + 1)|JM⟩ . (2.87)

These states are chosen to be orthonormal so that

⟨J ′M ′|JM⟩ = δJ ′JδM ′M , (2.88)

and satisfy (2.57). All states in Vj1 ⊗ Vj2 must be linear combinations of the basis states
(2.82) so that we may write

|JM⟩ =
∑
m1,m2

|j1m1⟩1|j2m2⟩2 ⟨j1m1 j2m2|JM⟩ . (2.89)

Here
⟨j1m1 j2m2|JM⟩ , (2.90)

are Clebsch-Gordan coefficients5.

As J3 = J1,3 + J2,3 Clebsch-Gordan coefficients must vanish unless M = m1 +m2. To
determine the possible values of J it is sufficient to find all highest weight states |JJ⟩ in
Vj1 ⊗ Vj2 such that

J3|JJ⟩ = J |JJ⟩ , J+|JJ⟩ = 0 . (2.91)

We may then determine the states |JM⟩ by applying J− as in (2.60). There is clearly a
unique highest weight state with J = j1 + j2 given by

|j1+j2 j1+j2⟩ = |j1j1⟩1 |j2 j2⟩2 , (2.92)

from which |j1+j2M⟩ is obtained as in (2.60). We may then construct the states |JM⟩ for
J = j1 + j2, j1 + j2 − 1, . . . iteratively. Defining V(M) ⊂ Vj1 ⊗ Vj2 to be the subspace for
which J3 has eigenvalue M then, since it has a basis as in (2.82) for all m1 +m2 = M , we
have, assuming j1 ≥ j2, dimV(M) = j1 + j2−M +1 for M ≥ j1− j2 and dimV(M) = 2j2 +1

5Rudolf Friedrich Alfred Clebsch, 1833-1872, German. Paul Albert Gordan, 1837-1912, German.
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for M ≤ j1 − j2. Assume all states |J ′M⟩ have been found as in (2.89) for j1 + j2 ≥ J ′ > J .
For j1 + j2 > J ≥ j1 − j2 there is a one dimensional subspace in V(J) which is orthogonal to
all states |J ′J⟩ for J < J ′ ≤ j1 + j2. This subspace must be annihilated by J+, as otherwise
there would be too many states with M = J + 1, and hence there is a highest weight state
|JJ⟩. If M < j1 − j2 it is no longer possible to construct further highest weight states.
Hence we have shown, since the results must be symmetric in j1, j2, that in Vj1 ⊗Vj2 there
exists exactly one vector subspace VJ , of dimension (2J + 1), for each J-value in the range

J ∈ {j1 + j2, j1 + j2 − 1, . . . , |j1 − j2| + 1, |j1 − j2|} , (2.93)

or

Vj1 ⊗ Vj2 =
j1+j2⊕

J=|j1−j2|

VJ . (2.94)

If j1 ≥ j2 we can easily check that

j1+j2∑
J=j1−j2

(2J + 1) =
j1+j2∑

J=j1−j2

(
(J + 1)2 − J2

)
= (j1 + j2 + 1)2 − (j1 − j2)2 = (2j1 + 1)(2j2 + 1) , (2.95)

so that the basis {|JM⟩} has the correct dimension to span the vector space Vj1 ⊗ Vj2 .

Alternatively in terms of the characters given in (2.81)

χj1(θ)χj2(θ) = χj1(θ)
j2∑

m=−j2

e−imθ =
1

2i sin 1
2θ

j2∑
m=−j2

(
e(j1+m+ 1

2
)θ − e(−j1+m+ 1

2
)θ
)

=
j1+j2∑
j=j1−j2

χj(θ) =
j1+j2∑

j=|j1−j2|

χj(θ) , (2.96)

where if j2 > j1 we use χ−j(θ) = −χj−1(θ) to show all contributions to the sum for j < j2−j1
cancel. Comparing with (1.47) the result of this character calculation of course matches the
tensor product decomposition given in (2.95).

The construction of |JM⟩ states described above allows the Clebsch-Gordan coefficients
to be iteratively determined starting from J = j1 + j2 and then progressively for lower J
as in (2.93). By convention they are chosen to be real and for each J there is a standard
choice of the overall sign. With standard conventions

⟨j1m1 j2m2|JM⟩ = (−1)j1+j2−J⟨j2m2 j1m1|JM⟩ . (2.97)

Since the original basis (2.82) and {|JM⟩} are both orthonormal we have the orthogo-
nality/completeness conditions∑

m1,m2

⟨j1m1 j2m2|JM⟩⟨j1m1 j2m2|J ′M ′⟩ = δJJ ′ δMM ′ ,∑
JM

⟨j1m1 j2m2|JM⟩⟨j1m′
1 j2m

′
2|JM⟩ = δm1m′

1
δm2m′

2
. (2.98)
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For the tensor product representation defined on the tensor product space Vj1 ⊗ Vj2
we may use the Clebsch-Gordan coefficients as in (2.89) to give the decomposition into
irreducible representations for each J allowed by (2.93)∑
m1

′,m1

∑
m2

′,m2

D
(j1)
m1

′m1
(R)D(j2)

m2
′m2

(R) ⟨j1m1
′ j2m2

′|J ′M ′⟩⟨j1m1 j2m2|JM⟩ = δJ ′J D
(J)
M ′M (R) .

(2.99)

2.7 Examples of the calculation of Clebsch-Gordan coefficients

In the case in which j1 = 1 and j2 = 1
2 , there are in V1 ⊗ V 1

2
six basis states |1m1⟩ |12 m2⟩.

m1 1 1 0 0 −1 −1
m2

1
2 −1

2
1
2 −1

2
1
2 −1

2
M = m1 +m2

3
2

1
2

1
2 −1

2 −1
2 −3

2

.

In the basis |JM⟩ for the total angular momentum there are also six states |32 M⟩ and |12 M⟩.
Since there is only one state with M = 3

2 , it follows that we may identify

|32
3
2⟩ = |1 1⟩ |12

1
2⟩ . (2.100)

Now action of the lowering operator J− = J1− +J2−, allows all the states |32 M⟩ to be given
as linear combinations of product states |1m1⟩ |12 m2⟩. Applying J− = J1− +J2− to (2.100)
gives

J−|32
3
2⟩ = J1−|1 1⟩ |12

1
2⟩ + |1 1⟩ J2−|12

1
2⟩ , (2.101)

or √
3 |32

1
2⟩ =

√
2 |1 0⟩ |12

1
2⟩ + |1 1⟩ |12 −

1
2⟩ , (2.102)

giving

|32
1
2⟩ =

√
2
3 |1 0⟩ |12

1
2⟩ +

√
1
3 |1 1⟩ |12 −

1
2⟩ . (2.103)

This result then gives explicit numerical values for two Clebsch-Gordan coefficients. Re-
peating this process twice gives similar expressions for the states |32 −

1
2⟩ and |32 −

3
2⟩. The

last step provides a check: to within a sign at least one should find that

|32 −
3
2⟩ = |1−1⟩ |12 −

1
2⟩ , (2.104)

because there is only one possible state with M = −3
2 in V1 ⊗ V 1

2
.

Turning next to the J = 1
2 multiplet, we use the fact that the state |12

1
2⟩ is orthogonal

to the state |32
1
2⟩ constructed above. It follows that from (2.103) that we may write

|12
1
2⟩ = −

√
1
3 |1 0⟩ |12

1
2⟩ +

√
2
3 |1 1⟩ |12 −

1
2⟩ . (2.105)

This result is uniquely determined to within an overall phase which we have taken in ac-
cordance with the so-called Condon and Shortley phase convention, i.e. we have chosen

⟨11 1
2 −

1
2 |

1
2

1
2⟩ , (2.106)
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to be real and positive, in fact here equal to +
√

2
3 . To summarise we have shown that

the total angular momentum basis states |jm⟩ are given in terms of the product states
|1m1⟩ |12m2⟩ by

|32
3
2⟩ = |1 1⟩ |12

1
2⟩

|32
1
2⟩ =

√
2
3 |1 0⟩ |12

1
2⟩ +

√
1
3 |1 1⟩ |12 −

1
2⟩

|32 −
1
2⟩ =

√
1
3 |1−1⟩ |12

1
2⟩ +

√
2
3 |1 0⟩ |12 −

1
2⟩

|32 −
3
2⟩ = |1−1⟩ |12 −

1
2⟩ , (2.107)

and

|12
1
2⟩ = −

√
1
3 |1 0⟩ |12

1
2⟩ +

√
2
3 |1 1⟩ |12 −

1
2⟩

|12 −
1
2⟩ = −

√
2
3 |1−1⟩ |12

1
2⟩ +

√
1
3 |1 0⟩ |12 −

1
2⟩ . (2.108)

All the Clebsch-Gordan coefficients

⟨1m1
1
2m2|JM⟩ , (2.109)

can then be read off from (2.107) and (2.108).

2.7.1 Construction of Singlet States

A special example of decomposition of tensor products is the construction of the singlet
states |0 0⟩, which corresponds to the one-dimensional trivial representation and so is in-
variant under rotations. For Vj1 ⊗ Vj2 , as is clear from (2.93) this is only possible for
j1 = j2 = j and the singlet state must have the general form

|0 0⟩ =
∑
m

am |j m⟩1|j−m⟩2 . (2.110)

Requiring J+|0 0⟩ = 0 gives am = −am−1 so that, imposing the normalisation condition,

|0 0⟩ =
1√

2j + 1

2j∑
n=0

(−1)n|j j − n⟩1|j−j + n⟩2 . (2.111)

This determines the Clebsch-Gordan coefficients ⟨jm j−m|00⟩. Note that |0 0⟩ is symmetric,
antisymmetric under 1 ↔ 2 according to whether 2j is even, odd.

If we consider the extension to three spins for the tensor product space Vj1 ⊗Vj2 ⊗Vj3 ,
then we may couple |j1m1⟩1|j2m2⟩2 to form a vector with J = j3 and then use (2.111).
The result may be expressed as

|0 0⟩ =
∑

m1,m2,m3

(
j1 j2 j3
m1 m2 m3

)
|j1m1⟩1|j2m2⟩2|j3m3⟩3 , (2.112)
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where, (
j1 j2 j3
m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

⟨j1m1 j2m2|j3 −m3⟩ . (2.113)

(2.113) defines the 3j-symbols which are more symmetric than Clebsch-Gordan coefficients,
under the interchange any pair of the j,m’s the 3j-symbol is invariant save for an overall
factor (−1)j1+j2+j3 . They are non zero only if m1 + m2 + m3 = 0 and j1, j2, j3 satisfy
triangular inequalities |j1 − j2| ≤ j3 ≤ j1 + j2.

2.8 SO(3) Tensors

In the standard treatment of rotations vectors and tensors play an essential role. For
R = [Rij ] and SO(3) rotation then a vector is required to transform as

Vi →
R
V ′
i = RijVj . (2.114)

Vectors then give a three dimensional representation space V. A rank n tensor Ti1...in is
then defined as belonging to the n-fold tensor product V ⊗ · · · ⊗ V and hence satisfy the
transformation rule

Ti1...in →
R
T ′
i1...in = Ri1j1 . . . RinjnTj1...jn . (2.115)

It is easy to see the dimension of the representation space, V(⊗V)n−1, formed by rank n
tensors, is 3n. For n = 0 we have a scalar which is invariant and n = 1 corresponds to
a vector. The crucial property of rotational tensors is that they be multiplied to form
tensors of higher rank, for two vectors Ui, Vi then UiVj is a rank two tensor, and also that
contraction of indices preserves tensorial properties essential because for any two vectors
UiVi is a scalar and invariant under rotations, U ′

iV
′
i = UiVi. The rank n tensor vector space

then has an invariant scalar product T · S formed by contracting all indices on any pair of
rank n tensors Ti1...in , Si1...in .

In tensorial analysis invariant tensors, satisfying I ′i1...in = Ii1...in , are of critical impor-
tance. For rotations we have the Kronecker delta δij

δ′ij = RikRjk = δij , (2.116)

as a consequence of the orthogonality property (2.1), and also the ε-symbol

ε′ijk = RijRjmRkn εlmn = detR εijk = εijk , (2.117)

if R ∈ SO(3). Any higher rank invariant tensor is formed in terms of Kronecker deltas and
ε-symbols, for rank 2n we may use n Kronecker deltas and for rank 2n + 3, n Kronecker
deltas and one ε-symbol, since two ε-symbols can always be reduced to combinations of
Kronecker deltas.

Using δij and εijk we may reduce tensors to ones of lower rank. Thus for a rank two
tensor Tij , Tii = δijTij , which corresponds to the trace of the associated matrix, is rank
zero and thus a scalar, and Vi = 1

2εijkTjk is a vector. Hence the 9 dimensional space formed
by rank two tensors contains invariant, under rotations, subspaces of dimension one and
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dimension three formed by these scalars and vectors. In consequence rank 2 tensors do not
form an irreducible representation space for rotations.

To demonstrate the decomposition of rank 2 tensors into irreducible components we
write it as a sum of symmetric and antisymmetric tensors and re-express the latter as a
vector. Separating out the trace of the symmetric tensor then gives

Tij = Sij + εijkVk + 1
3δij Tkk , (2.118)

for
Sij = T(ij) − 1

3δij Tkk , Vi = 1
2εijkTjk . (2.119)

Each term in (2.118) transforms independently under rotations, so that for Tij → T ′
ij ,

Sij → S′
ij , Vk → V ′

k , Tkk → T ′
kk = Tkk. The tensors Sij are symmetric and traceless,

Skk = 0, and it is easy to see that they span a space of dimension 5.

These considerations may be generalised to higher rank but it is necessary to identify
for each n those conditions on rank n tensors that ensure they form an irreducible space. If
Si1...in is to be irreducible under rotations then all lower rank tensors formed using invariant
tensors must vanish. Hence we require

δirisSi1...in = 0 , εjirisSi1...in = 0 , for all r, s, 1 ≤ r < s ≤ n . (2.120)

These conditions on the tensor S are easy to solve, it is necessary only that it is symmetric

Si1...in = S(i1...in) , (2.121)

and also traceless on any pair of indices. With the symmetry condition (2.121) it is sufficient
to require just

Si1...in−2jj = 0 . (2.122)

Such tensors then span a space Vn which is irreducible.

To count the dimension of Vn we first consider only symmetric tensors satisfying (2.121),
belonging to the symmetrised n-fold tensor product, sym(V ⊗ · · · ⊗ V). Because of the
symmetry not all tensors are independent of course, any tensor with r indices 1, s indices
2 and t indices 3 will be equal to

S 1...1︸︷︷︸
r

2...2︸︷︷︸
s

3...3︸︷︷︸
t

where r, s, t ≥ 0 , r + s+ t = n . (2.123)

Independent rank n symmetric tensors may then be counted by counting all r, s, t satisfying
the conditions in (2.123), hence this gives

dim
(
sym(V ⊗ · · · ⊗ V︸ ︷︷ ︸

n

)
)

= 1
2(n+ 1)(n+ 2) . (2.124)

To take the traceless conditions (2.122) into account it is sufficient, since taking the trace of
rank n symmetric tensors gives rank n−2 symmetric tensors spanning a space of dimension
1
2(n− 1)n, to subtract the dimension for rank n− 2 symmetric tensors giving

dimVn = 1
2(n+ 1)(n+ 2) − 1

2(n− 1)n = 2n+ 1 . (2.125)

29



Thus this irreducible space Vn may be identified with the representation space j = n, with
n an integer.

For rank n symmetric traceless tensors an orthonormal basis S(m)
i1...in

, labelled by m

taking 2n + 1 values, satisfies S(m) · S(m′) = δmm
′
. Such a basis may be used to define a

corresponding set of spherical harmonics, depending on a unit vector x̂, by

Ynm(x̂) = S
(m)
i1...in

x̂i1 . . . x̂in . (2.126)

With two symmetric traceless tensors S1,i1...in and S2,i1...im then their product can be
decomposed into symmetric traceless tensors by using the invariant tensors δij , εijk, gener-
alising (2.118) and (2.119). Assuming n ≥ m, and using only one ε-symbol since two may
be reduced to Kronecker deltas, we may construct the following symmetric tensors

S1,(i1...in−r j1...jr S2,in−r+1...in+m−2r) j1...jr , r = 0, . . .m ,

εjk(i1 S1,i2...in−r j1...jr j S2,in−r+1...in+m−1−2r) j1...jr k , r = 0, . . .m− 1 . (2.127)

For each symmetric tensor there is a corresponding one which is traceless obtained by
subtracting appropriate combinations of lower order tensors in conjunction with Kronecker
deltas, as in (2.119) for the simplest case of rank two. Hence the product of the two
symmetric tensors of rank n,m decomposes into irreducible tensors of rank n + m − r,
r = 0, 1, . . . ,m, in accord with general angular momentum product rules.

In quantum mechanics we may extend the notion of a tensor to operators acting on the
quantum mechanical vector space. For a vector operator we require

U [R]ViU [R]−1 = (R−1)ijVj , (2.128)

as in (2.38), while for a rank n tensor operator

U [R]Ti1...inU [R]−1 = (R−1)i1j1 . . . (R
−1)injnTj1...jn . (2.129)

These may be decomposed into irreducible tensor operators as above. For infinitesimal
rotations as in (2.8), with U [R] correspondingly given by (2.32), then (2.128) gives

[Ji, Vj ] = i εijkVk , (2.130)

which is an alternative definition of a vector operator. From (2.129) we similarly get

[Ji, Tj1j2...jn ] = i εij1kTkj2...jn + i εij2kTj1k...jn + · · · + i εijnkTj1j2...k . (2.131)

The operators x,p are examples of vector operators for the angular momentum operator
given by L = x × p.

2.8.1 Spherical Harmonics

Rank n symmetric traceless tensors are directly related to spherical harmonics. If we choose
an orthonormal basis for such tensors S(m)

i1...in
, labelled by m taking 2n + 1 values and
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satisfying S(m) ·S(m′) = δmm
′
, then the basis may be used to define a corresponding complete

set of orthogonal spherical harmonics on the unit sphere, depending on a unit vector x̂ ∈ S2,
by

Ynm(x̂) = S
(m)
i1...in

x̂i1 . . . x̂in . (2.132)

To discuss the scalar product for such harmonics we consider the three dimensional
integrals∫

d3x e−x2+k·x = π
3
2 e

1
4
k2 ⇒

∫
d3x e−x2

(k · x)2n = π
3
2

(2n)!
22nn!

(k2)n . (2.133)

Since d3x = r2dr dΩ and using
∫∞
0 dr r2n+2e−r

2
= 1

2Γ(n+ 3
2) we obtain∫

S2

dΩ (k · x̂)2n = 4π
(2n)!
22nn!

1
(3
2)n

(k2)n , (3
2)n = 3

2 .
5
2 . . . (

3
2 + n− 1) . (2.134)

If now k = t + t̄ with t2 = t̄2 = 0 then∫
S2

dΩ (t · x̂)n(t̄ · x̂)n = 4π
n!

2n(3
2)n

(t · t̄)n . (2.135)

Since t2 = 0 then ti1 . . . tin defines a symmetric traceless tensor so that (t · x̂)n represents
a spherical harmonic. Applying the integral (2.135) then gives∫

S2

dΩ Ynm(x̂)Ynm′(x̂) = 4π
n!

2n(3
2)n

δmm
′
. (2.136)

2.9 Irreducible Tensor Operators

An alternative basis for irreducible tensor operators is achieved by requiring them to trans-
form similarly to the angular momentum states |j m⟩. An irreducible tensor operator in the
standard angular momentum basis satisfies

Definition: The set of (2k + 1) operators {Tkq} for

k ∈ {0, 1
2 , 1,

3
2 , . . . } , (2.137)

and
q ∈ {−k,−k + 1, . . . , k − 1, k} , (2.138)

for each k in (2.137), constitute a tensor operator of rank k if they satisfy the commutation
relations

[J3 , Tkq] = q Tkq ,

[J± , Tkq] = N±
kq Tkq±1 , (2.139)

with N±
kq given by (2.59). This definition is of course modelled exactly on that for the |j m⟩

states in (2.55) and (2.57) and ensures that we may treat it, from the point of view of its
angular moment properties, just like a state |k q⟩.

31



Examples:

If k = 0 then q = 0 and hence [J , T00] = 0, i.e. T00 is just a scalar operator.

If k = 1 then setting

V1±1 = ∓
√

1
2(V1 ± iV2) , V10 = V3 , (2.140)

ensures that V1q satisfy (2.139) for k = 1 as a consequence of (2.130).

If k = 2 we may form an irreducible tensor operator T2q from two vectors Vi, Ui using
Clebsch-Gordan coefficients

T2q =
∑
m,m′

V1mU1m′ ⟨1m 1m′|2q⟩ , (2.141)

with V1m, U1m′ defined as in (2.140). This gives

T22 = V11U11 , T21 =
√

1
2

(
V11U10 + V10U11

)
,

T20 =
√

1
6

(
V11U1−1 + 2V10U10 + V1−1U11

)
,

T2−1 =
√

1
2

(
V10U1−1 + V1−1U10

)
, T2−2 = V1−1U1−1 . (2.142)

The individual T2q may all be expressed in terms of components of the symmetric traceless
tensor Sij = V(iUj) − 1

3δij VkUk.

For irreducible tensor operators Tkq their matrix elements with respect to states |α, j m⟩,
where α are any extra labels necessary to specify the states in addition to jm, are constrained
by the theorem:

Wigner-Eckart Theorem.

⟨α′, j′m′|Tkq|α, j m⟩ = ⟨jmkq|j′m′⟩ C , (2.143)

with ⟨jmkq|j′m′⟩ a Clebsch-Gordan coefficient. The crucial features of this result are:

(i) The dependence of the matrix element on m, q and m′ is contained in the Clebsch-
Gordan coefficient, and so is known completely. This ensures that the matrix element is
non zero only if j′ ∈ {j + k, j + k − 1, . . . , |j − k| + 1, |j − k|}.

(ii) The coefficient C depends only on j, j′, k and on the particular operator and states
involved. It may be written as

C = ⟨α′j′||Tk||αj⟩ , (2.144)

and is referred to as a reduced matrix element.

The case k = q = 0 is an important special case. If [J , T00] = 0, then T00 is scalar
operator and we we have

⟨α′, j′m′|T00|α, j m⟩ = ⟨jm 00|j′m′⟩ ⟨α′j′||T0||αj⟩
= δjj′ δmm′ ⟨α′j′||T0||αj⟩ , (2.145)
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with reduced matrix-element independent of m.

To prove the Wigner-Eckart theorem we first note that Tkq|α, j m⟩ transforms under the
action of the angular momentum operator J just like the product state |k q⟩1|j m⟩2 under
the combined J1 + J2. Hence∑

q,m

Tkq|α, j m⟩⟨kq jm|JM⟩ = |J M⟩ (2.146)

defines a set of states {|J M⟩} satisfying, by virtue of the definition of Clebsch-Gordan
coefficients in (2.89),

J3|J M⟩ = M |J M⟩ , J±|J M⟩ = N±
J,M |J M±1⟩ . (2.147)

Although the states |J M⟩ are not normalised, it follows then that

⟨α′, j′m′|J M⟩ = CJ δj′Jδm′M , (2.148)

defines a constant CJ which is independent of m′,M . To verify this we note

⟨α′, JM |J M⟩N+
JM−1 = ⟨α′, JM |J+|J M−1⟩

= ⟨α′, JM |J−†|J M−1⟩ = ⟨α′, JM−1|J M−1⟩N−
JM . (2.149)

Since N+
JM−1 = N−

JM we then have ⟨α′, JM |J M⟩ = ⟨α′, JM−1|J M−1⟩ so that, for m′ =
M , (2.148) is independent of M . Inverting (2.146)

Tkq|α, j m⟩ =
∑
JM

|J M⟩⟨kq jm|JM⟩ , (2.150)

and then taking the matrix element with ⟨α′, j′m′| gives the Wigner-Eckart theorem, using
(2.148), with Cj′ = ⟨α′j′||Tk||αj⟩.

2.10 Spinors

For the rotation groups there are spinorial representations as well as those which can be
described in terms of tensors, which are essentially all those which can be formed from
multiple tensor products of vectors. For SO(3), spinorial representations involve j being
half integral and are obtained from the fundamental representation for SU(2).

For the moment we generalise to A = [Aαβ ] ∈ SU(r), satisfying (2.20), and consider a
vector η belonging to the r-dimensional representation space for the fundamental represen-
tation and transforming as

ηα →
A
η′α = Aα

βηβ . (2.151)

The extension to a tensor with n indices is straightforward

Tα1...αn →
A
T ′
α1...αn = Aα1

β1 . . . Aαn
βnTβ1...βn , (2.152)

Since A is unitary
(Aαβ)∗ = (A−1)βα . (2.153)
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The complex conjugation of (2.151) defines a transformation corresponding to the conjugate
representation. If we define

η̄α = (ηα)∗ , (2.154)

then using (2.153) allows the conjugate transformation rule to be written as

η̄α →
A
η̄′α = η̄β(A−1)βα . (2.155)

It is clear then that η̄αηα is a scalar. A general tensor may have both upper and lower
indices, of course each upper index transforms as (2.151), each lower one as (2.155).

As with the previous discussion of tensors it is critical to identify the invariant tensors.
For the case when A ∈ SU(2) and α, β = 1, 2 we have the two-dimensional ε-symbols,
εαβ = −εβα, ε12 = 1, and εαβ = −εβα, where it is convenient to take ε12 = −1. To verify
εαβ is invariant under the transformation corresponding to A we use

ε′αβ = Aα
γAβ

δεγδ = detA εαβ = εαβ for A ∈ SU(2) , (2.156)

and similarly for εαβ . The Kronecker delta also forms an invariant tensor if there is one
lower and one upper index since,

δ′α
β = Aα

γδγ
δ(A−1)δβ = δα

β . (2.157)

For this two-dimensional case, with the preceding conventions, we have the relations

εαβ ε
γδ = −δαγδβδ + δα

δδβ
γ , εαγε

γβ = δα
β . (2.158)

Rank n tensors as in (2.152) here span a vector space of dimension 2n. To obtain
an irreducible vector space under SU(2) transformations we require that contractions with
invariant tensors of lower rank give zero. For Sα1...αn it is sufficient to impose εαrαsSα1...αn =
0 for all r < s. The invariant tensors must then be totally symmetric Sα1...αn = S(α1...αn).
To count these we may restrict to those of the form

S 1...1︸︷︷︸
r

2...2︸︷︷︸
s

where r = 0, . . . , n , r + s = n . (2.159)

Hence there are n + 1 independent symmetric tensors Sα1...αn so that the representation
corresponds to j = 1

2n.

The SU(2) vectors ηα and also η̄α form SO(3) spinors. For this case the two index
invariant tensors εαβ and εαβ may be used to raise and lower indices. Hence we may define

ηα = εαβ ηβ , (2.160)

which transforms as in (2.155) and correspondingly

η̄α = εαβ η̄
β , (2.161)

As a consequence of (2.158) raising and then lowering an index leaves the spinors ηα un-
changed, and similarly for η̄α. In general the freedom to lower indices ensures that only
SU(2) tensors with lower indices, as in (2.152), need be considered.
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For an infinitesimal SU(2) transformation, with A as in (2.27), the corresponding change
in a spinor arising from the transformation (2.151) is

δηα = −iδθ 1
2(n · σ)αβηβ . (2.162)

For a tensor then correspondingly from (2.152)

δTα1...αn = −iδθ
n∑
r=1

1
2(n · σ)αr

βTα1...αr−1βαr+1...αn , (2.163)

where there is a sum over contributions for each separate index.

Making use of (2.158) we have

εαγεβδ σγ
δ = σβ

α , (2.164)

since tr(σ) = 0. From (2.164) we get

εαγσγ
β = εβγσγ

α , (2.165)

showing that (εσ)αβ form a set of three symmetric 2 × 2 matrices. Similar considerations
also apply to (σε)αβ . The completeness relations for Pauli matrices can be expressed as

(σε)αβ · (εσ)γδ = δα
γ δβ

δ + δα
δ δβ

γ , (εσ)αβ · (εσ)γδ = −εαγ εβδ − εαδ εβγ . (2.166)

The Pauli matrices allow symmetric spinorial tensors to be related to equivalent irre-
ducible vectorial tensors. Thus we may define, for an even number of spinor indices, the
tensor

Ti1...in = (εσi1)
α1β1 . . . (εσin)αnβn Sα1...αnβ1...βn , (2.167)

where it is easy to see that Ti1...in is symmetric and also zero on contraction of any pair of
indices, as a consequence of (2.166). For an odd number of indices we may further define

Tα i1...in = (εσi1)
α1β1 . . . (εσin)αnβn Sαα1...αnβ1...βn , (2.168)

where Tα i1...in is symmetric and traceless on the vectorial indices and satisfies the constraint

(σj)αβTβ i1...in−1j = 0 . (2.169)

For two symmetric spinorial tensors S1,α1...αn , S2,β1...βm their product are decomposed
into symmetric rank (n+m− 2r)-tensors, for r = 0, . . .m if n ≥ m, where for each r,

εβ1γ1 . . . εβrγrS1,(α1...αn−r β1...βr
S2,αn−r+1...αn+m−2r)γ1...γr

, r = 0, . . . ,m . (2.170)

For two spinors η1α, η2α the resulting decomposition into irreducible representation spaces
is given by

η1α η2β = η1(αη2β) + εαβ
1
2η1

γη2γ , (2.171)

where η1(αη2β) may be re-expressed as a vector using (2.167). This result demonstrates
the decomposition of the product of two spin-1

2 representations into j = 0, 1, scalar, vector,
irreducible components which are respectively antisymmetric, symmetric under interchange.
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3 Isospin

The symmetry which played a significant role in the early days of nuclear and particle
physics is isospin, which initially was based on the symmetry between neutrons and protons
as far as nuclear forces were concerned. The symmetry group is again SU(2) with of course
the same mathematical properties as discussed in its applications to rotations, but with a
very different physical interpretation. In order to distinguish this SU(2) group from various
others which arise in physics it is convenient to denote it as SU(2)I .

From a modern perspective this symmetry arises since the basic QCD lagrangian de-
pends on the Dirac u and d quark fields only in terms of

q =
(
u
d

)
, q̄ =

(
ū d̄

)
, (3.1)

in such a way that it is invariant under q → Aq, q̄ → q̄A−1 for A ∈ SU(2). This symmetry
is violated by quark mass terms since mu ̸= md, although they are both tiny in relation to
other mass scales, and also by electromagnetic interactions since u, d have different electric
charges.

Neglecting such small effects there exist conserved charges I±, I3 which obey the SU(2)
commutation relations

[I3, I±] = ±I± , [I+, I−] = 2I3 or [Ia, Ib] = i εabcIc , (3.2)

as in (2.41a),(2.41b) or (2.36), and also commute with the Hamiltonian

[Ia,H] = 0 . (3.3)

The particle states must then form multiplets, with essentially the same mass, which trans-
form according to some SU(2)I representations. Each particle is represented by an isospin
state |I I3⟩ which form the basis states for a representation of dimension 2I + 1.

The simplest example is the proton and neutron which have I = 1
2 and I3 = 1

2 ,−
1
2

respectively. Neglecting other momentum and spin variables, the proton, neutron states
are a doublet (|p⟩, |n⟩) and we must have

I3|p⟩ = 1
2 |p⟩ , I3|n⟩ = −1

2 |n⟩ , I−|p⟩ = |n⟩ , I+|n⟩ = |p⟩ . (3.4)

Other examples of I = 1
2 doublets are the kaons (|K+⟩, |K0⟩) and (|K̄0⟩, |K−⟩). The pions

form a I = 1 triplet (|π+⟩, |π0⟩, |π−⟩) so that

I3(|π+⟩, |π0⟩, |π−⟩) = (|π+⟩, 0,−|π−⟩) , I−|π+⟩ =
√

2|π0⟩ , I−|π0⟩ =
√

2|π−⟩ . (3.5)

Another such triplet are the Σ baryons (|Σ+⟩, |Σ0⟩, |Σ−⟩). Finally we note that the spin-3
2

baryons form a I = 3
2 multiplet (|∆++⟩, |∆+⟩, |∆0⟩, |∆−⟩). Low lying nuclei also belong to

isospin multiplets, sometimes with quite high values of I. For each multiplet the electric
charge for any particle is given by Q = Q0+I3, where Q0 has the same value for all particles
in the multiplet.
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Isospin symmetry has implications beyond that of just classification of particle states
since the interactions between particles is also invariant. The fact that the isospin genera-
tors Ia are conserved, (3.3), constrains dynamical processes such as scattering. Consider a
scattering process in which two particles, represented by isospin states |I1m1⟩, |I2m2⟩, scat-
ter to produce two potentially different particles, with isospin states |I3m3⟩, |I4m4⟩. The
scattering amplitude is ⟨I3m3, I4m4|T |I1m1, I2m2⟩ and to the extent that the dynamics are
invariant under SU(2)I isospin transformations this amplitude must transform covariantly,
i.e. ∑

m′
3,m′

4,m′
1,m′

2

D
(I3)
m′

3m3
(R)∗D(I4)

m′
4m4

(R)∗D(I1)
m′

1m1
(R)D(I2)

m′
2m2

(R) ⟨I3m′
3, I4m

′
4|T |I1m′

1, I2m
′
2⟩

= ⟨I3m3, I4m4|T |I1m1, I2m2⟩ . (3.6)

This condition is solved by decomposing the initial and final states into states |IM⟩ with
definite total isospin using Clebsch-Gordan coefficients,

|I1m1, I2m2⟩ =
∑
I,M

|IM⟩ ⟨I1m1, I2m2 |IM⟩ ,

⟨I3m3, I4m4| =
∑
I,M

⟨I3m3, I4m4|IM⟩⟨IM | , (3.7)

since then, as in (2.145),
⟨I ′M ′|T |IM⟩ = AI δI′IδM ′M , (3.8)

as a consequence of T being an isospin singlet operator. Hence we have

⟨I3m3, I4m4|T |I1m1, I2m2⟩ =
∑
I

AI ⟨I3m3, I4m4|IM⟩⟨I1m1, I2m2 |IM⟩ . (3.9)

The values of I which appear in this sum are restricted to those which can be formed by
states with isospin I1, I2 and also I3, I4. The observed scattering cross sections depend only
on |⟨I3m3, I4m4|T |I1m1, I2m2⟩|2.

As an illustration we consider πN scattering for N = p, n. In this case we can write

|π+p⟩ = |32
3
2⟩ , |π0p⟩ =

√
2
3 |

3
2

1
2⟩ −

√
1
3 |

1
2

1
2⟩ ,

|π0n⟩ =
√

2
3 |

3
2 −

1
2⟩ +

√
1
3 |

1
2 −

1
2⟩ , |π−p⟩ =

√
1
3 |

3
2 −

1
2⟩ −

√
2
3 |

1
2 −

1
2⟩ , (3.10)

using the Clebsch-Gordan coefficients which have been calculated in (2.107) and (2.108).
Hence we have the results for the scattering amplitudes

⟨π+p|T |π+p⟩ = A 3
2
,

⟨π−p|T |π−p⟩ = 1
3 A 3

2
+ 2

3 A 1
2
,

⟨π0n|T |π−p⟩ =
√

2
3

(
A 3

2
−A 1

2

)
, (3.11)

so that three observable processes are reduced to two complex amplitudes A 3
2
, A 1

2
. For the

observable cross sections

σπ+p→π+p = k
∣∣A 3

2

∣∣2 , σπ−p→π−p = 1
9k
∣∣A 3

2
+ 2A 1

2

∣∣2 , σπ−p→π0n = 2
9k
∣∣A 3

2
−A 1

2

∣∣2 , (3.12)
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for k some isospin independent constant. There is no immediate algebraic relation between
the cross sections since AI are complex. However at the correct energy A 3

2
is large due to

the I = 3
2 ∆ resonance, then the cross sections are in the ratios 1 : 1

9 : 2
9 .

An example with more precise predictions arises with NN → πd scattering, where d is
the deuteron, a pn bound state with I = 0. Hence the πd state has only I = 1. Decomposing
NN states into states |IM⟩ with I = 1, 0 we have |pp⟩ = |11⟩, |pn⟩ = 1√

2
(|10⟩+ |00⟩). Using

this we obtain σpn→π0d/σpp→π+d = 1
2 .

The examples of isospin symmetry described here involve essentially low energy pro-
cesses. Although it now appears rather fortuitous, depending on the lightness of the u, d
quarks in comparison with the others, it was clearly the first step in the quest for higher
symmetry groups in particle physics.

3.0.1 G-parity

G-parity is a discrete quantum number obtained by combining isospin with charge conjuga-
tion. Charge conjugation is a discrete Z2 symmetry where the unitary charge conjugation
operator C acts on a particle state to give the associated anti-particle state with opposite
charge. If these are different any associated phase factor is unphysical, since it may be
absorbed into a redefinition of the states. In consequence the charge conjugation parity
is well defined only for particle states with all conserved charges zero. For pions we have
without any arbitrariness just

C|π0⟩ = |π0⟩ . (3.13)

The associated charged pion states are obtained, with standard isospin conventions, by
I±|π0⟩ =

√
2|π±⟩. Since charge conjugation reverses the sign of all charges we must

take CI3C−1 = −I3 and we require also CI±C−1 = −I∓ (more generally if CI+C−1 =
−eiαI−, CI−C−1 = −e−iπαI+ the dependence on α can be absorbed in a redefinition of I±).
By calculating CI±|π0⟩ we then determine unambiguously

C|π±⟩ = −|π∓⟩ . (3.14)

G-parity is defined by combining C with an isospin rotation,

G = Ce−iπI2 . (3.15)

The action of e−iπI2 on an isospin multiplet is determined for any representation by (2.75).
In this case we have

e−iπI2 |π+⟩ = |π−⟩ , e−iπI2 |π0⟩ = −|π0⟩ , e−iπI2 |π−⟩ = |π+⟩ , (3.16)

and hence on any pion state
G|π⟩ = −|π⟩ . (3.17)

Conservation of G-parity ensures that in any ππ scattering process only even numbers of
pions are produced. The notion of G-parity can be extended to other particles such as the
spin one meson ω, with I = 0, and ρ±, ρ0, with I = 1. The neutral states have negative
parity under charge conjugation so the G-parity of ω and the ρ’s is respectively 1 and −1.
This constrains various possible decay processes.
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4 Relativistic Symmetries, Lorentz and Poincaré Groups

Symmetry under rotations plays a crucial role in atomic physics, isospin is part of nuclear
physics but it is in high energy particle physics that relativistic Lorentz6 transformations,
forming the Lorentz group, have a vital importance. Extending Lorentz transformations
by translations, in space and time, generates the Poincaré7 group. Particle states can be
considered to be defined as belonging to irreducible representations of the Poincaré Group.

4.1 Lorentz Group

For space-time coordinates xµ = (x0, xi) ∈ R4 then the Lorentz group is defined to be the
group of transformations xµ → x′µ leaving the relativistic interval

x2 ≡ gµνx
µxν , g00 = 1 , g0i = gi0 = 0 , gij = −δij , (4.1)

invariant. Assuming linearity a Lorentz transformation xµ → x′µ

x′µ = Λµνxν , (4.2)

ensures
x′2 = x2 , (4.3)

which requires, for arbitrary x
gσρΛσµΛρν = gµν . (4.4)

Alternatively in matrix language

ΛT gΛ = g , Λ = [Λµν ] , g = [gµν ] =
(

1 0
0 −I3

)
. (4.5)

Matrices satisfying (4.5) belong to the group O(1, 3) ≃ O(3, 1).

In general we define contravariant and covariant vectors, V µ and Uµ, under Lorentz
transformations by

V µ →
Λ
V ′µ = ΛµνV ν , Uµ →

Λ
U ′
µ = Uν(Λ−1)νµ . (4.6)

It is easy to see, using (4.4) or (4.5), V ′T g = V TΛT g = V T gΛ−1, that we may use gµν
to lower indices, so that gµνV ν is a covariant vector. Defining the inverse gµν , so that
gµλgλν = δµν , we may also raise indices, gµνUν is a contravariant vector.

4.1.1 Proof of Linearity

We here demonstrate that the only transformations which satisfy (4.3) are linear. We
rewrite (4.3) in the form

gµνdx′µdx′ν = gµνdxµdxν , (4.7)
6Hendrik Antoon Lorentz, 1853-1928, Dutch. Nobel prize 1902.
7Jules Henri Poincaré, 1853-1912, French.
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and consider infinitesimal transformations

x′µ = xµ + fµ(x) , dx′µ = dxµ + ∂σf
µ(x) dxσ . (4.8)

Substituting (4.8) into (4.7) and requiring this to hold for any infinitesimal dxµ gives

gµσ∂νf
σ + gσν∂µf

σ = 0 , (4.9)

or, with fµ = gµσf
σ, we have the Killing equation,

∂µfν + ∂νfµ = 0 . (4.10)

Then we write

∂ω(∂µfν + ∂νfµ) + ∂µ(∂νfω + ∂ωfν) − ∂ν(∂ωfµ + ∂µfω) = 2∂ω∂µfν = 0 . (4.11)

The solution is obviously linear in x,

fµ(x) = aµ + ωµνx
ν , (4.12)

and then substituting back in (4.10) gives

ωµν + ωνµ = 0 . (4.13)

For aµ = 0, (4.12) corresponds to an infinitesimal version of (4.2) with

Λµν = δµν + ωµν , ωµν = gµσωσν . (4.14)

4.1.2 Structure of Lorentz Group

Taking the determinant of (4.5) gives

(detΛ)2 = 1 ⇒ detΛ = ±1 . (4.15)

By considering the 00’th component we also get

(Λ0
0)2 = 1 +

∑
i(Λ

0
i)2 ≥ 1 ⇒ Λ0

0 ≥ 1 or Λ0
0 ≤ −1 . (4.16)

The Lorentz group has four components according to the signs of det Λ and Λ0
0 since no

continuous change in Λ can induce a change in these signs. For the component connected
to the identity we have det Λ = 1 and also Λ0

0 ≥ 1. This connected subgroup is denoted
SO(3, 1)↑.

Rotations form a subgroup of the Lorentz group, which is obtained by imposing ΛTΛ = I
as well as (4.5). In this case the Lorentz transform matrix has the form,

ΛR =
(

1 0
0 R

)
, RTR = I3 , (4.17)

where R ∈ O(3), detR = ±1, represents a three dimensional rotation or reflection, obviously
ΛRΛR′ = ΛRR′ forming a reducible representation of this subgroup.
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Another special case is when
Λ = ΛT . (4.18)

To solve the constraint (4.5) we first write

Λ =
(

cosh θ sinh θ nT

sinh θ n B

)
, BT = B , nTn = 1 , (4.19)

where n is a 3-dimensional column vector, and then

ΛT gΛ =
(

1 sinh θ(cosh θ nT − nTB)
sinh θ(cosh θ n− Bn) sinh2 θ nnT − B2

)
. (4.20)

Hence (4.5) requires

Bn = cosh θ n , B2 − sinh2 θ nnT = I3 . (4.21)

The solution is just
B = I3 + (cosh θ − 1)nnT . (4.22)

The final expression for a general symmetric Lorentz transformation defining a boost is then

B(θ, n) =
(

cosh θ sinh θ nT

sinh θ n I3 + (cosh θ − 1)nnT

)
, (4.23)

where the parameter θ has an infinite range. Acting on xµ, using vector notation,

x′0 = cosh θ x0 + sinh θ n · x ,
x′ = x + (cosh θ − 1)n n · x + sinh θ nx0 . (4.24)

This represents a Lorentz boost with velocity v = tanh θ n.

Boosts do not form a subgroup since they are not closed under group composition, in
general the product of two symmetric matrices is not symmetric, although there is a one
parameter subgroup for n fixed and θ varying which is isomorphic to SO(1, 1) with matrices
as in (1.59). With ΛR as in (4.17) then for B as in (4.23)

ΛRB(θ, n)ΛR−1 = B(θ,Rn) , (4.25)

gives the rotated Lorentz boost. Any Lorentz transformation can be written as at of a
boost followed by a rotation. To show this we note that ΛTΛ is symmetric and positive so
we may define B =

√
ΛTΛ = BT , corresponding to a boost. Then ΛB−1 defines a rotation

since (ΛB−1)TΛB−1 = B−1ΛTΛB−1 = I and so ΛB−1 = ΛR, or Λ = ΛRB, with ΛR of the
form in (4.17).

4.2 Infinitesimal Lorentz Transformations and Commutation Relations

General infinitesimal Lorentz transformations have already been found in (4.14) with ωµν
satisfying the conditions in (4.13). For two infinitesimal Lorentz transformations

Λ1
µ
ν = δµν + ω1

µ
ν , Λ2

µ
ν = δµν + ω2

µ
ν , (4.26)
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then
Λµν = (Λ2

−1Λ1
−1Λ2 Λ1)µν = δµν + [ω2, ω1]µν , (4.27)

where it is clear that Λµν = δµν if either ω1
µ
ν or ω2

µ
ν are zero.

For a relativistic quantum theory there must be unitary operators U [Λ] acting on the
associated vector space for each Lorentz transformation Λ which define a representation,

U [Λ2]U [Λ1] = U [Λ2Λ1] . (4.28)

For an infinitesimal Lorentz transformation as in (4.13) we require

U [Λ] = 1 − i 1
2ω

µνMµν , Mµν = −Mνµ . (4.29)

Mµν are the Lorentz group generators. Since we also have U [Λ−1] = 1 + i 1
2ω

µνMµν (4.27)
requires

U [Λ] = 1 − i [ω2, ω1]µνMµν

= U [Λ2
−1]U [Λ1

−1]U [Λ2]U [Λ1]
= 1 −

[
1
2 ω2

µνMµν ,
1
2 ω1

σρMσρ

]
, (4.30)

or[
1
2 ω2

µνMµν ,
1
2 ω1

σρMσρ

]
= i [ω2, ω1]µνMµν , [ω2, ω1]µν = gσρ(ω2

µσω1
ρν−ω1

µσω2
ρν) . (4.31)

Since this is valid for any ω1, ω1 we must have the commutation relations

[Mµν ,Mσρ] = i
(
gνσMµρ − gµσMνρ − gνρMµσ + gµρMνσ

)
, (4.32)

where the four terms on the right side are essentially dictated by antisymmetry under µ↔ ν,
σ ↔ ρ. For a unitary representation we must have

Mµν
† = Mµν . (4.33)

Just as in (2.128) we may define contravariant and covariant vector operators by requir-
ing

U [Λ]V µU [Λ]−1 = (Λ−1)µνV ν , U [Λ]UµU [Λ]−1 = UνΛνµ . (4.34)

For an infinitesimal transformation, with Λ as in (4.14) and U [Λ] as in (4.29), this gives

[Mµν , V
σ] = −i(δσµVν − δσνVµ) , [Mµν , Uσ] = −i(gµσUν − gνσUµ) . (4.35)

To understand further the commutation relations (4.32) we decompose it into a purely
spatial part and a part which mixes time and space (like magnetic and electric fields for the
field strength Fµν . For spatial indices (4.32) becomes

[Mij ,Mkl] = −i(δjkMil − δikMjl − δjlMik + δilMjk) . (4.36)

Defining
Jm = 1

2εmijMij ⇒ Mij = εijmJm , (4.37)
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and similarly Jn = 1
2εnklMkl we get

[Jm, Jn] = −i εmijεnklMil = 1
2 i εmnjεiljMil = i εmnjJj . (4.38)

The commutation relations are identical with those obtained in (2.36) which is unsurpris-
ing since purely spatial Lorentz transformations reduce to the subgroup of rotations. As
previously, J = (J1, J2, J3) are identified with the angular momentum operators.

Besides the spatial commutators we consider also

[Mij ,M0k] = −i(δjkM0i − δikM0j) , (4.39)

and
[M0i,M0j ] = −iMij . (4.40)

Defining now
Ki = M0i , Ki

† = Ki , (4.41)

and, using (4.37), (4.39) and (4.40) become

[Ji,Kj ] = i εijkKk , (4.42)

and
[Ki,Kj ] = −i εijkJk . (4.43)

The commutator (4.43) shows that K = (K1,K2,K3) is a vector operator, as in (2.130).
The − sign in the commutator is (4.43) reflects the non compact structure of the Lorentz
group SO(3, 1), if the group were SO(4) then gµν → δµν and there would be a +.

For δxµ = ωµνx
ν letting ωij = εijkθk and ω0

i = ωi0 = vi then we have, for t = x0 and
x = (x1, x2, x3),

δt = v · x , δx = θ × x + vt , (4.44)

representing an infinitesimal rotation and Lorentz boost. Using (4.29) with (4.37) and (4.41)
gives correspondingly

U [Λ] = 1 − iθ · J + iv · K , (4.45)

which shows that K is associated with boosts in the same way as J is with rotations, as
demonstrated by (2.32).

The commutation relations (4.38), (4.42) and (4.43) can be rewritten more simply by
defining

Ji
± = 1

2(Ji ± iKi) , J+† = J− , (4.46)

when they become

[Ji+, Jj+] = i εijkJk
+ , [Ji−, Jj−] = i εijkJk

− , [Ji+, Jj−] = 0 . (4.47)

The commutation relations are then two commuting copies of the standard angular momen-
tum commutation relations although the operators J± are not hermitian.
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4.3 Lorentz Group and Spinors

For SO(3, 1) there are corresponding spinorial representations just as for SO(3). For SO(3)
a crucial role was played by the three Pauli matrices σ. Here we define a four dimensional
extension by

σµ = (I,σ) = σµ
† , σ̄µ = (I,−σ) = σ̄µ

† . (4.48)

Both σµ and σ̄µ form a complete set of hermitian 2×2 matrices. As a consequence of (2.12)
we have

σµ σ̄ν + σν σ̄µ = 2gµν I , σ̄µ σν + σ̄ν σµ = 2gµν I , (4.49)

and also
tr(σµσ̄ν) = 2gµν . (4.50)

Hence for a 2 × 2 matrix A we may write A = 1
2 tr(σ̄µA)σµ.

4.3.1 Isomorphism SO(3, 1) ≃ Sl(2,C)/Z2

The relation of SO(3, 1) to the group of 2 × 2 complex matrices with determinant one is
an extension of the isomorphism SO(3) ≃ SU(2)/Z2. To demonstrate this we first describe
the one to one correspondence between real 4-vectors xµ and hermitian 2 × 2 matrices x
where

xµ → x = σµx
µ = x† , xµ = 1

2 tr(σ̄µx) . (4.51)

With the standard conventions in (2.11)

x =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (4.52)

Hence
det x = x2 ≡ gµνx

µxν . (4.53)

Defining
x̄ = σ̄µx

µ , (4.54)

then (4.49) are equivalent to

x x̄ = x2I , x̄x = x2I . (4.55)

For any A ∈ Sl(2,C) we may then define a linear transformation xµ → x′µ by

x →
A

x′ = AxA† = x′† . (4.56)

where, using detA = detA† = 1,

detx′ = detx ⇒ x′2 = x2 . (4.57)

Hence this must be a real Lorentz transformation

x′µ = Λµνxν . (4.58)
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From (4.56) this requires

σµΛµν = AσνA
† , Λµν = 1

2 tr(σ̄µAσνA†) . (4.59)

To establish the converse we may use σνA†σ̄ν = 2 tr(A†) I to give

Λµµ = |tr(A)|2 , σµΛµν σ̄ν = 2 tr(A†)A , (4.60)

and hence, for trA = eiα|trA|,
A = eiα

σµΛµν σ̄ν

2
√

Λµµ
, (4.61)

where the phase eiα may be determined up to ±1 by imposing detA = 1. Hence for any
A ∈ Sl(2,C), ±A↔ Λ for any Λ ∈ SO(3, 1).

As special cases if A† = A−1, so that A ∈ SU(2), it is easy to see that x′0 = x0 in (4.56)
and this is just a rotation of x as given by (2.19) and (2.22). If A† = A then Λ, given by
(4.59), is symmetric so this is a boost. Taking

AB(θ, n) = cosh 1
2θ I + sinh 1

2θ n · σ , (4.62)

corresponds to the Lorentz boost in (4.23).

For a general infinitesimal Lorentz transformation as in (4.14) then, using Λµµ = 4 to
this order and σµσ̄µ = 4 I, (4.61) gives

A = I + 1
4 ω

µνσµσ̄ν , (4.63)

setting α = 0, since tr(ωµνσµσ̄ν) = 0 as a consequence of ωµν = −ωνµ. From (4.63)

A† = I − 1
4 ω

µν σ̄µσν . (4.64)

Alternatively, with these expressions for A,A†,

AσρA
† = σρ + 1

4 ω
µν
(
σµσ̄νσρ − σρσ̄µσν

)
= σρ + 1

2 ω
µν
(
gνρ σµ − gρµ σν

)
, (4.65)

using, from (4.49),

σµσ̄νσρ = gνρ σµ − σµσ̄ρσν , σρσ̄µσν = 2gρµ σν − σµσ̄ρσν , (4.66)

and therefore (4.65) verifies AσνA† = σµΛµν with Λµν given by (4.14).

In general (4.63),(4.64) may be written as

A = I − i 1
2ω

µνsµν , A† = I + i 1
2ω

µν s̄µν , sµν = 1
2 i σ[µσ̄ν] , s̄µν = 1

2 i σ̄[µσν] , (4.67)

where sµν , s̄µν = sµν
† are matrices each obeying the same commutation rules as Mµν in

(4.32). To verify this it is sufficient to check

sµν σρ − σρ s̄µν = i(gνρ σµ − gµρ σν) , s̄µν σ̄ρ − σ̄ρ sµν = i(gνρ σ̄µ − gµρ σ̄ν) . (4.68)
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4.3.2 Spinors, Dotted and Undotted Indices

In a similar fashion to the discussion in section 2.10 spinors are defined to transform under
the action of the Sl(2,C) matrix A. Fundamental spinors ψ, χ are required to transform as

ψα →
A
Aα

βψβ , χα →
A
χβ(A−1)βα , α, β = 1, 2 . (4.69)

We may also, as hitherto, raise and lower spinor indices with the ε-symbols εαβ , εαβ , where
ε12 = ε21 = 1, so that the representations defined by ψα, χα in (4.69) are equivalent

ψα = εαβψβ , χα = εαβ χ
β , (4.70)

as, since detA = 18,
(A−1)βα = εαγAγ

δ εδβ . (4.71)

The crucial difference between spinors for the Lorentz group SO(3, 1) and those for
SO(3) is that conjugation now defines an inequivalent representation. Hence there are two
inequivalent two-component fundamental spinors. It is convenient to adopt the notational
convention that the conjugate spinors obtained from ψα, χ

α have dotted indices, α̇ = 1, 2.
In general complex conjugation interchanges dotted and undotted spinor indices. For ψ, χ
conjugation then defines the conjugate representation spinors

ψ̄α̇ = (ψα)∗ , χ̄α̇ = (χα)∗ , (4.72)

which have the transformation rules, following from (4.69),

ψ̄α̇ →
A
ψ̄β̇(Ā−1)β̇ α̇ , χ̄α̇ →

A
Āα̇β̇ χ̄

β̇ , (4.73)

for
(Ā−1)α̇β̇ = (Aβα)∗ or Ā−1 = A† . (4.74)

Both A, Ā ∈ Sl(2,C) and obey the same group multiplication rules, since A1A2 = Ā1Ā2.
The corresponding ε-symbols, εα̇β̇ , εα̇β̇ , allow dotted indices to raised and lowered,

ψ̄α̇ = εα̇β̇ψ̄β̇ , χ̄α̇ = εα̇β̇ χ̄
β̇ , (4.75)

in accord with the conjugation of (4.70).

In terms of these conventions the hermitian 2× 2 matrices defined in (4.48) are written
in terms of spinor index components as

(σµ)αα̇ , (σ̄µ)α̇α , (4.76)

where
(σ̄µ)α̇α = εα̇β̇εαβ(σµ)ββ̇ , (σµ)αα̇ = εαβεα̇β̇(σ̄µ)β̇β . (4.77)

8Using (2.158), εαγAγ
δ εδβ = δβ

αtr(A) − Aβ
α = (A−1)β

α, since for any 2 × 2 matrix the characteristic
equation requires A2 − tr(A) A + det A I = 0, so that if det A = 1 then A−1 = tr(A) I − A.
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With the definitions in (4.51) and (4.54) then (4.77) requires tr(xx̄) = 2 detx = 2x2. Using
the definition of Ā we may rewrite (4.59) in the form

AσνĀ
−1 = σµΛµν , Ā σ̄νA

−1 = σ̄µΛµν , (4.78)

showing the essential symmetry under A↔ Ā.

The independent fundamental spinors ψ, χ and their conjugates ψ̄, χ̄ can be combined
as a single 4-component Dirac9 spinor together with its conjugate in the form

Ψ =
(
ψα
χ̄α̇

)
, Ψ̄ =

(
χα ψ̄α̇

)
, (4.79)

where Ψ̄ = Ψ†
(

0 1
1 0

)
. Correspondingly there are 4 × 4 Dirac matrices

γµ =
(

0 σµ
σ̄µ 0

)
. (4.80)

These satisfy, by virtue of (4.49), the Dirac algebra

γµγν + γνγµ = 2gµν I4 . (4.81)

For these Dirac matrices

γ0γµγ0 = γµ
† since γ0 =

(
0 1
1 0

)
, (4.82)

and from (4.77)

CγµC
−1 = −γµT for C =

(
εαβ 0
0 εα̇β̇

)
, C−1 =

(
εαβ 0
0 εα̇β̇

)
. (4.83)

4.3.3 Tensorial Representations

Both vector and spinor tensors are naturally defined in terms of the tensor products of
vectors satisfying (4.6) and correspondingly spinors satisfying (4.69) or (4.73). Thus for a
purely contragredient rank n tensor

Tµ1...µn →
Λ

Λµ1
ν1 . . .Λ

µn
νn T

ν1...νn . (4.84)

For a general spinor with 2j lower undotted indices and 2ȷ̄ lower dotted indices

Υα1...α2j ,α̇1...α̇2ȷ̄ →
A
Aα1

β1 . . . Aα2j
β2j Υβ1...β2j ,β̇1...β̇2ȷ̄ (Ā−1)β̇1

α̇1 . . . (Ā
−1)β̇2ȷ̄

α̇2ȷ̄ . (4.85)

The invariant tensors are just those already met together with the 4-index ε-symbol,

gµν , εµνσρ , εαβ , εα̇β̇ , (4.86)

9Paul Adrian Maurice Dirac, 1902-84, English. Nobel prize, 1933.
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as well as all those derived from these by raising or lowering indices. Here ε0123 = 1 while
ε0123 = −1.

To obtain irreducible tensors it is sufficient to consider spinorial tensors as in (4.85)
which are totally symmetric in each set of indices

Υα1...α2j ,α̇1...α̇2ȷ̄ = Υ(α1...α2j),(α̇1...α̇2ȷ̄) . (4.87)

The resulting irreducible spinorial representation of SO(3, 1) is labelled (j, ȷ̄). Under com-
plex conjugation (j, ȷ̄) → (ȷ̄, j). Extending the counting in the SO(3) case, it is easy to
see that the dimension of the space of such tensors is (2j + 1)(2ȷ̄ + 1). The fundamental
spinors transform according to the (1

2 , 0) and (0, 1
2) representations while the Dirac spinor

corresponds to (1
2 , 0) ⊕ (0, 1

2). These representations are not unitary since there is no posi-
tive group invariant scalar product, for the simplest cases of a vector or a (1

2 , 0) spinor the
scalar products gµνV µV ν or εβαψαψβ clearly have no definite sign.

The tensors products of irreducible tensors as in (4.87) may be decomposed just as for
SO(3) spinors giving

(j1, ȷ̄1) ⊗ (j2, ȷ̄2) ≃
⊕

|j1−j2|≤j≤j1+j2
|ȷ̄1−ȷ̄2|≤ȷ̄≤ȷ̄1+ȷ̄2

(j, ȷ̄) . (4.88)

Rank n vectorial tensors are related to spinorial tensors as in (4.85) for 2j = 2ȷ̄ = n by

Tµ1...µn = Υα1...αn,α̇1...α̇n(σ̄µ1)
α̇1α1 . . . (σ̄µn)α̇nαn . (4.89)

If Υ is irreducible, as in (4.87), corresponding to the (1
2n,

1
2n) real representation, then

Tµ1...µn is symmetric and traceless.

A corollary of εµνσρ being an invariant tensor is, from (4.78),

Aεµνσρσµσ̄νσσσ̄ρA
−1 = εµνσρσµσ̄νσσσ̄ρ , Ā εµνσρσ̄µσν σ̄σσρĀ

−1 = εµνσρσ̄µσν σ̄σσρ .
(4.90)

By virtue of Schur’s lemma these products of σ-matrices must be proportional to the iden-
tity. With (2.12) we get

1
24 ε

µνσρσµσ̄νσσσ̄ρ = σ0σ̄1σ2σ̄3 = i I , 1
24 ε

µνσρσ̄µσν σ̄σσρ = σ̄0σ1σ̄2σ3 = −i I , (4.91)

using (σ0σ̄1σ2σ̄3)2 = σ0σ̄1σ2σ̄3σ3σ̄2σ1σ̄0 = −I, and similarly (σ̄0σ1σ̄2σ3)2 = −I, by virtue
of (4.49). The two identities in (4.91) are related by conjugation. In terms of the Dirac
matrices defined in (4.80)

1
24 ε

µνσργµγνγσγρ = γ0γ1γ2γ3 = iγ5 , γ5 =
(
I2 0
0 −I2

)
. (4.92)

As a consequence of (4.91) we may further obtain10

1
2 ε

µνσρσσσ̄ρ = −i σ[µσ̄ν] , 1
2 ε

µνσρσ̄σσρ = i σ̄[µσν] . (4.93)
10For a somewhat convoluted demonstration note, that since the indices only take four values,

εµνσρσ[µσ̄νσσσ̄ρσλ] = 1
5
εµνσρ(σµσ̄νσσσ̄ρσλ −σµσ̄νσσσ̄λσρ +σµσ̄νσλσ̄σσρ −σµσ̄λσν σ̄σσρ +σλσ̄µσν σ̄σσρ) = 0.

Then using (4.49) move σλ or σ̄λ to the right giving εµνσρσµσ̄νσσσ̄ρσλ + 4 ελ
νσρσν σ̄σσρ = 0. Hence, with

(4.91), iσλ = − 1
6
ελ

νσρσν σ̄σσρ. Similarly iσ̄µ = 1
6
εµ

νσρσ̄νσσσ̄ρ. Using these results, i(σλσ̄µ − σµσ̄σ) =
− 1

6
ελ

νσρ(σν σ̄σσρσ̄µ + σµσ̄νσσσ̄ρ). The right hand side may be simplified using (4.49) again and leads to
just (4.93).
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Since tr(σ[µσ̄ν]) = tr(σ̄[µσν]) = 0, (εσ[µσ̄ν])αβ , (σ̄[µσν]ε)α̇β̇ are symmetric in α ↔ β, α̇ ↔ β̇
respectively so that for (1, 0) or (0, 1) representations there are associated antisymmetric
tensors

fµν = 1
2(εσ[µσ̄ν])

αβ Υαβ , f̄µν = 1
2(σ̄[µσν]ε)

α̇β̇ Ῡα̇β̇ , (4.94)

which satisfy fµν = 1
2 i εµν

σρfσρ, f̄µν = −1
2 i εµν

σρf̄σρ. Only fµν + f̄µν is a real tensor.

4.4 Poincaré Group

The complete space-time symmetry group includes translations as well as Lorentz transfor-
mations. For a Lorentz transformation Λ and a translation a the combined transformation
denoted by (Λ, a) gives

xµ →
(Λ,a)

x′µ = Λµνxν + aν . (4.95)

These transformations form a group since

(Λ2, a2)(Λ1, a1) = (Λ2Λ1,Λ2a1 + a2) , (Λ, a)−1 = (Λ−1,−Λ−1a) , (4.96)

with identity (I, 0). The corresponding group is the Poincaré group, sometimes denoted as
ISO(3, 1), if det Λ = 1. It contains the translation group T4, formed by (I, a), as a normal
subgroup and also the Lorentz group, formed by (Λ, 0). A general element may be written as
(Λ, a) = (I, a)(Λ, 0) and the Poincaré Group can be identified with the semi-direct product
O(3, 1) n T4.

If we define
(Λ, a) = (Λ2, a2)−1(Λ1, a1)−1(Λ2, a2)(Λ1, a1) , (4.97)

then direct calculation gives

Λ = Λ2
−1Λ1

−1Λ2 Λ1 , a = Λ2
−1Λ1

−1(Λ2a1 − Λ1a2 − a1 + a2) . (4.98)

For infinitesimal transformations as in (4.26) we then have

Λµν = δµν + [ω2, ω1]µν , aµ = ω2
µ
νa1

ν − ω1
µ
νa2

ν . (4.99)

In a quantum theory there are associated unitary operators U [Λ, a] such that

U [Λ2, a2]U [Λ1, a1] = U [Λ2Λ1,Λ2a1 + a2] . (4.100)

For an infinitesimal Lorentz transformation as in (4.14) and also for infinitesimal a we
require

U [Λ, a] = 1 − i 1
2ω

µνMµν + i aµPµ , Pµ
† = Pµ , (4.101)

defining the generators Pµ in addition to Mµν = −Mνµ discussed in section 4.2. To derive
the commutation relations we extend (4.30) to give

U [Λ, a] = 1 − i [ω2, ω1]µνMµν + i (ω2a1 − ω1a2)µPµ
= U [Λ2, a2]−1U [Λ1, a1]−1U [Λ2, a2]U [Λ1, a1]
= 1 −

[
1
2 ω2

µνMµν − a2
µPµ,

1
2 ω1

σρMσρ − a1
σPσ

]
. (4.102)
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Hence, in addition to the [M,M ] commutators which are given in (4.31) and (4.32), we
must have [

1
2 ω1

σρMσρ, a2
µPµ

]
= i (ω1a2)µPµ ,

[
a2
µPµ, a1

σPσ
]

= 0 , (4.103)

or
[Mµν , Pσ] = i(gνσ Pµ − gµσ Pν) , [Pµ, Pσ] = 0 . (4.104)

This agrees with general form in (4.35) and shows that Pµ is a covariant 4-vector operator.
Since (Λ, 0)(I, a)(Λ, 0)−1 = (I,Λa) and using (Λa)µPµ = aµ(PΛ)µ we have for finite Lorentz
transformations

U [Λ, 0]Pµ U [Λ, 0]−1 = PνΛνµ . (4.105)

If we decompose
Pµ = (H, P) , Pµ = (H,−P) , (4.106)

then using (4.37) and (4.41) the commutation relations become

[Ji,H] = 0 , [Ji, Pj ] = i εijkPk , (4.107)

and
[Ki,H] = i Pi , [Ki, Pj ] = i δij H . (4.108)

4.5 Irreducible Representations of the Poincaré Group

It is convenient to write

U [Λ, a] = T [a]U [Λ] , U [Λ, 0] = U [Λ] , T [a] = U [I, a] , (4.109)

where T [a] are unitary operators corresponding to the abelian translation group T4. In
general

T [a] = eia
µPµ . (4.110)

As a consequence of (4.100)
U [Λ]T [a] = T [Λa]U [Λ] . (4.111)

The irreducible representations of the the translation subgroup T4 of the Poincaré Group
are one-dimensional and are defined in terms of vector |p⟩ such that

Pµ|p⟩ = pµ|p⟩ , T [a]|p⟩ = eia
µpµ |p⟩ , (4.112)

for any real 4-vector pµ which labels the representation. As a consequence of (4.105)

PµU [Λ]|p⟩ = (pΛ−1)µU [Λ]|p⟩ , (4.113)

so that U [Λ] acting on the states {|p⟩} generates a vector space V such that |p′⟩, |p⟩ belong
to V if p′µ = (pΛ−1)µ for some Lorentz transformation Λ. All such p′, p satisfy p′2 = p2 and
conversely for any p′, p satisfying this there is a Lorentz transformation linking p′, p. The
physically relevant cases arise for p2 ≥ 0 and also we require, restricting Λ ∈ SO(3, 1)↑,
p0, p

′
0 ≥ 0.
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The construction of representations of the Poincaré group is essentially identical with the
method of induced representations described in 1.4.1 for G = SO(3, 1)↑ n T4. A subgroup
H is identified by choosing a particular momentum p̊ and then defining

Gp̊ = {Λ : Λp̊ = p̊} , (4.114)

the stability group or little group for p̊, the subgroup of SO(3, 1)↑ leaving p̊ invariant. For a
space Vp̊ formed by states {|p̊⟩} (additional labels are here suppressed) where

Pµ|p̊⟩ = p̊µ|p̊⟩ , T [a]|p̊⟩ = eia
µp̊µ |p⟩ , (4.115)

then Vp̊ must form a representation space for Gp̊ since U [Λ] |p̊⟩ ∈ Vp̊ for any Λ ∈ Gp̊ by
virtue of (4.114). Hence Vp̊ defines a representation for H = Gp̊ ⊗ T4. The cosets G/H are
then labelled, for all p such that p2 = p̊2, by any L(p) ∈ SO(3, 1)↑ where

pµ = (p̊L(p)−1)µ , or equivalently pµ = L(p)µν p̊ν , (4.116)

and, following the method of induced representations, a representation space for a repre-
sentation of G is then defined in terms of a basis

|p⟩ = U [L(p)] |p̊⟩ ∈ Vp , for all |p̊⟩ ∈ Vp̊ . (4.117)

Finding a representation of the Poincaré group then requires just the determination of
U [Λ] |p⟩ for arbitrary Λ. Clearly, by virtue of (4.113), U [Λ] |p⟩ must be a linear combination
of all states {|p′⟩} where p′µ = Λµνpν . Since p′µ = L(p′)µν p̊ν we have(

L(p′)−1ΛL(p)
)
µ
ν p̊
ν = p̊µ . (4.118)

It follows that
L(Λp)−1ΛL(p) = Λ̊p ∈ Gp̊ , (4.119)

and hence
U [Λ] |p⟩ = U [L(Λp)]U [Λ̊p] |p̊⟩ ∈ VΛp , (4.120)

where U [Λ̊p]|p̊⟩ is determined by the representation of Gp̊ on Vp̊.

For physical interest there are two distinct cases to consider.

4.5.1 Massive Representations

Here we assume p2 = m2 > 0. It is simplest to choose for p̊ the particular momentum

p̊µ = (m,0) , (4.121)

and, since p̊ has no spatial part, then

Gp̊ ≃ SO(3) , (4.122)

51



since the condition Λp̊ = p̊ restricts Λ to the form given in (4.17). As in (4.116) L(p), for
any p such that p2 = m2, p0 > 0, is then a Lorentz transformation such that pµ = L(p)µν p̊ν .
With (4.17) defining ΛR for any R ∈ SO(3), then (4.119) requires

L(Λp)−1ΛL(p) = ΛR(p,Λ) , R(p,Λ) ∈ SO(3) . (4.123)

R(p,Λ) is a Wigner rotation. (4.123) ensures that

U [L(Λp)]−1U [Λ] |p⟩ = U [ΛR(p,Λ)] |p̊⟩ . (4.124)

For any R, U [ΛR]|p̊⟩ is an eigenvector of Pµ with eigenvalue p̊µ and so is a linear combi-
nation of all states {|p̊⟩}. In this case Vp̊ must form a representation space for SO(3). For
irreducible representations Vp̊ then has a basis, as described in section 2.5, which here we
label by s = 0, 1

2 , 1 . . . and s3 = −s,−s + 1, . . . , s. Hence, assuming {|p̊, s s3⟩} forms such
an irreducible space,

U [ΛR] |p̊, s s3⟩ =
∑
s′3

|p̊, s s′3⟩D(s)
s′3 s3

(R) , (4.125)

with D(s)(R) standard SO(3) rotation matrices. Extending the definition (4.117) to define
a corresponding basis for any p

|p, s s3⟩ = U [L(p)] |p̊, s s3⟩ , (4.126)

then applying (4.125) in (4.124) gives

U [Λ] |p, s s3⟩ =
∑
s′3

|Λp, s s′3⟩D(s)
s′3 s3

(
R(p,Λ)

)
. (4.127)

The states {|p, s s3⟩ : p2 = m2, p0 > 0} then provide a basis for an irreducible representation
space Vm,s for SO(3, 1)↑. The representation extends to the full Poincaré group since for
translations, from (4.112),

T [a] |p, s s3⟩ = eipµaµ |p, s s3⟩ . (4.128)

The states |p, ss3⟩ are obviously interpreted as single particle states for a particle with mass
m and spin s.

In terms of these states there is a group invariant scalar product

⟨p′, s s′3|p, s s3⟩ = (2π)32p0 δ3(p′ − p) δs3s′3 , (4.129)

which is positive so the representation is unitary.

The precise definition of the representation depends on the choice of L(p) satisfying
(4.116). This doest not specify L(p) uniquely since if L(p) is one solution so is L(p)Λ for
any Λ ∈ Gp̊. One definite choice is to take

L(p) = B(α, n) , for pµ = m(coshα, sinhαn) , (4.130)

where B(α, n) is the boost Lorentz transformation defined in (4.23). An alternative pre-
scription is

L(p) = ΛR(n)B(α, e3) , for R(n) = R(ϕ, e3)R(θ, e2)R(−ϕ, e3) , (4.131)
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where α is determined by p0 as in (4.130), ΛR, as in (4.17), corresponds to a rotation R,
and θ, ϕ are the polar angles specifying n, so that R(n) rotates e3 into n, Ri3(n) = ni. The
two definitions, (4.130) and (4.131), give different but equivalent bases for Vm,s.

If we consider a rotation ΛR and use the definition (4.130) then L(ΛRp) = B(α,Rn)
and, by virtue of (4.25),

B(α,Rn)−1ΛRB(α, n) = ΛR . (4.132)

The Wigner rotation given by (4.123) hence becomes, with this definition of L(p), just the
original rotation

R(p,ΛR) = R , (4.133)

so that (4.125) extends to any momentum p.

4.5.2 Massless Representations

The construction of representations for the massless case can be carried out in a similar
fashion to that just considered. When p2 = 0 then the method requires choosing a particular
momentum p̊ satisfying this from which all other momenta with p2 = 0 can be obtained by
a Lorentz transformation. There is no rest frame as in (4.121) and we now take

p̊µ = ω̊(1, 0, 0, 1) , ω̊ > 0 , (4.134)

with ω̊ some arbitrary fixed choice. It is then necessary to identify the little group in this
case as defined by (4.114). To achieve this we consider infinitesimal Lorentz transformations
as in (4.14) when the necessary requirement reduces to

ωµν p̊
ν = 0 , ωµν = −ωνµ . (4.135)

This linear equation is easy to solve giving

ω0
3 = 0 , ω1

0 = −ω1
3 , ω2

0 = −ω2
3 , ω3

0 = 0 . (4.136)

These reduce the six independent ωµν = −ωνµ to three so that

1
2ω

µνMµν = ω12M12 + ω01(M01 +M31) + ω02(M02 +M32) . (4.137)

Identifying the operators

J3 = M12 , E1 = M01 +M31 = K1 + J2 , E2 = M02 +M32 = K2 − J1 , (4.138)

we find the commutators from (4.32), or from (2.36), (4.42) and (4.43),

[J3, E1] = iE2 , [J3, E2] = −iE1 , [E1, E2] = 0 . (4.139)

A unitary operator corresponding to finite group elements of Gp̊ is then

e−i(a1E1+a2E2)e−iΘJ3 , (4.140)
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Noting that

e−iΘJ3(a1E1 +a2E2)eiΘJ3 = a1
ΘE1 +a2

ΘE2 ,

(
a1

Θ

a2
Θ

)
=
(

cosΘ − sinΘ
sinΘ cosΘ

)(
a1

a2

)
, (4.141)

then if (4.140) corresponds to a group element (Θ, a1, a2), with Θ an angle with period 2π,
we have the group multiplication rule

(Θ′, a′1, a
′
2)(Θ, a1, a2) = (Θ′ + Θ, a1

Θ′
+ a′1, a2

Θ′
+ a′2) . (4.142)

The group multiplication rule (4.142) is essentially identical to (4.96). The group is then
isomorphic with the group formed by rotations and translations on two dimensional space,
so that for the massless case we have the little group

Gp̊ ≃ ISO(2) ≃ SO(2) n T2 . (4.143)

The representations of this group can be obtained in a very similar fashion to that of the
Poincaré group. Define vectors |a1, a2⟩ such that

(E1, E2)|b1, b2⟩ = (b1, b2)|b1, b2⟩ , (4.144)

and then we assume, consistency with the group multiplication (4.142),

e−iΘJ3 |b1, b2⟩ = e−ihΘ|b1Θ, b2Θ⟩ , (4.145)

linking all (b1, b2) with constant c = b1
2 + b2

2. This irreducible representation of ISO(2),
labelled by c, h, is infinite dimensional. However there are one-dimensional representations,
corresponding to taking c = 0, generated from a vector |h⟩ such that

E1|h⟩ = E2|h⟩ = 0 , J3|h⟩ = h|h⟩ , (4.146)

so that the essential group action is

e−iΘJ3 |h⟩ = e−ihΘ|h⟩ . (4.147)

For applications to representations of the Poincaré group e−iΘJ3 corresponds to a subgroup
of the SO(3) rotation group so it is necessary to require in (4.146) and (4.147)

h = 0,±1
2 ,±1, . . . . (4.148)

For the associated Lorentz transformations then a general element corresponding to the
little group is Λ(a1,a2)ΛΘ where

Λ(a1,a2) =


1 + 1

2(a1
2 + a2

2) a1 a2 −1
2(a1

2 + a2
2)

a1 1 0 −a1

a2 0 1 −a2
1
2(a1

2 + a2
2) a1 a2 1 − 1

2(a1
2 + a2

2)

 , (4.149)
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and

ΛΘ =


1 0 0 0
0 cos Θ − sinΘ 0
0 sin Θ cos Θ 0
0 0 0 1

 . (4.150)

It is easy to see that Λ(a1,a2)p̊ = ΛΘp̊ = p̊ with p̊ as in (4.134).

The construction of the representation space Vh when p2 = 0 proceeds in a very similar
fashion as in the massive case. Neglecting infinite dimensional representations of the little
group, then starting from a vector |p̊, h⟩ satisfying

Pµ|p̊, h⟩ = p̊µ|p̊, h⟩ , J3|p̊, h⟩ = h|p̊, h⟩ , (4.151)

a basis {|p, h⟩ : p2 = 0, p0 > 0}, for Vh is formed by

|p, h⟩ = U [L(p)] |p̊, h⟩ , for pµ = L(p)µν p̊ν , (4.152)

where L(p) is assumed to be determined uniquely by p. Using

L(Λp)−1ΛL(p) = Λ(a1,a2)ΛΘ ∈ Gp̊ , for a1,2(p,Λ) , Θ(p,Λ) , (4.153)

and
U [Λ(a1,a2)]U [ΛΘ] |p̊, h⟩ = |p̊, h⟩ e−ihΘ , (4.154)

then, for any Λ ∈ SO(3, 1)↑, the action of the corresponding unitary operator on Vh is given
by

U [Λ] |p, h⟩ = |Λp, h⟩ e−ihΘ(p,Λ) . (4.155)

For p̊ as in (4.134), and
pµ = ω(1,n) , ω > 0 , (4.156)

then L(p), satisfying (4.116), is determined by assuming it is given by the expression (4.131)
with now eα = ω/ω̊ and R(n) the same rotation depending on θ, ϕ, the spherical polar
angles specifying n. Since J3U [B(α, e3)] |p̊, h⟩ = hU [B(α, e3)] |p̊, h⟩, from (4.151), and
U [ΛR(n)]J3U [ΛR(n)]−1 = JiRi3(n) = n · J then

p̂ · J |p, h⟩ = h |p, h⟩ . (4.157)

The component of the angular momentum along the direction of motion, or helicity, is then
h, taking values as in (4.148).

The irreducible representations of the Poincaré group for massless particles require only
a single helicity h. If the symmetry group is extended to include parity, corresponding to
spatial reflections, then it is necessary for there to be particle states with both helicities
±h. When parity is a symmetry there is an additional unitary operator P with the action
on the Poincaré group generators

PJP−1 = J , PKP−1 = −K , PHP−1 = H , PPP−1 = −P . (4.158)

In consequence PP · JP−1 = −P · J so that, from (4.157), P|p, h⟩ must have helicity −h,
so we must have P|p, h⟩ = η|p,−h⟩, for some phase η, usually η = ±1. Thus photons have
helicity ±1 and gravitons ±2. However neutrinos, if they were exactly massless, which is no
longer compatible with experiment, need only have helicity −1

2 since their weak interactions
do not conserve parity and experimentally only involve −1

2 helicity.
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4.5.3 Spinorial Treatment

Calculations involving Lorentz transformations are almost always much simpler in terms
of Sl(2,C) matrices, making use of the isomorphism described in section 4.3, rather than
working out products of 4 × 4 matrices Λ. As an illustration we re-express some of the
above discussion for massless representations in terms of spinors.

Defining pαα̇ = pµ(σµ)αα̇, as in (4.51), then since p2 = 0, by virtue of (4.53),

det[pαα̇] = 0 ⇒ pαα̇ = λαλ̄α̇ . (4.159)

The spinor λα and its conjugate λ̄α̇ are arbitrary up to the U(1) transformation given by
λα → λαe

−iθ, λ̄α̇ → λ̄α̇e
iθ. To determine λα precisely we choose the phase so that for p̊

given by (4.134), since [p̊αα̇] = 2ω̊
(

1 0
0 1

)
, we take

λ̊ =
√

2ω̊
(

1
0

)
. (4.160)

Then for any p = L(p)p̊ we define a unique spinor satisfying (4.159) by

λp = A(p)̊λ where L(p) −→
SO(3,1)→Sl(2,C)

A(p) , A(p̊) = I . (4.161)

From (4.149) and (4.150) we have correspondingly

Λ(a1,a2) −→
SO(3,1)→Sl(2,C)

A(a1,a2) =
(

1 a1 − ia2

0 1

)
,

ΛΘ −→
SO(3,1)→Sl(2,C)

AΘ =

(
e−

1
2
iΘ 0

0 e
1
2
iΘ

)
. (4.162)

For any Lorentz transformation Λ → AΛ then (4.153) becomes equivalently

A(Λp)−1AΛA(p) = A(a1,a2)AΘ , (4.163)

and with the definition (4.161) we get

AΛλp = λΛP e
− 1

2
iΘ(p,Λ) . (4.164)

This provides a more convenient method of calculating Θ(p,Λ) if required.

4.6 Casimir Operators

For the rotation group then from the generators J it is possible to construct an invariant
operator J2 which commutes with all generators, as in (2.63), so that all vectors belonging
to any irreducible representation space have the same eigenvalue, for Vj , j(j + 1). Such
operators, which are quadratic or possibly higher order in the generators, are generically
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called Casimir11 operators. Of course only algebraically independent Casimir operators are
of interest.

For the Lorentz group, SO(3, 1), there are two basic Casimir operators which can be
formed from Mµν using the invariant tensors

1
4M

µνMµν ,
1
8ε
µνσρMµνMσρ . (4.165)

In terms of the generators J,K, defined in (4.37),(4.41), and then J±, defined in (4.46),

1
4M

µνMµν = 1
2(J2 − K2) = J+2 + J−2 ,

1
8ε
µνσρMµνMσρ = J · K = −i

(
J+2 − J−2

)
. (4.166)

Since J± both obey standard angular momentum commutation relations, as in (4.47), then
for finite dimensional irreducible representations

J+2 → j(j + 1) I , J−2 → ȷ̄(ȷ̄+ 1) I , j, ȷ̄ = 0, 1
2 , 1,

3
2 , . . . . (4.167)

For the fundamental spinor representation the generators sµν = 1
2 i σ[µσ̄ν], as in (4.67),

the associated Casimir operators become

1
4s
µνsµν = − 1

32 σ
µσ̄ν(σµσ̄ν − σν σ̄ν) = 3

4 I ,
1
8ε
µνσρsµνsσρ = 1

32 ε
µνσρσµσ̄νσσσ̄ρ = −3

4 i I , (4.168)

using (4.49) and (4.91). As expected this is in accord with (4.166) and (4.167) for j = 1
2 ,

ȷ̄ = 0. Conversely for s̄µν the role of j and ȷ̄ are interchanged since this is the conjugate
representation.

For the Poincaré group then (4.165) no longer provides Casimir operators because they
fail to commute with Pµ. There is now only a single quadratic Casimir

P 2 = PµPµ , (4.169)

whose eigenvalues acting on the irreducible spaces Vm,s,Vs, corresponding to the spaces of
relativistic single particle states, give the invariant m2 in the massive case or zero in the
massless case. However the irreducible representations are also characterised by a spin label
s, helicity in the massless case. To find an invariant characterisation of this we introduce
the Pauli-Lubanski vector,

Wµ = 1
2 ε

µνσρPνMσρ = 1
2 ε

µνσρMσρPν . (4.170)

Using εµνσρPνPσ = 0 we have
[Wµ, Pν ] = 0 . (4.171)

Since εµνσρ is an invariant tensor then Wµ should be a contravariant 4-vector, to verify this
we may use

[Wµ, 1
2ω

σρMσρ] = − 1
2 i ε

µνσρ
(
Pλω

λ
νMσρ + PνMλρω

λ
σ + PνMσλω

λ
σ

)
= 1

2 i ω
µ
λε
λνσρPνMσρ = i ωµλW

λ , (4.172)

11Hendrik Brugt Gerhard Casimir, 1909-2000, Dutch.
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to obtain
[Wµ,Mσρ] = i(δµσWρ − δµρWσ) . (4.173)

With (4.171) and (4.173) we may then easily derive

[Wµ,W ν ] = i εµνσρPσWρ . (4.174)

It follows from (4.171) and (4.173) that

WµW
µ , (4.175)

is a scalar commuting with Pν , ,Mσρ and so providing an additional Casimir operator.

For the massive representations then, for p̊ as in (4.121),

W 0|p̊, s s3⟩ = 0 , W i|p̊, s s3⟩ = −mεijkMjk|p̊, s s3⟩ = −mJi|p̊, s s3⟩ , (4.176)

so that
WµW

µ|p̊, s s3⟩ = −m2 J2|p̊, s s3⟩ = −m2s(s+ 1)|p̊, s s3⟩ . (4.177)

Hence WµW
µ has the eigenvalue −m2s(s + 1) for all vectors in the representation space

Vm,s.

For the massless representations then, for p̊ as in (4.134),

W 1|p̊, h⟩ = ω̊ E2|p̊, h⟩ = 0 , W 2|p̊, h⟩ = −ω̊ E1|p̊, h⟩ = 0 ,

W 0|p̊, h⟩ = − ω̊ J3|p̊, h⟩ = −ω̊ h|p̊, h⟩ , W 3|p̊, h⟩ = −ω̊ J3|p̊, h⟩ = −ω̊ h|p̊, h⟩ , (4.178)

using (4.146). Since Wµ, Pµ are both contravariant 4-vectors the result (4.178) requires

(Wµ + hP µ)|p, h⟩ = 0 , (4.179)

for all vectors providing a basis for Vh. This provides an invariant characterisation of the
helicity h on this representation space.

4.7 Quantum Fields

To construct a relativistic quantum mechanics compatible with the general principles of
quantum mechanics it is essentially inevitable to use quantum field theory. The quantum
fields are required to have simple transformation properties under the symmetry trans-
formations belonging to the Poincaré group. For a simple scalar field, depending on the
space-time coordinates xµ, this is achieved by

U [Λ, a]ϕ(x)U [Λ, a]−1 = ϕ(Λx+ a) , (4.180)

where U [Λ, a] are the unitary operators satisfying (4.100). For an infinitesimal transforma-
tion, with Λ as in (4.14) and U as in (4.101), this gives

−i
[

1
2ω

µνMµν − aµPµ, ϕ(x)
]

= (ωµν∂ν + aµ)∂µϕ(x) , (4.181)
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or

[Mµν , ϕ(x)] = −Lµνϕ(x) , Lµν = i(xµ∂ν − xν∂µ) , [Pµ, ϕ(x)] = −i∂µϕ(x) . (4.182)

Lµν and i∂µ obey the same commutation relations as Mµν and Pµ in (4.32) and (4.104).
Note that, with (4.106), [P, ϕ] = i∇ϕ.

To describe particles with spin the quantum fields are required to transform according
to a finite dimensional representation of the Lorentz group so that (4.180) is extended to

U [Λ, a]ϕ(x)U [Λ, a]−1 = D(Λ)−1ϕ(Λx+ a) , (4.183)

regarding ϕ now as a column vector and suppressing matrix indices. For an infinitesimal
Lorentz transformation then assuming

D(Λ) = I − i 1
2ω

µνSµν , Sµν = −Sνµ , (4.184)

the commutator with Mµν in (4.182) is extended to

[Mµν , ϕ(x)] = −
(
Lµν + Sµν

)
ϕ(x) . (4.185)

The matrix generators Sµν obey the same commutators as Mµν in (4.32).

The relation of the quantum fields to the particle state representations considered in 4.5
is elucidated by considering, considering first Vm,s,

⟨0|ϕ(x)|p, s s3⟩ = u(p, s3) e−ip·x , p2 = m2 . (4.186)

Here |0⟩ is the vacuum state, which is just a singlet under the Poincaré group, U [Λ, a]|0⟩ =
|0⟩. It is easy to check that (4.186) is accord with translation invariance using (4.128).
Using (4.183), for a = 0, Λ → Λ−1, with (4.127) we get

D(Λ)u(p, s3) =
∑
s′3

u(Λp, s′3)D
(s)
s′3 s3

(
R(p,Λ)

)
, (4.187)

which is directly analogous to (4.127) but involves the finite dimensional representation
matrix D(Λ). u(p, s3) thus allows the complicated Wigner rotation of spin indices given by
R(p,Λ) to be replaced by a Lorentz transformation, in some representation, depending just
on Λ. To determine u(p, s3) precisely so as to be in accord with (4.187) it is sufficient to
follow the identical route to that which determined the states |p, s s3⟩ in 4.5.1. Thus it is
sufficient to require, as in (4.125),

D(ΛR)u(p̊, s3) =
∑
s′3

u(p̊, s′3)D
(s)
s′3 s3

(R) , (4.188)

and then define, as in (4.126),

u(p, s3) = D
(
L(p)

)
u(p̊, s3) . (4.189)

For Λ reduced to a rotation ΛR, as in (4.17), the representation given by the matrices D(ΛR)
decomposes into a direct sum of irreducible SO(3) representations D(j)(R). For (4.188) to

59



be possible this decomposition must include, by virtue of Schur’s lemmas, the irreducible
representation j = s, with any other D(j), j ̸= s, annihilating u(p̊, s3).

For the zero mass case the discussion is more involved so we focus on a particular case
when the helicity h = 1 and the associated quantum field is a 4-vector Aµ. Replacing
(4.186) we require

⟨0|Aµ(x)|p, 1⟩ = ϵµ(p) e−ip·x , p2 = 0 . (4.190)

ϵµ(p) is referred to as a polarisation vector. For 4-vectors there is an associated represen-
tation of the Lorentz group which is just given, of course, by the Lorentz transformation
matrices Λ themselves. When p = p̊ as in (4.134) then from the little group transformations
as in (4.154) we require, for h = 1,

ΛΘϵ(p̊) = ϵ(p̊) e−iΘ . (4.191)

Using (4.150) this determines ϵ(p̊) to be

ϵµ(p̊) = 1√
2
(0, 1, i, 0) , (4.192)

with a normalisation ϵ∗ · ϵ = −1. Using the explicit form for Λ(a1,a2) in (4.149) we then
obtain

Λ(a1,a2)ϵ(p̊) = ϵ(p̊) + c p̊ , c = 1√
2
(a1 + a2) . (4.193)

For general momentum p = ω(1,n), p2 = 0, as in (4.156), we may define, for L(p) given by
(4.131),

ϵ(p) = L(p) ϵ(p̊) = ΛR(n) ϵ(p̊) , (4.194)

since B(α, e3)ϵ(p̊) = ϵ(p̊), and where the rotation R(n) is determined by n just as in (4.131).
With the definition (4.194)

pµϵ
µ(p) = p̊µϵ

µ(p̊) = 0 . (4.195)

For a general Lorentz transformation Λ then from (4.153) and (4.191),(4.192)

Λϵ(p) =
(
ϵ(Λp) + cΛp

)
e−iΘ(p,Λ) , (4.196)

for some c depending on p,Λ. This matches (4.155), for h = 1, save for the inhomogeneous
term proportional to c (for h = −1 it is sufficient to take ϵ(p) → ϵ(p)∗). (4.196) shows that
ϵ(p) does not transform in a Lorentz covariant fashion. Homogeneous Lorentz transforma-
tions are obtained if, instead of considering just ϵ(p), we consider the equivalence classes
polarisation vectors {ϵ(p) :∼} with the equivalence relation

ϵ(p) ∼ ϵ(p) + c p , for arbitrary c . (4.197)

This is the same as saying that the polarisation vectors ϵ(p) are arbitrary up to the addition
of any multiple of the momentum vector p. It is important to note that, because of (4.195),
that scalar products of polarisation vectors depend only on their equivalence classes so that

ϵ′(p)∗ · ϵ′(p) = ϵ(p)∗ · ϵ(p) for ϵ′(p) ∼ ϵ(p) . (4.198)
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The gauge freedom in (4.197) is a reflection of gauge invariance which is a necessary feature
of field theories when massless particles are described by quantum fields transforming in a
Lorentz covariant fashion.

In general Lorentz covariant fields contain more degrees of freedom than those for the
associated particle which are labelled by the spin or helicity in the massless case. It is then
necessary to impose supplementary conditions to reduce the number of degrees of freedom,
e.g. for a massive 4-vector field ϕµ, associated with a spin one particle, requiring ∂µϕµ = 0.
For the massless case then there are gauge transformations belonging to a gauge group
which eliminate degrees of freedom so that just two helicities remain. Although this can be
achieved for free particles of arbitrary spin there are inconsistencies when interactions are
introduced for higher spins, beyond spin one in the massive case with spin two also allowed
for massless particles.

5 Lie Groups and Lie Algebras

Although many discussions of groups emphasise finite discrete groups the groups of most
widespread relevance in high energy physics are Lie groups which depend continuously on a
finite number of parameters. In many ways the theory of Lie12 groups is more accessible than
that for finite discrete groups, the classification of the former was completed by Cartan13

over 100 years ago while the latter was only finalised in the late 1970’s and early 1980’s.

A Lie Group is of course a group but also has the structure of a differentiable manifold, so
that some of the methods of differential geometry are relevant. It is important to recognise
that abstract group elements cannot be added, unlike matrices, so the notion of derivative
needs some care. For a Lie group G, with an associated n-dimensional differential manifold
MG, then for an arbitrary element

g(a) ∈ G , a = (a1, . . . , an) ∈ Rn coordinates on MG . (5.1)

n is the dimension of the Lie group G. For any interesting MG no choice of coordinates is
valid on the whole of MG, it is necessary to choose different coordinates for various subsets of
MG, which collectively cover the whole of MG and form a corresponding set of coordinate
charts, and then require that there are smooth transformations between coordinates on
the overlaps between coordinate charts. Such issues are generally mentioned here only in
passing.

For group multiplication we then require

g(a)g(b) = g(c) ⇒ cr = φr(a, b) , r = 1, . . . , n , (5.2)

where φr is continuously differentiable. It is generally convenient to choose the origin of
the coordinates to be the identity so that

g(0) = e ⇒ φr(0, a) = φr(a, 0) = ar , (5.3)
12Marius Sophus Lie, 1842-1899, Norwegian.
13Élie Joseph Cartan, 1869-1951, French.
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and then for the inverse

g(a)−1 = g(ā) ⇒ φr(ā, a) = φr(a, ā) = 0 . (5.4)

The crucial associativity condition is then

g(a)
(
g(b)g(c)

)
=
(
g(a)g(b)

)
g(c) ⇒ φr(a, φ(b, c)) = φr(φ(a, b), c) . (5.5)

A Lie group may be identified with the associated differentiable manifold MG together with
a map φ : MG ×MG → MG, where φ satisfies (5.3), (5.4) and (5.5).

For an abelian group φ(a, b) = φ(b, a) and it is possible to choose coordinates such that

φr(a, b) = ar + br , (5.6)

and in general if we Taylor expand φ we must have

φr(a, b) = ar + br + crst a
sbt + O(a2b, ab2) , ār = −ar + crst a

sat + O(a3) . (5.7)

As will become apparent the coefficients crst, or rather f rst = cr[st], which satisfy conditions
arising from the associativity condition (5.5), essentially determine the various possible Lie
groups.

As an illustration we return again to SU(2). For 2× 2 matrices A we may express them
in terms of the Pauli matrices by

A = u0 I + iu · σ , A† = u0 I − iu · σ . (5.8)

Requiring u0,u to be real then

A†A = (u0
2 + u2) I , detA = u0

2 + u2 . (5.9)

Hence
A ∈ SU(2) ⇒ u0

2 + u2 = 1 . (5.10)

The condition u0
2 +u2 = 1 defines the three dimensional sphere S3 embedded in R4, so that

MSU(2) ≃ S3. In terms of differential geometry all points on S3 are equivalent but here
the pole u0 = 1, u = 0 is special as it corresponds to the identity. For SO(3) then, since
±A correspond to the same element of SO(3), we must identify (u0,u) and −(u0,u), i.e.
antipodal points at the ends of any diameter on S3. In the hemisphere u0 ≥ 0 we may use
u, |u| ≤ 1 as coordinates for SU(2), since then u0 =

√
1 − u2. Then group multiplication

defines φ(u,v) = u + v − u × v + . . . .

For A ∈ Sl(2,C) then if A†A = e2V , for V † = V , R = Ae−V satisfies R†R = I. Since
then detR = eiα while det eV = etr(V ) is real, detA = 1 requires both detR = 1 and
tr(V ) = 0. Hence there is a unique decomposition A = ReV with V = Viσi so that the
group manifold MSl(2,C) = S3 × R3.
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5.0.1 Vector Fields, Differential Forms and Lie Brackets

For any differentiable n-dimensional manifold M, with coordinates xi, then scalar functions
f : M → R are defined in terms of these coordinates by f(x) such that under a change of
coordinates xi → x′i we have f(x) = f ′(x′). Vector fields are defined in terms of differential
operators acting on scalar functions

X(x) = Xi(x)
∂

∂xi
, (5.11)

where for the x→ x′ change in coordinates we require

Xj(x)
∂x′i

∂xj
= X ′i(x′) . (5.12)

For each x the vector fields belong to a linear vector space Tx(M) of dimension n, the
tangent space at the point specified by x.

For two vector fields X,Y belonging to Tx(M) the Lie bracket, or commutator, defines
a further vector field

[X,Y ] = −[Y,X] , (5.13)

where
[X,Y ]i(x) = X(x)Y i(x) − Y (x)Xi(x) , (5.14)

since, for a change x→ x′ and using (5.12),

[X,Y ]′ = [X ′, Y ′] , (5.15)

as a consequence of ∂2x′i

∂xj∂xk = ∂2x′i

∂xk∂xj . The Lie bracket is clearly linear, so that for any
X,Y, Z ∈ Tx(M)

[αX + βY, Z] = α[X,Y ] + β[Y, Z] , (5.16)

as in necessary for the Lie bracket to be defined on the vector space Tx(M), and it also
satisfies crucially the Jacobi14 identity, which requires

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 . (5.17)

This follows directly from the definition of the Lie Bracket as a commutator of differential
operators.

Dual to vector fields are one-forms, belonging to Tx(M)∗,

ω(x) = ωi(x) dxi , (5.18)

where ⟨dxi, ∂j⟩ = δij . For x→ x′ now

ωj(x)
∂xj

∂x′i
= ω′

i(x′) . (5.19)

14Carl Gustav Jacob Jacobi, 1804-1851, German.
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For p-forms

ρ(x) = 1
p! ρi1...ip(x) dxi1 ∧ · · · ∧ dxip , dxi ∧ dxj = −dxj ∧ dxi , (5.20)

so that ρi1...ip = ρ[i1...ip]. The transformations ρ→ ρ′ for a change of coordinates x→ x′ are
the natural multi-linear extension of (5.19). For an n-dimensional space dx′i1 ∧· · ·∧dx′in =
det
[
∂x′i

∂xj

]
dxi1 ∧ · · · ∧ dxin and we may require

dxi1 ∧ · · · ∧ dxin = εi1...in dnx (5.21)

with εi1...in the n-dimensional antisymmetric symbol and dnx the corresponding volume
element. If ρ is a n-form and Mn a n-dimensional manifold this allows the definition of the
integral ∫

Mn

ρ . (5.22)

The exterior derivative d acts on p-forms to give (p+ 1)-forms, dρ = dxi ∧ ∂iρ. For the
one-form in (5.18) the corresponding two-form is then given by

(dω)ij(x) = ∂iωj(x) − ∂jωi(x) . (5.23)

Of course (dω)′ = d′ω′ with d′ = dx′i∂′i. In general d2 = 0. If ρ is a closed p-form then

dρ = 0 . (5.24)

A trivial solution of (5.24) is provided by

ρ = dω , (5.25)

for some (p− 1)-form ω. In this case ρ is exact. If the n-form ρ in (5.22) is exact and if also
if Mn is closed then the integral is zero.

5.1 Lie Algebras

The additional structure associated with a differential manifold MG corresponding to a Lie
group G ensures that the tangent spaces Tg(MG), for a point on the manifold for which the
group element is g, can be related by group transformations. In particular the tangent space
at the origin Te(MG) plays a special role and together with the associated Lie bracket [ , ]
defines the Lie algebra g for the Lie group. For all points on MG there is a space of vector
fields which are invariant in a precise fashion under the action of group transformations
and which belong to a Lie algebra isomorphic to g. There are also corresponding invariant
one-forms.

To demonstrate these results we consider how a group element close to the identity
generates a small change in an arbitrary group element g(b) when multiplied on the right,

g(b+ db) = g(b)g(θ) , θ infinitesimal ⇒ br + dbr = φr(b, θ) , (5.26)
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so that
dbr = θaµa

r(b) , µa
r(b) =

∂

∂θa
φr(b, θ))

∣∣∣
θ=0

. (5.27)

Here we use a, b, c as indices referring to components for vectors or one-forms belonging to
Te(MG) or its dual (which must be distinguished from their use as coordinates) and r, s, t
for indices at an arbitrary point. To consider the group action on the tangent spaces we
analyse the infinitesimal variation of (5.2) for fixed g(a),

g(c+ dc) = g(a) g(b+ db) = g(c) g(θ) , (5.28)

so that, for fixed g(a),
dcr = θa µa

r(c) = dbs λsa(b)µar(c) , (5.29)

using (5.27) and defining λ(b) as the matrix inverse of µ(b),

[λsa(b)] = [µas(b)]−1 , λs
a(b)µar(b) = δs

r . (5.30)

Hence from from (5.29)
∂cr

∂bs
= λs

a(b)µar(c) . (5.31)

If near the identity we assume (5.7) then µas(0) = δa
s.

By virtue of (5.31)

Ta(b) = µa
s(b)

∂

∂bs
= µa

s(b)
∂cr

∂bs
∂

∂cr
= Ta(c) , (5.32)

define a basis {Ta : a = 1, . . . , n} of left-invariant vector fields belonging to T (MG), since
they are unchanged as linear differential operators under transformations corresponding to
g(b) → g(c) = g(a)g(b). Furthermore the corresponding vector space, formed by constant
linear combinations g = {θaTa}, is closed under taking the Lie bracket for any two vectors
belonging to g and defines the Lie algebra.

To verify closure we consider the second derivative of cr(b) where from (5.31) and (5.32)

µa
s(b)µbt(b)

∂2cr

∂bs∂bt
= µa

s(b)Tb(b)
(
λs
a(b)µar(c)

)
= µa

s(b)
(
Tb(b)λsc(b)µcr(c) + λs

c(b)Tb(c)µcr(c)
)
. (5.33)

For any matrix δX−1 = −X−1δX X−1 so that from (5.30)

Tb(b)λsc(b) = −λsd(b)
(
Tb(b)µdu(b)

)
λu

c(b) , (5.34)

which allows (5.33) to be written as

µa
s(b)µbt(b)

∂2cr

∂bs∂bt
= −Tb(b)µau(b)λuc(b)µcr(c) + Tb(c)µcr(c) , (5.35)

or, transporting all indices so as to refer to the identity tangent space,

µa
s(b)µbt(b)

∂2cr

∂bs∂bt
λr
c(c) = −

(
Tb(b)µar(b)

)
λr
c(b) +

(
Tb(c)µar(c)

)
λr
c(c) . (5.36)
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Since
∂2cr

∂bs∂bt
=

∂2cr

∂bt∂bs
, (5.37)

the right hand side of (5.36) must be symmetric in a, b. Imposing that the antisymmetric
part vanishes requires (

Ta(b)µbr(b) − Tb(b)µar(b)
)
λr
c(b) = f cab , (5.38)

where f cab are the structure constants for the Lie algebra. They are constants since (5.36)
requires that (5.38) is invariant under b→ c. Clearly

f cab = −f cba . (5.39)

From (5.30), (5.38) can be equally written just as first order differential equations in terms
of µ,

Ta µb
r − Tb µa

r = f cab µc
r , (5.40)

or more simply it determines the Lie brackets of the vector fields in (5.32)

[Ta, Tb] = f cab Tc , (5.41)

ensuring that the Lie algebra is closed.

The Jacobi identity (5.17) requires

[Ta, [Tb, Tc]] + [Tc, [Ta, Tb]] + [Tb, [Tc, Ta]] = 0 , (5.42)

or in terms of the structure constants

feadf
d
bc + fecdf

d
ab + febdf

d
ca = 0 . (5.43)

(5.43) is a necessary integrability condition for (5.40) which in turn is necessary for the
integrability of (5.31).

The results (5.31), (5.40) with (5.42) and (5.39) are the contents of Lie’s fundamental
theorems for Lie groups.

Alternatively from (5.33) using

∂

∂ct
µa

r(c) = −µau(c)
∂

∂ct
λu

c(c)µcr(c) , (5.44)

we may obtain

µa
s(b)µbt(b)

∂2cr

∂bs∂bt
λr
c(c) = µa

s(b)µbt(b)
∂

∂bt
λs
c(b) − µb

t(c)µau(c)
∂

∂ct
λu

c(c) . (5.45)

In a similar fashion as before this leads to

µa
s(b)µbt(b)

∂

∂bt
λs
c(b) − µb

s(b)µat(b)
∂

∂bt
λs
c(b) = f cab , (5.46)
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which is equivalent to (5.38), or

∂

∂br
λs
c(b) − ∂

∂bs
λr
c(b) = −f cab λra(b)λsb(b) . (5.47)

Defining the left invariant one-forms

ωa(b) = dbrλra(b) , (5.48)

the result is expressible more succinctly, as consequence of (5.23), by

dωa = −1
2f

b
bc ω

b ∧ ωc . (5.49)

Note that, using d(ωb ∧ ωc) = dωb ∧ ωc − ωb ∧ dωc, d2ωa = −1
2f

a
b[cf

b
de] ω

c ∧ ωd ∧ ωe = 0 by
virtue of the Jacobi identity (5.43).

In general a n-dimensional manifold for which there are n vector fields which are linearly
independent and non zero at each point is parallelisable. Examples are the circle S1 and
the 3-sphere S3. A Lie group defines a parallelisable manifold since a basis for non zero
vector fields is given by the left invariant fields in (5.32), the group U(1) corresponds to S1

and SU(2) to S3.

5.2 Lie Algebra Definitions

In general a Lie algebra is a vector space g with a commutator [ , ] : g × g → g satisfying
(5.13), (5.16) and (5.17), or in terms of a basis {Ta}, satisfying (5.41), with (5.39), and
(5.42) or (5.43). Various crucial definitions, which are often linked to associated definitions
for groups, are given below.

Two Lie algebras g, g′ are isomorphic, g ≃ g′, if there is a mapping between elements of
the Lie algebras X ↔ X ′ such that [X,Y ]′ = [X ′, Y ′]. If g = g′ the map is an automorphism
of the Lie algebra. For any g automorphisms form a group, the automorphism group of g.

The Lie algebra is abelian, corresponding to an abelian Lie group, if all commutators
are zero, [X,Y ] = 0 for all X,Y ∈ g.

A subalgebra h ⊂ g forms a Lie algebra itself and so is closed under commutation. If
H ⊂ G is a Lie group then its Lie algebra h is a subalgebra of g.

An invariant subalgebra or ideal h ⊂ g is such that

[X,Y ] ∈ h for all Y ∈ h , X ∈ g . (5.50)

If H is a normal Lie subgroup then its Lie algebra forms an ideal. Note that

i = [ g, g ] = {[X,Y ] : X,Y ∈ g} , (5.51)

forms an ideal i ⊂ g, since [Z, [X,Y ]] ∈ i for all Z ∈ g. i is called the derived algebra.

The centre of a Lie algebra g, Z(g) = {Y : [X,Y ] = 0 for all X ∈ g}.
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A Lie algebra is simple if it does not contain any invariant subalgebra.

A Lie algebra is semi-simple if it does not contain any invariant abelian subalgebra.

Using the notation in (5.51) and we may define in a similar fashion a sequence of
successive invariant derived subalgebras g(n), n = 1, 2, . . . , forming the derived series by

g(n+1) = [ g(n), g(n) ] , g(1) = [ g, g ] . (5.52)

A Lie algebra g is solvable if g(n+1) = 0 for some n, and so g(n) is abelian and the derived
series terminates.

Solvable and semi-simple Lie algebras are clearly mutually exclusive. Lie algebras may
be neither solvable nor semi-simple but in general they may be decomposed in terms of such
Lie algebras.

The direct sum of two Lie algebras, g = g1 ⊕ g2 = {X1 +X2 : X1 ∈ g1, X2 ∈ g2}, with
the commutator

[X1 +X2, Y1 + Y2] = [X1, X2] + [Y1, Y2] . (5.53)

It is easy to see that the direct sum g contains g1 and g2 as invariant subalgebras so that g

is not simple. The Lie algebra for the direct product of two Lie groups G = G1 ⊗G2 is the
direct sum g1 ⊕ g2.

If a Lie algebra g can be defined to act linearly on a Lie algebra h such that

Y →
X
Y X , (Y X)X

′ − (Y X′
)X = Y [X′,X] for all Y ∈ h , X,X ′ ∈ g , (5.54)

then we may define the semi-direct sum Lie algebra g ⊕s h = {X + Y : X ∈ h, Y ∈ h}
with commutators [X + Y,X ′ + Y ′] = [X,X ′] + Y ′X − Y X′

+ [Y, Y ′]. h forms an invariant
subalgebra of g⊕sh. The semi-direct sum of Lie algebras arises from the semi-direct product
of Lie groups.

5.3 Matrix Lie Algebras and Matrix Lie Groups

The definition of the Lie algebra is more straightforward for matrix Lie groups. For a matrix
group there are matrices D(a), depending on the parameters ar, realising the basic group
multiplication rule (5.2),

D(a)D(b) = D(c) . (5.55)

For group elements close to the identity with infinitesimal parameters θa we can now write

D(θ) = I + θata , (5.56)

which defins a set of matrices {ta} forming the generators for this matrix group. Writing

D(b+ db) = D(b) + dbr
∂

∂br
D(b) , (5.57)

then (5.26) becomes

dbr
∂

∂br
D(b) = θaTaD(b) = D(b)θata , (5.58)
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using (5.27) along with (5.32). Clearly

TaD(b) = D(b)ta , (5.59)

and it then follows from (5.41) that

[ta, tb] = f cabtc . (5.60)

The matrix generators {ta} hence obey the same Lie algebra commutation relations as {Ta},
and may be used to directly define the Lie algebra instead of the more abstract treatment
in terms of vector fields.

5.3.1 SU(2) Example

As a particular illustration we revisit SU(2) and following (5.8) and (5.10) write

A(u) = u0 I + iu · σ u0 =
√

1 − u2 . (5.61)

This parameterisation is valid for u0 ≥ 0. With, for infinitesimal θ, A(θ) = I + iθ · σ we
get, using the standard results (2.12) to simplify products of Pauli matrices,

A(u + du) = A(u)A(θ) = u0 − u · θ + i(u + u0 θ − u × θ) · σ , (5.62)

and hence

du = a0θ − u × θ , or dui = θjµji(u) , µji(u) = u0 δji + uk εjki . (5.63)

The vector fields forming a basis for the Lie algebra su(2) are then

Tj(u) = µji(u)
∂

∂ui
⇒ T = u0 ∇u + u × ∇u . (5.64)

Since
TA(u) = A(u) iσ , (5.65)

and [σi, σj ] = 2iεijkσk, the Lie bracket must be

[Ti, Tj ] = −2 εijk Tk . (5.66)

5.3.2 Upper Triangular Matrices

The upper triangular and the strictly upper triangular matrices

b =




x x x . . x
0 x x . . x
0 0 x . . x
...

...
...

. . .
...

0 0 0 . . x




, n =




0 x x . . x
0 0 x . . x
0 0 0 . . x
...

...
...

. . .
...

0 0 0 . . 0




, (5.67)

form Lie algebras with the commutator defined by usual matrix multiplication. It is easy
to see that

n = [b, b] , (5.68)

and that the Lie algebras b and hence also n are solvable.
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5.3.3 Representations and Lie Algebras

There is an intimate relation between representations of Lie algebras and Lie Groups. Just
as described for groups in 1.4, a representation of a Lie algebra g is of course such that for
any X ∈ g there are corresponding matrices D(X) such that D([X,Y ]) = [D(X), D(Y )],
where [D(X), D(Y )] is the matrix commutator. For convenience we may take D(Ta) = ta
where {ta} form a basis of matrices in the representation satisfying (5.60), following from
(5.41). As for groups an irreducible representation of the Lie algebra is when there are no
invariant subspaces of the corresponding representation space V under the action of all the
Lie algebra generators on V. Just as for groups there is always a trivial representation by
taking D(X) = 0.

The generators may be defined in terms of the representation matrices for group elements
which are close to the identity,

D(g(θ)) = I + θata + O(θ2) , D(g(θ))−1 = I − θata + O(θ2) . (5.69)

For unitary representations, as in (1.34), the matrix generators are then anti-hermitian,

ta
† = −ta . (5.70)

If the representation matrices have unit determinant, since det(I+ϵX) = 1+ϵ tr(X)+O(ϵ2),
we must also have

tr(ta) = 0 . (5.71)

In a physics context it is commonplace to redefine the matrix generators so that ta = −it̂a
so that, instead of (5.70), the generators t̂a are hermitian and satisfy the commutation
relations [t̂a, t̂b] = if cabt̂c.

Two representations of a Lie algebra {t′a} and {ta} are equivalent if, for some non
singular S,

t′a = S taS
−1 . (5.72)

For both representations to be unitary then S must be unitary. If the representation is
irreducible then, by applying Schur’s lemma,

ta = S taS
−1 or [S, ta] = 0 ⇒ S ∝ I . (5.73)

The complex conjugate of a representation is also a representation, in general it is
inequivalent. If it is equivalent then, for some C,

ta
∗ = C taC

−1 , (5.74)

or for a unitary representation, assuming (5.70),

C taC
−1 = −taT . (5.75)

By considering the transpose we get C−1TC taC
−1CT = ta so that for an irreducible rep-

resentation
C−1 TC = c I ⇒ C = cCT ⇒ c = ±1 . (5.76)

70



If C = CT then, by a transformation C → STCS together with ta → S−1taS, we can take
C = I and the representation is real. If C = −CT the representation is pseudo-real. For
detC ̸= 0 the representation must be even dimensional, 2n. By a transformation we may
take C = J , J2 = −I, where J is defined in (1.54). The representation matrices then satisfy
D(g(θ))† = −JD(g(θ))J , which is just as in (1.64). This is sufficient to ensure that the
pseudo-real representation formed by {D(g(θ))} can be expressed in terms of n×n matrices
of quaternions, and so such representations are also referred to as quaternionic.

The SO(3) spinor representation described in section 2.10 is pseudo-real since

C σC−1 = −σT for C = iσ2 =
(

0 1
−1 0

)
, (5.77)

which is equivalent to (2.165).

A corollary of (5.75) is that,for real or pseudo-real representations,

tr
(
t(a1 . . . tan)

)
= 0 for n odd . (5.78)

For n = 3 this has important consequences in the discussion of anomalies in quantum field
theories.

5.4 Relation of Lie Algebras to Lie Groups

The Lie algebra of a Lie group is determined by those group elements close to the identity.
Nevertheless the Lie group can be reconstructed from the Lie algebra subject to various
topological caveats. Firstly the group must be connected, for elements g ∈ G there is a
continuous path g(s) with g(0) = e and g(1) = g. Thus we must exclude reflections so
that SO(3) and SO(3, 1)↑ are the connected groups corresponding to rotations and Lorentz
transformations. Secondly for a Lie group G having a centre Z(G) which is a discrete
abelian group, then for any subgroup HZ(G) ⊂ Z(G), where HZ(G) = {h} with gh = hg
for all g ∈ G, the group G/HZ(G), defined by g ∼ gh, is also a Lie group with the same
Lie algebra as G. As an example SO(3) and SU(2) have the the same Lie algebra although
SO(3) ≃ SU(2)/Z2 where Z2 = Z(SU(2)).

5.4.1 One-Parameter Subgroups

For any element θaTa ∈ g there is a one-parameter subgroup of the associated Lie Group G
corresponding to a path in MG whose tangent at the identity is θaTa. With coordinates ar

the path is defined by ars, with s ∈ R, where

d
ds
ars = θaµa

r(as) , ar0 = 0 , or
d
ds
g(as) = θaTa(as) g(as) . (5.79)

To verify that this forms a subgroup consider g(c) = g(at)g(as) where from (5.2)

cr = φr(at, as) . (5.80)
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Using (5.79) with (5.31) we get

∂

∂s
cr = θaµa

u(as)λub(as)µbr(c) = θbµb
r(c) , cr

∣∣
s=0

= art . (5.81)

The equation is then identical with (5.79), save for the initial condition at s = 0, and the
solution then becomes

cr = ars+t ⇒ g(at)g(as) = g(as+t) . (5.82)

Since
g(as)−1 = g(a−s) , (5.83)

then {g(as)} forms an abelian subgroup of G depending on the parameter s. We may then
define an exponential map

exp : g → G , (5.84)

by
g(as) = exp(s θaTa) . (5.85)

For any representation we have
D(g(as)) = es θ

ata , (5.86)

where ta are the matrix generators and the matrix exponential may be defined as an infinite
power series, satisfying of course etXesX = e(s+t)X for any matrix X.

5.4.2 Baker Cambell Hausdorff Formula

In order to complete the construction of the Lie group G from the Lie algebra g it is
necessary to show how the group multiplication rules for elements belonging to different
one-parameter groups may be determined, i.e for any X,Y ∈ g we require

exp(tX) exp(tY ) = exp(Z(t)) , Z(t) ∈ g . (5.87)

The Baker Cambell Hausdorff15 formula gives an infinite series for Z(t) in powers of t whose
first terms are of the form

Z(t) = t(X + Y ) + 1
2 t

2[X,Y ] + 1
12 t

3
(
[X, [X,Y ]] − [Y, [X,Y ]]

)
+ O(t4) , (5.88)

where the higher order terms involve further nested commutators of X and Y and so are
determined by the Lie algebra g. For an abelian group we just have Z(t) = t(X + Y ).
The higher order terms do not have a unique form since they can be rearranged using the
Jacobi identity. Needless to say the general expression is virtually never a practical method
of calculating group products, for once existence is more interesting than the final explicit
formula.

15Henry Frederick Baker, 1866-1956, British, senior wrangler 1887. John Edward Cambell, 1862-1924,
Irish. Felix Hausdorff, 1868-1942, German.
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We discuss here the corresponding matrix identity rather than consider the result for
an abstract Lie algebra. It is necessary in the derivation to show how matrix exponentials
can be differentiated so we first consider the matrix expression

f(s) = es(Z+δZ) e−sZ , (5.89)

and then
d
ds
f(s) = es(Z+δZ)δZ e−sZ = esZδZ e−sZ + O(δZ2) . (5.90)

Solving this equation

f(1) = I +
∫ 1

0
ds esZδZ e−sZ + O(δZ2) , (5.91)

so that

eZ+δZ − eZ =
∫ 1

0
ds esZδZ e(1−s)Z + O(δZ2) . (5.92)

Hence for any Z(t) we have the result for the derivative of its exponential

d
dt
eZ(t) =

∫ 1

0
ds esZ(t) d

dt
Z(t) e(1−s)Z(t) . (5.93)

If, instead of (5.87), we suppose,

etX etY = eZ(t) , (5.94)

then

d
dt
(
etX etY

)
e−tY e−tX = X + etX Y e−tX

=
d
dt
eZ(t) e−Z(t) =

∫ 1

0
ds esZ(t) d

dt
Z(t) e−sZ(t) . (5.95)

With the initial condition Z(0) = 0 this equation then allows Z(t) to be determined. To
proceed further, using the formula for the exponential expansion

eAB e−A = B + [A,B] + 1
2 [A, [A,B]] + . . . , (5.96)

(5.95) can be rewritten as an expansion in multiple commutators

X + etXY e−tX =
d
dt
Z(t) +

∞∑
n=1

1
(n+ 1)!

[
Z(t), . . .

[
Z(t)︸ ︷︷ ︸

n

,
d
dt
Z(t)

]
. . .
]
, (5.97)

which may be solved iteratively by writing Z(t) =
∑∞

n=1 Znt
n.

The results may be made somewhat more explicit if we adopt the notation

f(Xad)Y =
∞∑
n=0

fn
[
X, . . .

[
X︸ ︷︷ ︸

n

, Y
]
. . .
]

for f(x) =
∞∑
n=0

fnx
n , (5.98)
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so that (5.96) becomes eAB e−A = eA
ad
B. Then, since

∫ 1
0 ds esz = (ez − 1)/z, (5.95) can be

written as
d
dt
Z(t) = f

(
eZ(t)ad

)(
X + etX

ad
Y
)
, (5.99)

for, using the standard series expansion of ln(1 + x),

f(x) =
lnx
x− 1

=
∞∑
n=0

(−1)n

n+ 1
(x− 1)n . (5.100)

Since
eZ(t)adU = eZ(t) U e−Z(t) = etXetY U e−tY e−tX = etX

ad
etY

ad
U , (5.101)

we may replace eZ(t)ad → etX
ad
etY

ad
on the right hand side of (5.99). With some intricate

combinatorics (5.99) may then be expanded as a power series in t which on integration gives
a series expansion for Z(t) (a formula can be found on Wikipedia).

A simple corollary of these results is

e−tXe−tY etXetY = et
2[X,Y ]+O(t3) , (5.102)

so this combination of group elements isolates the commutator [X,Y ] as t→ 0.

5.5 Simply Connected Lie Groups and Covering Groups

For a connected topological manifold M then for any two points x1, x2 ∈ M there are
continuous paths px1→x2 linking x1 and x2 defined by functions px1→x2(s), 0 ≤ s ≤ 1,
where px1→x2(0) = x1, px1→x2(1) = x2. For three points x1, x2, x3 a composition rule for
paths linking x1, x2 and x2, x3 is given by

(px1→x2 ◦ px2→x3)(s) =

{
px1→x2(2s) , 0 ≤ s ≤ 1

2 ,

px2→x3(2s− 1) , 1
2 ≤ s ≤ 1 .

(5.103)

For any px1→x2 the corresponding inverse, and also the trivial identity path, are defined by

p−1
x2→x1

(s) = px1→x2(1 − s) , pid
x→x(s) = x . (5.104)

The set of paths give topological information about M by restricting to equivalence, or
homotopy, classes [px1→x2 ] = {p′x1→x2 : p′x1→x2 ∼ px1→x2}, where the homotopy equivalence
relation requires that p′x1→x2(s) can be continuously transformed to px1→x2(s). These ho-
motopy classes inherit the composition rule [px1→x2 ] ◦ [px2→x3 ] = [px1→x2 ◦ px2→x3 ]. The
fundamental group for M is defined in terms of homotopy classes of closed paths starting
and ending at an arbitrary point x ∈ M,

π1(M) =
{
[px→x]

}
. (5.105)

This defines a group using the composition rule for group multiplication and for the identity
e = [pid

x→x] and for the inverse [px→x]−1 = [p−1
x→x]. For M connected π1(M) is independent of

the point x chosen in (5.105). M is simply connected if π1(M) is trivial, so that px→x ∼ pid
x→x
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for all closed paths. If π1(M) is non trivial then M is multiply connected, if dimπ1(M) = n
there are n homotopy classes [px1→x2 ] for any x1, x2.

For Lie groups we can then define π1(G) ≡ π1(MG). In many examples this is non
trivial. For the rotation group SO(3), as described earlier, MSO(3) ≃ S3/Z2 where antipodal
points, at the end of diameters, are identified. Alternatively, by virtue of (2.7), MSO(3)

may be identified with a ball of radius π in three dimensions with again antipodal points on
the boundary S2 identified. There are then closed paths, starting and finishing at the same
point, which involve a jump between two antipodal points on S3, or the surface of the ball,
and which therefore cannot be contracted to the trivial constant path. For two antipodal
jumps then by smoothly moving the corresponding diameters to coincide the closed path
can be contracted to the trivial path. Hence

π1(SO(3)) ≃ Z2 . (5.106)

As another example we may consider the group U(1), as in (1.52), where it is clear that
MU(1) ≃ S1, the unit circle. For S1 there are paths which wind round the circle n-times
which are homotopically distinct for different n so that homotopy classes belonging to
π1(U(1)) are labelled by integers n. Under composition it is straightforward to see that the
winding number is additive so that

π1(U(1)) ≃ Z , (5.107)

which is an infinite discrete group in this case.

5.5.1 Covering Group

For a non simply connected Lie group G there is an associated simply connected Lie group
G, the covering group, with the same Lie algebra since G and G are identical near the
identity. Assuming π1(G) has n elements then for any g ∈ G we associate paths pi,e→g

where

pi,e→g(s) = gi(s) , gi(0) = e , gi(1) = g , i = 0, . . . , n− 1 , (5.108)

corresponding to the n homotopically distinct paths from the identity e to any g. The
elements of π1(G) can be identified with [pi,e→e]. We then define G such that the group
elements are

gi =
(
g, [pi,e→g]

)
∈ G for all g ∈ G , i = 0, . . . , n− 1 , (5.109)

with a corresponding group product

g1i g2j = gk , for g = g1g2 , [pk,e→g1g2 ] = [pi,e→g1 ◦ g1pj,e→g2 ] , (5.110)

using the path composition as in (5.103) and noting that g1pj,e→g2 defines a path from g1
to g = g1g2. For the inverse and identity elements we have, with the definitions in (5.104),

gi
−1 =

(
g−1, [g−1p−1

i,g→e]
)
, e0 =

(
e, [p0,e→e]

)
, p0,e→e = pid

e→e . (5.111)
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These definitions satisfy the group properties although associativity requires some care. G
contains the normal subgroup given by{

ei : i = 0, . . . , n− 1} ≃ π1(G) , ei =
(
e, [pi,e→e]

)
. (5.112)

Any discrete normal subgroup H of a connected Lie group G must be moreover a
subgroup of the centre Z(G), since if h ∈ H then ghg−1 ∈ H for any g ∈ G, by the
definition of a normal subgroup. Since we may g vary continuously over all G, if G is a
connected Lie group, and since H is discrete we must then have ghg−1 = h for all g, which
is sufficient to ensure that h ∈ Z(G).

The construction described above then ensures that the covering group G is simply
connected and we have therefore demonstrated that

G ≃ G/π1(G) , π1(G) ⊂ Z(G) . (5.113)

As an application we consider the examples of SO(3) and U(1). For SO(3) we consider
rotation matrices R(θ, n) as in (2.6) but allow the rotation angle range to be extended to
0 → 2π. Hence, instead of (2.7), we have

n ∈ S2 , 0 ≤ θ ≤ 2π , (θ, n) ≃ (2π − θ,−n) . (5.114)

There are two homotopically inequivalent paths linking the identity to R(θ, n), 0 ≤ θ ≤ π,
which may be defined, with the conventions in (5.114), by

p0,I→R(θ,n)(s) = R(sθ, n) , p1,I→R(θ,n)(s) = R(s(2π − θ),−n) , 0 ≤ s ≤ 1 , (5.115)

since p1,I→R(θ,n) involves a jump between antipodal points. The construction of the covering
group then defines group elements R(θ, n)i, for i = 0, 1. For rotations about the same axis
the group product rule then requires

R(θ, n)i R(θ′, n)j =

{
R(θ + θ′, n) i+jmod 2 , 0 ≤ θ + θ′ ≤ π ,

R(θ + θ′, n) i+j+1mod 2 , π ≤ θ + θ′ ≤ 2π ,
0 ≤ θ, θ′ ≤ π . (5.116)

It is straightforward to see that this is isomorphic to SU(2), by taking R(θ, n)0 → A(θ, n),
R(θ, n)1 → −A(θ, n), and hence SO(3) ≃ SU(2). For U(1) with group elements as in (1.52)
we may define

pn,1→eiθ(s) = eis(θ+2nπ) , 0 ≤ s ≤ 1 , n ∈ Z , (5.117)

which are paths with winding number n. Writing the elements of the covering group U(1)
as gn

(
eiθ
)

we have the product rule

gn
(
eiθ
)
gn′
(
eiθ

′)
=

{
gn+n′

(
ei(θ+θ

′)
)
, 0 ≤ θ + θ′ ≤ 2π ,

gn+n′+1

(
ei(θ+θ

′)
)
, 2π ≤ θ + θ′ ≤ 4π ,

0 ≤ θ, θ′ ≤ 2π . (5.118)

It is straightforward to see that effectively the group action is extended to all real θ, θ′ so
that U(1) ≃ R.
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5.5.2 Projective Representations

For a non simply connected Lie groupG then in general representations of the covering group
G generate projective representations of G. Suppose {D(gi)} are representation matrices
for G, where D(g1i)D(g2j) = D(gk) for g1i, g2j , gk ∈ G satisfying the group multiplication
rule in (5.110). To restrict the representation to G it is necessary to restrict to a particular
path, say i, since there is then a one to one correspondence gi → g ∈ G. Then, assuming
g1i g2i = gj for some j,

D(g1i)D(g2i) = D(gj) = D(gj gi−1) D(gi) = D(ek) D(gi) , (5.119)

where, by virtue of (5.112) and (5.113),

gj gi
−1 = ek ∈ Z(G) for some k . (5.120)

Since ek belongs to the centre, D(ek) must commute with D(gi) for any gi ∈ G and so,
for an irreducible representation must, by Schur’s lemma, be proportional to the identity.
Hence, for a unitary representation,

D(ek) = eiγkI , (5.121)

where {eiγk : k = 0, . . . , n− 1} form a one dimensional representation of π1(G). Combining
(5.119) and (5.121) illustrates that {D(gi)}, for i fixed, provide a projective representation
of G as in (1.71).

For SO(3) we have just eiγk = ±1. For U(1) then there are one-dimensional projective
representations given by eiαθ, for any real α, where we restrict 0 ≤ θ < 2π which corresponds
to a particular choice of path in the covering group. Then the multiplication rules become

eiαθ eiαθ
′
=

{
eiα(θ+θ′) , 0 ≤ θ + θ′ ≤ 2π ,
e2πiα eiα(θ+θ′−2π) , 2π ≤ θ + θ′ ≤ 4π .

(5.122)

5.6 Lie Algebra and Projective Representations

The possibility of different Lie groups for the same Lie algebra, as has been just be shown,
can lead to projective representations with discrete phase factors. There are also cases when
the phase factors vary continuously which can be discussed directly using the Lie algebra.
We wish to analyse then possible solutions of the consistency conditions (1.72) modulo
trivial solutions of the form (1.73) and show how this may lead to a modified Lie algebra.

For simplicity we write the phase factors γ which may appear in a projective represen-
tation of a Lie group G, as in (1.71), directly as functions on MG ×MG so that, in terms
of the group parameters in (5.1), we take γ(g(a), g(b)) ≡ γ(a, b). The consistency condition
(1.72) is then analysed with gi → g(a), gj → g(b), gk → g(θ) with θ infinitesimal and, with
the same notation as in (5.26) and (5.28), this becomes

γ(c, θ) + γ(a, b) = γ(a, b+ db) + γ(b, θ) . (5.123)
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Defining

γa(b) =
∂

∂θa
γ(b, θ)

∣∣∣∣
θ=0

, (5.124)

and with (5.27) and the definition (5.32) then (5.123) becomes

Ta(b) γ(a, b) = γa(c) − γa(b) . (5.125)

This differential equation for γ(a, b) has integrability conditions obtained by considering

[Ta(b), Tb(b)] γ(a, b) = f cabTc(b) γ(a, b) (5.126)

which applied to (5.125) and using Ta(b) = Ta(c) from (5.32) leads to a separation of the
dependence on b and c so each part must be constant. This gives

Ta(b) γb(b) − Tb(b) γa(b) − f cab γc(b) = hab = −hba , (5.127)

with hab a constant. Applying Tc(b) and antisymmetrising the indices a, b, c gives, with
(5.41),

0 = Tc hab+Tb hca+Ta hbc = fdab(Tdγc−Tcγd)+fdbc(Tdγa−Taγd)+fdca(Tdγb−Tbγd) , (5.128)

and hence, with (5.127) and (5.43), there is then a constraint on hab,

fdab hdc + fdbc hda + fdca hdb = 0 . (5.129)

As was discussed in 1.6 there are trivial solutions of the consistency conditions which are
given by (1.73), and which, in the context of the Lie group considered here, are equivalent
to taking γ(a, b) = α(c)−α(a)−α(b) for α any function on MG. From (5.26) we then have
γ(b, θ) = α(b+ db) − α(b) − α(θ) so that (5.124) gives

γa(b) = Ta(b)α(b) − ca , ca =
∂

∂θa
α(θ)

∣∣∣∣
θ=0

, (5.130)

and then substituting in (5.127)
hab = f cab cc . (5.131)

It is easy to verify that (5.130) and (5.131) satisfy (5.127) and (5.129)16.

If there are unitary operators U(a), corresponding to g(a) ∈ G, realising the Lie group
G as a symmetry group in quantum mechanics then (1.71) requires

U(b)U(θ) = eiγa(b)θa
U(b+ db) , (5.132)

for infinitesimal θa. Assuming
U(θ) = 1 − iθaT̂a , (5.133)

16Alternatively, using the left invariant one forms in (5.48) and defining h = 1
2
hab ωa ∧ ωb, then (5.129)

is equivalent, by virtue of (5.49), to dh = 0, so that h is closed, while the trivial solution (5.131) may be
identified with h = −dc, corresponding to h being exact, for c = caωa. Thus projective representations
depend on the cohomology classes of closed, modulo exact, two forms on MG.
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for hermitian operators T̂a, then, since U(b+ db) = U(b) + θaTa(b)U(b), we have

Ta(b)U(b) = −iU(b)
(
T̂a + γa(b)

)
. (5.134)

By considering [Ta, Tb]U(b) and using (5.127) then this requires that the hermitian operators
{T̂a} satisfy a modified Lie algebra[

T̂a, T̂b] = if cab T̂c − i hab 1 . (5.135)

The additional term involving hab is a central extension of the Lie algebra, it is the coefficient
of the identity operator which commutes with all elements in the Lie algebra. A central
extension, if present, is allowed by virtue of the freedom up to complex phases in quantum
mechanics and they often play a crucial role. The consistency condition (5.129) is necessary
for {T̂a} to satisfy the Jacobi identity, if (5.131) holds then the central extension may be
removed by the redefinition T̂a → T̂a + ca 1.

As shown subsequently non trivial central extensions are not present for semi-simple Lie
algebras, it necessary for there to be an abelian subalgebra. A simple example arises for
the Lie algebra iso(2), given in (4.139), which has a central extension

[J3, E1] = iE2 , [J3, E2] = −iE1 , [E1, E2] = ic 1 . (5.136)

5.6.1 Galilean Group

As an illustration of the significance of central extensions we consider the Galilean Group.
Acting on space-time coordinated x, t this is defined by the transformations involving rota-
tions, translations and velocity boosts

x′ = Rx + a + vt , t′ = t+ b , (5.137)

where R is a rotation belonging to SO(3). If we consider a limit of the Poincaré Lie algebra,
with generators J,K,P,H, by letting K → cK, H → cM+c−1H and take the limit c→ ∞
then the commutation relations from (4.42), (4.43) and (4.107), (4.108) become

[Ji, Jj ] = iεijkJk , [Ji,Kj ] = iεijkKk , [Ki,Kj ] = 0 , [Ki,H] = iPi ,

[Ki, Pj ] = iδijM , [J,M ] = [K,M ] = [P,M ] = [H,M ] = 0 . (5.138)

When the Lie algebra is calculated just from the transformations in (5.137) the terms
involving M are absent, the terms involving M are a central extension.

If we consider the just the subgroup formed by boosts and spatial translations then
writing the associated unitary operators as

U [v,a] = e−ia·P eiv·K , (5.139)

then a straightforward calculation shows that

U [v′,a′]U [v,a] = eiM v′·a U [v′ + v,a′ + a] . (5.140)
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For comparison with the preceding general discussion we should take Ta → (∇v,∇a) and
T̂a → (−K,P). From (5.140) then γa →M(0,v) and from (5.127) hab →M

(
0 I3

−I3 0

)
.

For representations of the Galilean group in quantum mechanics the central extension
plays an essential role. Using (5.138)

e−iv·KPeiv·K = P +Mv , eiv·KHeiv·K = H + P · v + 1
2Mv2 . (5.141)

In a similar fashion to the Poincaré group we may define irreducible representations in terms
of a basis for a space VM obtained from a vector |0⟩, such that P|0⟩ = 0, by

|p⟩ = eiv·K|0⟩ , p = Mv , (5.142)

so that as a consequence of (5.142)

P|p⟩ = p |p⟩ , H|p⟩ =
(
E0 + p2

2M

)
|p⟩ . (5.143)

Clearly VM corresponds to states of a nonrelativistic particle of mass M . The representa-
tion can easily be extended to include spin by requiring that |0⟩ belong to an irreducible
representation of the rotation group.

5.7 Integration over a Lie Group, Compactness

For a discrete finite group G = {gi} then an essential consequence of the group axioms is
that, for any function f on G, the sum

∑
i f(gi) =

∑
i f(ggi) is invariant for any arbitrary

g ∈ G. This result played a vital role in the proof of results about representations such as
Schur’s lemmas and the equivalence of any representation to a unitary representation. Here
we describe how this may be extended to Lie groups where, since the group elements depend
on continuously varying parameters, the discrete sum is replaced by a correspondingly
invariant integration.

If we consider first the simplest case of U(1), with elements as in (1.52) depending on an
angle θ then a general function f on U(1) is just a periodic function of θ, f(θ+ 2π) = f(θ).
Since the product rule for this abelian group is eiθ

′
eiθ = ei(θ

′+θ) then, for periodic f ,∫ 2π

0
dθ f(θ) =

∫ 2π

0
dθ f(θ′ + θ) . (5.144)

provides the required invariant integration over U(1). For the covering group R, formed by
real numbers under addition, the integration has to be extended to the whole real line.

For a general Lie group G then, with notation as in (5.1) and (5.2), we require an
integration measure over the associated n-dimensional manifold MG such that∫

G
dρ(b) f(g(b)) =

∫
G
dρ(b) f(g(c)) for g(c) = g(a)g(b) , (5.145)

where dρ(b) = dnb ρ(b). To determine ρ(b) it suffices just to calculate the Jacobian J for
the change of variables b → c(b), with fixed a, giving for the associated change of the
n-dimensional integration volume elements

dnc = |J |dnb , J = det
[
∂cr

∂bs

]
, (5.146)
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and then require, to satisfy (5.145),

dρ(b) = dρ(c) ⇒ ρ(b) = |J | ρ(c) . (5.147)

For a Lie group the fundamental result (5.31), with (5.30), ensures that

J = det
[
λ(b)

]
det
[
µ(c)

]
=

det
[
µ(c)

]
det
[
µ(b)

] . (5.148)

Comparing (5.146) and (5.148) with (5.147) show that the invariant integration measure
over a general Lie group G is obtained by taking

dρ(b) =
C∣∣det
[
µ(b)

]∣∣ dnb . (5.149)

for some convenient constant C. The normalisation of the measure is dictated by the form
near the identity since for b ≈ 0 then dρ(b) ≈ C dnb.

A Lie group G is compact if the group volume is finite,∫
G
dρ(b) = |G| <∞ , (5.150)

otherwise it is non compact. By rescaling ρ(b) we may take |G| = 1. For a compact Lie group
many of the essential results for finite groups remain valid, in particular all representations
are equivalent to unitary representations, and correspondingly the matrices representing the
Lie algebra can be chosen as anti-hermitian or hermitian, according to convention. Amongst
matrix groups SU(n), SO(n) are compact while SU(n,m), SO(n,m), for n,m > 0, are non
compact.

5.7.1 SU(2) Example

For SU(2) with the parameterisation in (5.61) the corresponding 3× 3 matrix [µji(u)] was
computed in (5.63). It is not difficult to see that the eigenvalues are u0, u0 ± i|u| so that in
this case, since u0

2 + u2 = 1,
det[µji(u)] = u0 . (5.151)

Hence (5.149) requires

dρ(u) =
1

|u0|
d3u , −1 ≤ u0 ≤ 1 , |u| ≤ 1 . (5.152)

where range of u0,u is determined in order to cover SU(2) matrices in (5.8). For the
parameterisation in terms of θ,n, n2 = 1, as given by (2.28)

u0 = cos 1
2θ , u = − sin 1

2θ n , d3u = |u|2d|u|d2n , (5.153)

so that
dρ(θ,n) = 1

2 sin2 1
2θ dθ d2n , 0 ≤ θ ≤ 2π . (5.154)
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Since
∫
S2d2n = 4π the group volume is easily found∫

SU(2)
dρ(θ,n) = 2π2 . (5.155)

An alternative common parameterisation for SU(2) in terms of Euler angles ϕ, θ, ψ is
obtained by expressing a general SU(2) matrix in the form

A = e−i
1
2
ϕσ3e−i

1
2
θσ2e−i

1
2
ψσ3 , 0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ π , 0 ≤ ψ ≤ 4π , (5.156)

where the ranges are dictated by the need to cover all SU(2) matrices. In terms of u0,u as
in (5.8),

u0 = cos 1
2θ cos 1

2(ϕ+ ψ) , u3 = − cos 1
2θ sin 1

2(ϕ+ ψ) ,
u1 = sin 1

2θ sin 1
2(ϕ− ψ) , u2 = sin 1

2θ cos 1
2(ϕ− ψ) . (5.157)

Using du1 ∧ du2 = −1
8 sin θ dθ∧ d(ϕ−ψ) and du1 ∧ du2 ∧ du3 = 1

8 sin θ u0 dθ∧ dϕ∧ dψ then

dρ(ϕ, θ, ψ) = 1
8 sin θ dθ dϕdψ . (5.158)

For SO(3), since SU(2) is a double cover, the group volume is halved. In terms of the
parameterisation (θ, n) used in (5.154) we should take 0 ≤ θ ≤ π or in terms of the Euler
angles instead of (5.156) 0 ≤ ψ ≤ 2π.

For compact Lie groups the orthogonality relations for representations (1.39) or charac-
ters (1.42) remain valid if the summation is replaced by invariant integration over the group
and |G| by the group volume as in (5.150). For SU(2) the characters are given in (2.81)
and using (5.154) and integrating over n ∈ S2 we then obtain∫ 2π

0
dθ sin2 1

2θ χj(θ)χj′(θ) = π δjj′ . (5.159)

This may be easily verified directly using the explicit formula for χj in (2.81). For SO(3),
when j, j′ are integral, the integration range may be reduced to [0, π] with the coefficient
on the right hand side halved.

5.7.2 Non Compact Sl(2,R) Example

As an illustration of a non compact Lie group, we consider Sl(2,R) consisting of real 2× 2
matrices with determinant 1. With the Pauli matrices in (2.11) a general real 2× 2 matrix
may be expressed as

A = v0 + v1σ1 + v2 iσ2 + v3σ3 , (5.160)

where, for A ∈ Sl(2,R), v0,v are real and we must further impose

detA = v0
2 + v2

2 − v1
2 − v3

2 = 1 . (5.161)
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If we choose v = (v1, v2, v3) as independent parameters, so that we may write A(v), then
for a infinitesimal θ = (θ1, θ2, θ3) under matrix multiplication

A(v)A(θ) = A(v + dv) , (5.162)

where, using the multiplication rules (2.12),

(
dv1 dv2 dv3

)
=
(
θ1 θ2 θ3

) v0 v3 v2
v3 v0 −v1
−v2 −v1 v0

 . (5.163)

This defines the matrix µ(v), as in (5.27), for Sl(2,R) with the parameter choice in (5.160).
It is easy to calculate, with (5.161),

detµ(v) = v0 , (5.164)

so that the invariant integration measure becomes

dρ(v) =
1
|v0|

d3v . (5.165)

Unlike the case for SU(2) the parameters v have an infinite range so that the group volume
diverges.

For an alternative parameterisation we may take

v0 = coshα cosβ , v2 = coshα sinβ , v1 = sinhα cos γ , v3 = sinhα sin γ ,
α ≥ 0 , 0 ≤ β, γ ≤ 2π . (5.166)

In this case the Sl(2,R) integration measure becomes

dρ(α, β, γ) = 1
2 sinh 2α dα dβ dγ , (5.167)

which clearly demonstrates the diverging form of the α integration. For β, γ = 0 the Sl(2,R)
matrix given by (5.166) reduces to one for SO(1, 1) as in (1.59).

The group Sl(2,R) is related to a pseudo-orthogonal group in a similar fashion to SU(2)
and SO(3). For a basis of real traceless 2 × 2 matrices

σ̂ = (σ1, iσ2, σ3) , (5.168)

then we may define, for arbitrary real 3 vectors x, a linear transformation x → x′ by

σ̂ · x′ = A σ̂ · xA−1 , A ∈ Sl(2,R) , (5.169)

such that the quadratic form

det σ̂ · x = x1
2 + x3

2 − x2
2 , (5.170)

is invariant. This then demonstrates that SO(2, 1) ≃ Sl(2,R)/Z2.
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Additionally Sl(2,R) ≃ SU(1, 1). For any B ∈ SU(1, 1) we must have

Bσ3B
† = σ3 , detB = 1 . (5.171)

Writing
B = w0 + w1σ1 + w2σ2 − w3 iσ3 , (5.172)

then for w0,w real σ3B
† = B−1σ3 so long as

detB = w0
2 + w3

2 − w1
2 − w3

2 = 1 . (5.173)

Hence for any A(v) ∈ Sl(2,R) it is clear that ei
1
4
πσ1A(v)e−i

1
4
πσ1 = B(w) ∈ SU(1, 1), with

w = (v1, v3, v2), showing the isomorphism between these two non compact Lie groups.

5.8 Adjoint Representation and its Corollaries

A Lie algebra g is just a vector space with also a bilinear commutator, [ , ] : g×g → g, subject
only to the requirement that the commutator is antisymmetric and satisfies the Jacobi
identity. The vector space defines the representation space for the adjoint representation
which plays an absolutely fundamental role in the analysis of Lie algebras.

For any X,Y ∈ g then
Y →

X
[X,Y ] = Xad Y , (5.174)

defines the linear mapXad : g → g. There is also a corresponding adjoint representation for
the associated Lie group G. For any X ∈ g the associated one parameter group is given by
exp(sX) ∈ G and then the adjoint representation Dad is defined by

Y −−−−→
exp(X)

Dad
(
exp(sX)

)
Y = esX

ad
Y =

∞∑
n=0

sn

n!
[
X, . . .

[
X︸ ︷︷ ︸

n

, Y
]
. . .
]
, (5.175)

with similar notation to (5.98). To verify that (5.174) provides a representation of the Lie
algebra the Jacobi identity is essential since from

ZadXad Y = [Z, [X,Y ]] , (5.176)

we obtain for the adjoint commutator, using (5.17),[
Zad, Xad

]
Y = [Z, [X,Y ]] − [X, [Z, Y ]] = [[Z,X], Y ] = [Z, Y ]ad Y , (5.177)

and hence in general [
Zad, Xad

]
= [Z, Y ]ad . (5.178)

Explicit adjoint representation matrices are obtained by choosing a basis for g, {Ta} so
that for any Y ∈ g then Y = TaY

a and (5.174) becomes

Xad Y = Tc (Xad)cbY b . (5.179)

84



For the generators Ta the corresponding adjoint representation matrices are then given by

[Ta, Tb] = Tc (Taad)cb ⇒ (Taad)cb = f cab , (5.180)

using (5.41). The commutator [
Ta

ad, Tb
ad
]

= f cab Tc
ad , (5.181)

is directly equivalent to (5.42). The group representation matrices Dad(expX) = eX
ad

,
with Xad = Ta

adXa, are then obtained using the matrix exponential. Close to the identity,
in accord with (5.69),

Dad(expX) = I +Xad + O(X2) . (5.182)

If the Lie algebra is abelian then clearly Xad = 0 for all X so the adjoint representation
is trivial.

For su(2)
[Ti, Tj ] = iεijk Tk ⇒ (Tiad)jk = −iεijk , (5.183)

where Tad are three 3 × 3 hermitian matrices. If n is a unit vector (n · Tad)2 = I − nnT

from which we may deduce that n · Tad has eigenvalues ±1, 0 so that this is the spin 1
representation. For the the Lie algebra iso(2), as given in (4.139), we have

E1
ad = i

0 0 0
0 0 −1
0 0 0

 , E2
ad = i

0 0 1
0 0 0
0 0 0

 , J3
ad = i

0 −1 0
1 0 0
0 0 0

 . (5.184)

5.8.1 Killing Form

The Killing17 form, although apparently due to Cartan, provides a natural symmetric bi-
linear form, analogous to a metric, for the Lie algebra g. It is defined using the trace, over
the vector space g, of the adjoint representation matrices by

κ(X,Y ) = tr
(
XadY ad

)
for all X,Y ∈ g , (5.185)

or in terms of a basis as in (5.180)

κab = κ(Ta, Tb) = f cad f
d
bc , (5.186)

so that κ(X,Y ) = κabX
aY b. Clearly it is symmetric κab = κba.

The importance of the Killing form arises from the crucial invariance condition

κ([Z,X], Y ) + κ(X, [Z, Y ]) = 0 . (5.187)

The verification of this is simple since, from (5.178),

κ([Z,X], Y ) = tr
(
[Z,X]adY ad

)
= tr

(
[Zad, Xad]Y ad

)
, (5.188)

17Wilhelm Karl Joseph Killing, 1847-1923, German.
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and then (5.187) follows from tr
(
[Zad, Xad]Y ad

)
+ tr

(
Xad [Zad, Y ad]

)
= 0, using cyclic

symmetry of the matrix trace. The result (5.187) also shows that the Killing form is
invariant under the action of the corresponding Lie group G since

κ
(
esZ

ad
X, esZ

ad
Y
)

= κ
(
X,Y

)
, (5.189)

which follows from (5.175) and differentiating with respect to s and then using (5.187).

Alternatively (5.187) may be expressed in terms of components using

κ
(
[Tc, Ta], Tb

)
= fdcaκ(Td, Tb) = fdca κdb ≡ fcab , (5.190)

in a form expressing κab as an invariant tensor for the adjoint representation

κdb f
d
ca + κad f

d
cb = 0 ⇔ fcab + fcba = 0 . (5.191)

Since, from (5.39), fcab + fcba = 0 this implies

fabc = f[abc] . (5.192)

If the Lie algebra g contains an invariant subalgebra h then in an appropriate basis we
may write

Ta = (Ti, Tr) , Ti ∈ h [Ti, Tj ] = fkijTk , [Tr, Ti] = f jriTj , (5.193)

so that the Killing form restricted to h is just

κij = fkil f
l
jk = trh(TiadTjad) . (5.194)

The crucial property of the Killing form is the invariance condition (5.187). If gab also
defines an invariant bilinear form on the Lie algebra, as in (5.187), so that

gab
(
[Z,X]aY b +Xa[Z, Y ]b

)
= 0 , (5.195)

then, for any solution λi of det[κab − λgab] = 0, hi = {Xi : (κab − λigab)Xi
b = 0} forms, by

virtue of the invariance condition (5.195), an invariant subalgebra hi ⊂ g. Restricted to hi
the Killing form κab and gab are proportional. For a simple Lie algebra, when there are no
invariant subalgebras, the Killing form is essentially unique.

For a compact group the adjoint representation Dad may be chosen to be unitary so
that in (5.182) the adjoint Lie algebra generators are anti-hermitian, as in (5.70),

Xad† = −Xad . (5.196)

In this case
κ(X,X) ≤ 0 , κ(X,X) = 0 ⇔ Xad = 0 . (5.197)

For su(2) using (5.183)

κij = tr(Tiad Tiad) = i2εikl εjlk = 2 δij . (5.198)

However for iso(2) then, if Ta = (E1, E2, J3), a = 1, 2, 3, it is easy to see from (5.184)

[κab] = 2

0 0 0
0 0 0
0 0 1

 . (5.199)
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5.8.2 Conditions for Non Degenerate Killing Form

For the Killing form to play the role of a metric on the Lie algebra then it should be non-
degenerate, which requires that if κ(Y,X) = 0 for all Y ∈ g then X = 0 or more simply
det[κab] ̸= 0 so that κabY b = 0 has no non trivial solution. An essential theorem due to
Cartan gives the necessary and sufficient conditions for this to be true. Using the definition
of a semi-simple Lie algebra given in 5.2 we have;

Theorem The Killing form is non-degenerate if and only if the Lie algebra is semi-simple.

To demonstrate that if the Lie algebra is not semi-simple the Killing form is degenerate
is straightforward. Assume there is an invariant abelian subalgebra h with a basis {Ti} so
that

Ta = (Ti, Tr) ⇒ [Ti, Tj ] = 0 , [Tr, Ti] = f jriTj . (5.200)

Then from (5.186)

κai = f cad f
d
ic = f raj f

j
ir = 0 , since f rsj = f rkj = 0 , (5.201)

which is equivalent to κ(Y,X) = 0 for X ∈ h and all Y ∈ g. The converse is less trivial. For
a Lie algebra g, if det[κab] = 0 then h = {X : κ(Y,X) = 0, for all Y ∈ g} forms a non trivial
invariant subalgebra, since κ(Y, [Z,X]) = −κ([Z, Y ], X) = 0, for any Z, Y ∈ g, X ∈ h.
Thus g is not simple. The proof that g is not semi-simple then consists in showing that h

is solvable, so that, with the definition in (5.52), h(n) is abelian for some n. The alternative
would require h(n) = h(n+1), for some n, but this is incompatible with κ(X,Y ) = 0 for all
X,Y ∈ h.

The results (5.198) and (5.199) illustrate that su(2) is semi-simple, whereas iso(2) is
not, it contains an invariant abelian subalgebra.

For a compact Lie group G the result that a degenerate Killing form for a Lie algebra g

implies the presence of an abelian invariant subalgebra follows directly from (5.197) since
if Xad = 0, X commutes with all elements in g. For the compact case the Lie algebra can
be decomposed into a semi-simple part and an abelian part so that the group has the form

G ≃ Gsemi−simple ⊗ U(1) ⊗ · · · ⊗ U(1)/F , (5.202)

with a U(1) factor for each independent Lie algebra element with Xad = 0 and where F is
some finite abelian group belonging to the centre of G.

5.8.3 Decomposition of Semi-simple Lie Algebras

If a semi-simple Lie algebra g contains an invariant subalgebra h then the adjoint represen-
tation is reducible. However it may be decomposed into a direct sum of simple Lie algebras
for each of which the adjoint representation is irreducible. To verify this let

h⊥ = {X : κ(X,Y ) = 0, Y ∈ h} . (5.203)
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Then h⊥ is also an invariant subalgebra since, for any X ∈ h⊥ and Z ∈ g, Y ∈ h,
κ([Z,X], Y ) = −κ(X, [Z, Y ]) = 0. Furthermore h⊥ ∩ h = 0 since otherwise, by the def-
inition of h⊥ in (5.203), there would be a X ∈ h⊥ and also X ∈ h so that κ(X,Z) = 0 for
all Z ∈ g which contradicts the Killing form being non-degenerate. Hence

g = h ⊕ h⊥ . (5.204)

This decomposition may be continued to give until there are no remaining invariant spaces

g =
⊕
i

gi , gi simple . (5.205)

For the Lie algebra there is then a basis {Ta(i)}, such that for each individual i this represents
a basis for gi, a = 1, . . .dim gi, and with the generators for gi, gj , i ̸= j commuting as in
(5.53) and κ(Ta(i), Tb(j)) = 0, i ̸= j. For any X,Y ∈ g then the Killing form becomes a sum

X =
∑
i

Xi , Y =
∑
i

Yi , κ(X,Y ) =
∑
i

trgi

(
Xi

adYi
ad
)
, (5.206)

The corresponding decomposition for the associated Lie group becomes G = ⊗iGi.

With this decomposition the study of semi-simple Lie algebras is then reduced to just
simple Lie algebras.

5.8.4 Casimir Operators and Central Extensions

For semi-simple Lie algebras we may easily construct a quadratic Casimir operator for any
representation and also show that there are no non trivial central extensions.

The restriction to semi-simple Lie algebras, det[κab] ̸= 0, ensures that the Killing form
κ = [κab] has an inverse κ−1 = [κab], so that κac κcb = δa

b, and we may then use κab and κab
to raise and lower Lie algebra indices, just as with a metric. The invariance condition (5.191)
becomes κTaad+TaadTκ = 0 so that from [Taad, κ−1κ] = 0 we obtain Taadκ−1+κ−1Ta

adT = 0
or

f bad κ
dc + f cad κ

bd = 0 , (5.207)

showing that κab is also an invariant tensor. Hence, for any representation of the Lie algebra
in terms of {ta} satisfying (5.60), then

[ta, κbc tbtc] = κbc
(
fdab tdtc + fdac tbtd

)
=
(
κbefdab + κdcfeac

)
tdte = 0 . (5.208)

In consequence κab tatb is a quadratic Casimir operator.

To discuss central extensions we rewrite the fundamental consistency condition (5.129)
in the form

hae f
e
cd = −hde feac − hce f

e
da . (5.209)

Then using (5.207)

hae f
e
cd f

c
bg κ

gd = −hae fgcd f cbg κde = hae κdb κ
ed = hab , (5.210)
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and also, with (5.207) again,(
hde f

e
ac + hce f

e
da

)
f cbg κ

gd =
(
hde f

e
ac f

c
bg + hec f

c
bg f

e
ad

)
κgd

= hde f
e
ac f

c
bg κ

gd − hec f
c
bg f

g
ad κ

de (5.211)

we may obtain from (5.209), re-expressing (5.211) as a matrix trace,

hab = −tr
(
h [Taad, Tb

ad]κ−1
)

= −tr(hTcadκ−1
)
f cab . (5.212)

Hence hab is of the form given in (5.131) which demonstrates that for sem-simple Lie algebras
there are no non trivial central extensions. Central extensions therefore arise only when are
invariant abelian subalgebras.

5.9 Bases for Lie Algebras for Matrix Groups

Here we obtain the Lie algebras g corresponding to the various continuous matrix groups
G described in section 1.5 by considering matrices close to the identity

M = I +X + O(X2) , (5.213)

with suitable conditions on X depending on the particular group.

For u(n), X is a complex n×n matrix satisfying X† = −X and for su(n), also tr(X) = 0.
It is convenient to consider first a basis formed by the n2, n×n, matrices {Rij}, where Rij
has 1 in the i’th row and j’th column and is otherwise zero,

j

Rij =
i



0 0 . . . 0 . . . 0
...

...
0 1 0
...

...

0
. . . 0

0 0 . . . 0 . . . 0


, i, j = 1, . . . , n , (Rij)† = Rj i . (5.214)

These matrices satisfy [
Rij , R

k
l

]
= δkj R

i
l − δilR

k
j , (5.215)

and
tr
(
Rij R

k
l

)
= δkj δ

i
l . (5.216)

In general X = RijX
j
i ∈ gl(n) for arbitrary Xj

i so that {Rij} form a basis for gl(n).
If
∑

j X
j
j = 0 then X ∈ sl(n) while if (Xj

i)∗ = −Xi
j then X = −X† ∈ u(n). For the

associated adjoint matrices

[X,Rij ] = Xi
k R

k
j − T ikX

k
j ⇒ (Xad)lk,ij = Xi

k δ
l
j −X l

j δ
i
k . (5.217)

Hence, for X = RijX
j
i, Y = RijY

j
i,

κ(X,Y ) = tr
(
XadY ad

)
= 2
(
n
∑

i,jX
j
i Y

i
j −

∑
iX

i
i
∑

jY
j
j

)
. (5.218)
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Restricting to u(n)

κ(X,X) = −2n
∑

i,j |X̂
j
i|2 , X̂j

i = Xj
i − 1

n δ
j
i
∑

kX
k
k . (5.219)

Clearly κ(X,X) = 0 for X ∝ I reflecting that u(n) contains an invariant abelian subalgebra.
For su(n), when

∑
kX

k
k = 0 and hence tr(X) = 0, then κ(X,X) = 2n tr(X2) < 0.

For o(n) or so(n) then in (5.213) we must require XT = −X so that tr(X) = 0. A basis
for n× n antisymmetric matrices is given by the 1

2n(n− 1) matrices {Sij : i < j} where

i j

Sij = −Sji =
i

j



0 . . . 0 . . . 0 . . . 0
...

...
0 0 1 0
...

...
0 −1 0 0
...

...
0 . . . 0 . . . 0 . . . 0


, i ̸= j = 1, . . . , n . (5.220)

These satisfy [
Sij , Skl

]
= δjk Sil − δik Sjl − δjl Sik + δil Sjk , (5.221)

and
tr
(
Sij Skl

)
= 2
(
δil δjk − δik δjl

)
. (5.222)

For arbitrary X ∈ so(2n) then X = 1
2XijSij , where Xij = −Xji is real. From (5.221)

[X,Sij ] = Xki Skj −Xkj Ski ⇒ Xad
kl,ij = Xki δlj −Xkj δli −Xli δkj +Xlj δki , (5.223)

and hence
κ(X,Y ) = 1

4X
ad
kl,ij Y

ad
ij,kl = −(n− 2)XijYij . (5.224)

The matrices (5.220) are the generators for the vector representation of SO(n) which is of
course real, as described later there are also complex representations involving spinors.

For sp(2n,R) or sp(2n,C) the condition (1.53) translates into

XJ + JXT = 0 ⇒ JX = (JX)T , (5.225)

where J is the standard antisymmetric matrix given in (1.54). It can be represented by

Jij = −(−1)i δij′ , j′ = j − (−1)j . (5.226)

A basis for sp(2n,R), or sp(2n,C), is provided by the 2n× 2n matrices satisfying (5.225)

i′ j

Tij = Jjk Tkl Jli =
i

j′



0 . . . 0 . . . 0 . . . 0
...

...
0 0 1 0
...

...
0 −(−1)i+j 0 0
...

...
0 . . . 0 . . . 0 . . . 0


, i, j = 1, . . . , 2n . (5.227)
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An independent basis is given by {Tij , 1 ≤ i < j ≤ 2n;T2i−1 2i−1, T2i 2i−1, 1 ≤ i ≤ n}. The
matrices {Tij} satisfy[

Tij , Tkl
]

= δjk Til − δil Tkj − Jik JjmTml − Jjl TimJmk , (5.228)

and also
tr
(
Tij Tkl

)
= 2
(
δil δjk − Jik Jjl

)
. (5.229)

For any X ∈ sp(2n,R), or sp(2n,C), then X = 1
2XijTij , with Xij = JjkXklJli real or

complex. Using (5.228)
[X,Tij ] = Xki Tkj −Xjk Tik , (5.230)

so that
Xad
kl,ij = Xki δlj −Xjl δki −XkmJmj Jli − JimXml Jkj , (5.231)

and hence
κ(X,Y ) = 1

4X
ad
kl,ij Y

ad
ij,kl = 2(n+ 1)XijYji . (5.232)

For the corresponding compact group Sp(n) = Sp(2n,C) ∩ SU(2n) we impose, as well
as (5.225), for the corresponding Lie algebra

X† = −X or Xij = −Xji
∗ . (5.233)

Then (5.232) gives
κ(X,X) = −2(n+ 1)

∑
i,j |Xij |2 . (5.234)

From (5.225)
JXJ−1 = −XT , (5.235)

so that, following the discussion in section 5.3.3, the fundamental representation of compact
Sp(n) is pseudo-real.

5.10 Orthogonal and Spin Groups

The relation SO(3) and SU(2), which is described in section 2.2, and also the introduction
of spinorial representations, described in section 2.10, may be extended to higher orthogonal
groups. In the discussion for SO(3) and SU(2) an essential role was played by the Pauli
matrices. For SO(n) we introduce similarly gamma matrices, γi, i = 1, . . . , n satisfying the
Clifford18 algebra,

γiγj + γjγi = 2δij I , γi
† = γi . (5.236)

The algebra may be extended to pseudo-orthogonal groups such as the Lorentz group, which
involve a metric gij as in (1.65), by taking δij → gij on the right hand side of (5.236). To
obtain explicit gamma matrices for SO(n,m) it is sufficient for each j with gjj = −1 just
to let γj → iγj for the corresponding SO(n + m) gamma matrices. For the non compact
group the gamma matrices are not all hermitian. (For gij as in (1.65) then if A = γ1 . . . γn
then AγiA−1 = −(−1)nγi†.)

18William Kingdon Clifford, 1845-1879, English, second wrangler 1867.
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The representations of the Clifford algebra (5.236), acting on a representation space S,
are irreducible if S has no invariant subspaces under the action of arbitrary products of
γi’s. As will become apparent there is essentially one irreducible representation for even n
and two, related by a change of sign, for odd n. If {γ′i}, like {γi}, are matrices forming an
irreducible representation of (5.236) then γ′i = AγiA

−1, or possibly γ′i = −AγiA−1 for n
odd, for some A. As a consequence of (5.236)

(γ · x)2 = x2 I, x ∈ Rn . (5.237)

To show the connection with SO(n) we first define

sij = 1
2 γ[i γj] = −sij† . (5.238)

Using just (5.236) it is easy to obtain

[sij , γk] = δjk γi − δik γj , (5.239)

and hence
[sij , skl

]
= δjk sil − δik sjl − δjl sik + δil sjk . (5.240)

This is identical with (5.221), the Lie algebra so(n). Moreover for finite transformations,
which involve the matrix exponential of 1

2 ωijsij , ωij = −ωji,

e−
1
2
ωijsij γ · x e

1
2
ωijsij = γ · x′ , x′ = Rx , R = e−

1
2
ωijSij ∈ SO(n) , (5.241)

with Sij ∈ so(n) as in (5.220). It is easy to see that x′2 = x2, as required for rotations, as a
consequence of (5.237). To show the converse we note that γ′i = γjRji also satisfies (5.236)
for [Rji] ∈ O(n) so that γ′i = A(R)γiA(R)−1 where A(R) = e−

1
2
ωijsij for R continuously

connected to the identity.

The exponentials of the spin matrices form the group

Spin(n) =
{
e−

1
2
ωijsij : ωij = −ωji ∈ R

}
. (5.242)

Clearly Spin(n) and SO(n) have the same Lie algebra. For n = 3 we may let γi → σi and
sij = 1

2 iεijkσk so that Spin(3) ≃ SU(2). In general, since ±I ∈ Spin(n) are mapped to
I ∈ SO(n), we have SO(n) ≃ Spin(n)/Z2.

Unlike SO(n), Spin(n) is simply connected and is the covering group for SO(n). For
further analysis we define

Γ = γ1γ2 . . . γn = (−1)
1
2
n(n−1) Γ† , Γ† = γnγn−1 . . . γ1 , (5.243)

so that
Γ2 = (−1)

1
2
n(n−1) I . (5.244)

Directly from (5.236)

[Γ, γi] = 0 , n odd , Γ γi + γi Γ = 0 , n even , i = 1, . . . n . (5.245)
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Using, similarly to (2.28),
eα sij = cos 1

2α I + sin 1
2α 2sij , (5.246)

then

eπ
Pm

i=1 s2i−1 2i = Γ , e−π
Pm

i=1 s2i−1 2i = (−1)mΓ , for n = 2m even . (5.247)

This allows the identification of the centres of the spin groups

Z(Spin(n)) = {I,−I,Γ,−Γ} ≃

{
Z2 ⊗ Z2 , n = 4m,

Z4 , n = 4m+ 2 ,

Z(Spin(n)) = {I,−I} ≃ Z2 , n = 2m+ 1 . (5.248)

Spinors for general rotational groups are defined as belonging to the fundamental rep-
resentation space S for Spin(n), so they form projective representations, up to a sign, of
SO(n).

5.10.1 Products and Traces of Gamma Matrices

For products of gamma matrices if the same gamma matrix γi appears twice in the product
then, since it anti-commutes with all other gamma matrices, as a consequence of (5.236),
and also γi

2 = I, it may be removed from the product, leaving the remaining matrices
unchanged apart from a possible change of sign. Linearly independent matrices are obtained
by considering products of different gamma matrices. Accordingly we define, for i, . . . ir all
different indices,

Γi1...ir = γ[i1 . . . γir] = (−1)
1
2
r(r−1) Γi1...ir

† , Γi1...ir
† = Γir...i1 , r = 1, . . . n , (5.249)

where Γi1...ir
2 = (−1)

1
2
r(r−1) I. From the definition (5.243)

Γi1...in = εi1...in Γ . (5.250)

We also have the relations

Γi1...ir = (−1)
1
2
n(n−1)+ 1

2
r(r−1) 1

s! εi1...ir j1...jsΓj1...jsΓ , r + s = n . (5.251)

An independent basis for these products is given by Cr = {Γi1...ir : i1 < i2 < · · · < in},
with dim Cr =

(
n
r

)
, Cn = {Γ}. It is easy to see that C(n) = {±I, ,±C1, . . . ,±Cn−1,±Γ}

is closed under multiplication and therefore forms a finite matrix group, with dimC(n) =
2
∑n

r=0

(
n
r

)
= 2n+1. The matrices {I,C1, . . . ,Cn} may also be regarded as the basis vectors

for a 2n-dimensional vector space which is also a group under multiplication, and so this
forms a field.

When n is odd then from (5.245) Γ commutes with all elements in C(n) and so for an
irreducible representation we must have Γ ∝ I. Taking into account (5.244)

Γ =

{
±I , n = 4m+ 1
±i I , n = 4m+ 3

. (5.252)
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The ± signs correspond to inequivalent representations, linked by taking γi → −γi. For
an independent basis then, as a consequence of (5.251), the products of gamma matrices
are no longer independent if r > 1

2n, so that C(4m+1) = {±I,±C1, . . . ,±C2m} or, since the
products may involve i from (5.252), C(4m+3) = {±I,±iI,±C1,±iC1, . . . ,±iC2m}.

For n even C(n) does not contain any elements commuting with all γi but

[Γ, sij ] = 0 . (5.253)

Hence we may decompose the representation space S = S+ ⊕S−, such that ΓS± = S± and,
since γi anti-commutes with Γ, γi S± = S∓. Hence there is a corresponding decomposition
of the gamma matrices with Γ diagonal and where, using (5.244),

Γ =

{(
I 0
0 −I

)
, n = 4m,

i
(
I 0
0 −I

)
, n = 4m+ 2 ,

γi =
(

0 σi
σ̄i 0

)
, sij =

(
s+ij 0
0 s−ij

)
. (5.254)

Clearly σ̄i = σi
† and s+ij = 1

2 σ[i σ̄j], s−ij = 1
2 σ̄[i σj] and just as in (5.238) we have

s±ij
† = −s±ij . (5.255)

With the decomposition in (5.254) the Clifford algebra (5.236) is equivalent to

σi σ̄j + σj σ̄i = 2δij I , σ̄i σj + σ̄j σi = 2δij I . (5.256)

For traces of gamma matrices and their products we first note that from (5.236)

tr
(
γj(γiγj + γjγi)

)
= 2 tr(γjγjγi) = 2 tr(γi) = 0 , j ̸= i , no sum on j . (5.257)

We may similarly use γj Γi1...ir + Γi1...irγj = 0, when r is odd and for j ̸= i1, . . . , ir, or
γj Γj i2...ir + Γj i2...irγj = 0, when r is even and with no sum on j, to show that

tr(Γi1...ir) = 0 , except when r = n, n odd . (5.258)

Hence in general, for r, s = 0, . . . , n for n even, or with r, s < 1
2n for n odd,

tr
(
Γi1...ir Γj1...js

)
= 0 , r ̸= s , (5.259)

and

tr
(
Γi1...ir Γj1...jr

)
=

{
±tr(I) if (j1, . . . , jr) is an even/odd permutation of (ir, . . . , i1) ,
0 otherwise .

(5.260)

In general these products of gamma matrices form a complete set so that for any dn×dn
matrix A, where dn = 2

1
2
n for n even and dn = 2

1
2
(n−1) for n odd,

dnA = I tr(A) +
∑
r

1
r! Γi1...ir tr

(
Γir...i1 A

)
, (5.261)

with r = 1, . . . , n for n even, r = 1, . . . , 1
2(n− 1) for n odd.
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5.10.2 Construction of Representations of the Clifford Algebra

For n = 2m an easy way to construct the γ-matrices satisfying the Clifford algebra (5.236)
explicitly is to define

ar = 1
2(γ2r−1 + iγ2r) , ar

† = 1
2(γ2r−1 − iγ2r) , r = 1, . . . ,m . (5.262)

Then (5.236) becomes

ar as + as ar = 0 , ar as
† + as ar

† = δrs I , (5.263)

which is just the algebra for m fermionic creation and annihilation operators, the femionic
analogue of the usual bosonic harmonic oscillator operators. The construction of the essen-
tially unique representation space S for such operators is standard, there is a vacuum state
annihilated by all the ar’s and all other states in the space are obtained by acting on the
vacuum state with linear combinations of products of ar†’s. In general, since ar† 2 = 0, a
basis is formed by restricting to products of the form

∏m
r=1(ar

†)sr with sr = 0, 1 for each r.
There are then 2m independent basis vectors, giving dimS = 2m. For m = 1 then we may
take, with the ‘vacuum state’ represented by

(
1
0

)
,

a = σ+ =
(

0 1
0 0

)
, a† = σ− =

(
0 0
1 0

)
, γ1γ2 = i σ3 = i

(
1 0
0 −1

)
. (5.264)

The general case is obtained using tensor products

ar = I ⊗ · · · ⊗ I︸ ︷︷ ︸
r−1

⊗ σ+⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
m−r

, ar
† = I ⊗ · · · ⊗ I︸ ︷︷ ︸

r−1

⊗ σ−⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
m−r

. (5.265)

The σ3’s appearing in the tensor products follow from the requirement that ar, as, and
ar

†, as
†, anti-commute for r ̸= s. With (5.265) γ2r−1γ2r = i I ⊗ · · · ⊗ I ⊗ σ3 ⊗ I · · · ⊗ I so

that
Γ = im σ3 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

m

. (5.266)

These results are equivalent to defining the gamma matrices for increasing n, where
γ i

(n)γ j
(n) + γ j

(n)γ i
(n) = 2δij I(n), recursively in terms of the Pauli matrices by

γ i
(2m+2) = γ i

(2m) ⊗ σ3 , i = 1, . . . , 2m,

γ
(2m+2)
2m+1 = I(2m) ⊗ σ1 , γ

(2m+2)
2m+2 = I(2m) ⊗ σ2 ,

Γ(2m+2) = iΓ(2m) ⊗ σ3 . (5.267)

Note that we may take γ i(2) = σi, i = 1, 2 with Γ(2) = i σ3. For odd n the gamma matrices
may be defined in terms of those for n− 1 by

γ i
(2m+1) = γ i

(2m) , i = 1, . . . , 2m, γ
(2m+1)
2m+1 = cm Γ(2m) , cm =

{
±1 , m even ,
±i , m odd ,

(5.268)

where the ± signs correspond to inequivalent representations. Thus γ i(3) = (σ1, σ2,∓σ3).
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5.10.3 Conjugation Matrix for Gamma Matrices

It is easy to see that γiT also obeys the Clifford algebra in (5.236) so that for an irreducible
representation we must have

CγiC
−1 = − γi

T ⇒ C ΓC−1 = (−1)
1
2
n(n+1) ΓT

or CγiC
−1 = γi

T ⇒ C ΓC−1 = (−1)
1
2
n(n−1) ΓT . (5.269)

When n is even then, by taking C → CΓ, the two cases are equivalent. When n is odd, and
we require (5.252), then for n = 4m + 1, C must satisfy CγiC

−1 = γi
T , for n = 4m + 3,

then CγiC−1 = −γiT . In either case for the spin matrices in (5.238)

C sij C
−1 = −sijT , (5.270)

so that for the matrices defining Spin(n)

e−
1
2
ωijsij C

(
e−

1
2
ωijsij

)T = C . (5.271)

With the recursive construction of the gamma matrices γi(n) in (5.267) we may also
construct in a similar fashion C(n) iteratively since, using (5.77),

C(n) γi
(n)C(n) −1 = γi

(n) T

⇒ C(n+2) = C(n) ⊗ iσ2 ensures C(n+2) γi
(n+2)C(n+2) −1 = −γi(n+2) T , (5.272)

and, using σ1σiσ1 = σi
T , i = 1, 2, σ1σ3σ1 = −σ3

T ,

C(n) γi
(n)C(n) −1 = −γi(n) T

⇒ C(n+2) = C(n) ⊗ σ1 ensures C(n+2) γi
(n+2)C(n+2) −1 = γi

(n+2) T . (5.273)

Starting from n = 0, or n = 2, this construction gives (note that (X ⊗ Y )T = XT ⊗ Y T ),

C γiC
−1 = γi

T , C ΓC−1 = ΓT , C = CT , n = 8k ,

C γiC
−1 = − γi

T , C ΓC−1 = − ΓT , C = − CT , n = 8k + 2 ,

C γiC
−1 = γi

T , C ΓC−1 = ΓT , C = − CT , n = 8k + 4 ,

C γiC
−1 = − γi

T , C ΓC−1 = − ΓT , C = CT , n = 8k + 6 . (5.274)

In each case we have CsijC−1 = −sijT . Starting from (5.274) and with the construction in
(5.268) for odd n,

C γiC
−1 = γi

T , C = CT , n = 8k + 1 ,

C γiC
−1 = − γi

T , C = − CT , n = 8k + 3 ,

C γiC
−1 = γi

T , C = − CT , n = 8k + 5 ,

C γiC
−1 = − γi

T , C = CT , n = 8k + 7 . (5.275)

The definition of C for n = 2m+ 1 remains the same as in (5.274) for n = 2m since in each
n odd case we have Cγ1γ2 . . . γnC

−1 = (γ1γ2 . . . γn)T .
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If we consider a basis in which Γ is diagonal, as in (5.254), then for n = 8k, 8k + 4
[C,Γ] = 0, so that C is block diagonal, while for n = 8k + 2, 8k + 6 CΓ + ΓC = 0, so
that we may take C to have a block off diagonal form. By considering the freedom under
C → STCS with SΓS−1 = Γ we may choose with the basis in (5.254),

C =
(
I 0
0 I

)
, σ̄i = σi

T , s±ij = − s±ij
T , n = 8k ,

C =
(

0 I
−I 0

)
, σi = σi

T , σ̄i = σ̄i
T , s±ij = − s∓ij

T , n = 8k + 2 ,

C =
(
J 0
0 J

)
, J = − JT , Jσ̄i = −(Jσi)T , Js±ij = (Js±ij)T , n = 8k + 4 ,

C =
(

0 I
I 0

)
, σi = − σi

T , σ̄i = −σ̄iT , s±ij = − s∓ij
T , n = 8k + 6 . (5.276)

Here the antisymmetric matrix J can be taken to be of the standard form as in (1.54). For
n = 8k the matrices are real.

Since the generators of the two fundamental spinor representations satisfy (5.255) then
as a consequence of the discussion in section 5.3.3 we have for these representations of
Spin(n), for n even, from (5.276)

Spin(8k) : real , Spin(8k + 4) : pseudo-real ,
Spin(8k + 2) , Spin(8k + 6) : complex . (5.277)

Furthermore for n odd the single spinor representation, from (5.275), satisfies

Spin(8k + 1) , Spin(8k + 7) : real , Spin(8k + 3) , Spin(8k + 5) : pseudo-real . (5.278)

5.10.4 Special Cases

When n = 2 we may take
σi = (1,−i) , σ̄i = (1, i) , (5.279)

while for n = 4 we may express σi, σ̄i in terms of unit quaternions

σi = (1,−i,−j,−k) , σ̄i = (1, i, j, k) . (5.280)

For low n results for γ-matrices may be used to identify Spin(n) with other groups.
Thus

Spin(3) ≃ SU(2) , Spin(4) ≃ SU(2) ⊗ SU(2) ,
Spin(5) ≃ Sp(2) , Spin(6) ≃ SU(4) . (5.281)

For n = 3 it is evident directly that e−
1
2
ωijsij ∈ SU(2). For n = 4 as a consequence of

(5.251), with the decomposition in (5.254), we have

s±ij = ±1
2 εijkl s±kl , (5.282)
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so that e−
1
2
ωijsij = e−

1
2
ω+ijs+ij ⊗e−

1
2
ω−ijs−ij factorises a 4×4 Spin(4) matrix into a product

of two independent SU(2) matrices as ω±ij = 1
2 ωij ±

1
4 εijkl ωkl are independent. For n = 5

then the 4 × 4 matrix e−
1
2
ωijsij ∈ SU(4) ∩ Sp(4,C), using (5.271) with CT = −C. In this

case there are 10 independent sij which matches with the dimension of the compact Sp(2).
For n = 6, e−

1
2
ω+ijs+ij ∈ SU(4) with the 15 independent 4 × 4 matrices s+ij matching the

dimension of SU(4). Note also that, from (5.248), Z(Spin(6)) ≃ Z4 ≃ Z(SU(4)). Using
(5.276) with (5.254), the transformation (5.241) can be rewritten just in terms of the SU(4)
matrix

e−
1
2
ωijs+ij σ · x

(
e−

1
2
ωijs+ij

)T = σ · x′ , (5.283)

which is analogous to (2.19). The result that the transformation x → x′ satisfies x2 = x′2

also follows in a similar fashion to (2.21), but in this case using the Pfaffian (1.55) instead
of the determinant since we require Pf(σ · x) = x2 (from σ · x σ̄ · x = x2 I then, with n = 6,
det(σ · x) = (x2)2).

6 SU(3) and its Representations

SU(3) is an obvious generalisation of SU(2) although that was not the perception in the
1950’s when many physicists were searching for a higher symmetry group, beyond SU(2)
and isospin, to accommodate and classify the increasing numbers of resonances found in
particle accelerators with beams of a few GeV . Although the discovery of the relevance
of SU(3) as a hadronic symmetry group was a fundamental breakthrough, leading to the
realisation that quarks are fundamental constituents, it now appears that SU(3) symmetry
is just an almost accidental consequence of the fact that the three lightest quarks have a
mass which is significantly less than the typical hadronic mass scale.

Understanding SU(2) and its representations is an essential first step before discussing
general simple Lie groups. Extending to SU(3) introduces many of the techniques which
are needed for the general case in a situation where the algebra is still basically simple and
undue mathematical sophistication is not required. For general SU(N) the Lie algebra is
given, for the associated chosen basis, by (5.215) where, since the corresponding matrices in
(5.214) are not anti-hermitian, we are regarding the Lie algebra as a complex vector space.
To set the scene for SU(3) we reconsider first SU(2).

6.1 Recap of su(2)

For the basic generators of su(2) we define in terms of 2 × 2 matrices as in (5.214)

e+ =
(

0 1
0 0

)
, e− =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
, (6.1)

which satisfy the Lie algebra

[e+, e−] = h , [h, e±] = ±2 e± . (6.2)
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These matrices satisfy
e+

† = e− , h† = h . (6.3)

Under interchange of the rows and columns

b =
(

0 1
1 0

)
⇒ b

{
e+, e−, h

}
b−1 =

{
e−, e+,−h

}
. (6.4)

Clearly b2 = I and
{
e+, e−, h

}
, {e−, e+,−h

}
must satisfy the same commutation relations

as in (6.2) so b generates an automorphism.

For representations of the su(2) Lie algebra then we require operators

l = {E+, E−,H} , [E+, E−] = H , [H,E±] = ±2E± . (6.5)

It is easy to see that the commutation relations are identical with (2.41a) and (2.41a), and
also the hermeticity conditions with (2.42), by taking J± → E±, 2J3 → H. Indeed the
representation matrices in (6.1) then correspond exactly with (2.77).

An important role in the general theory of Lie groups is played by the automorphism
symmetries of a privileged basis for the Lie algebra which define the Weyl19 group. For
su(2) the relevant basis is given by (6.5) and then from (6.4) there is just one non trivial
automorphism

l →
b

lR = {E−, E+,−H} . (6.6)

Since b2 = I the Weyl group for su(2), W (su(2)) ≃ Z2.

For representations we require a finite dimensional representation space on which there
are operators E±,H which obey the commutation relations (6.5) and subsequently require
there is a scalar product so that the operators satisfy the hermeticity conditions in (6.3).
A basis for a representation space for su(2) is given by {|r⟩} where

H|r⟩ = r|r⟩ . (6.7)

The eigenvalue r is termed the weight. It is easy to see from (6.5) that

E±|r⟩ ∝ |r ± 2⟩ unless E+|r⟩ = 0 or E−|r⟩ = 0 . (6.8)

We consider representations where there is a highest weight, rmax = n, and hence a highest
weight vector |n⟩hw satisfying

E+|n⟩hw = 0 . (6.9)

The representation space Vn is then spanned by{
E−

r|n⟩hw : r = 0, 1, . . .
}
. (6.10)

On this basis
HE−

r|n⟩hw = (n− 2r)E−
r|n⟩hw , (6.11)

19Hermann Klaus Hugo Weyl, 1885-1955, German.

99



and using

[
E+, E−

r
]

=
r−1∑
s=0

E−
r−s−1[E+, E−]E−

s = E−
r−1

r−1∑
s=0

(
H − 2s) = E−

r−1 r(H − r + 1) , (6.12)

then from (6.9),
E+E−

r|n⟩hw = r(n− r + 1)E−
r−1|n⟩hw . (6.13)

(6.11) and (6.13) ensure that the commutation relations (6.5) are realised on Vn.

If n ∈ N0, or n = 0, 1, 2, . . . , then from (6.13)

|−n− 2⟩hw = E−
n+1|n⟩hw ∈ Vn , (6.14)

is also a highest weight vector, satisfying (6.9). From |−n− 2⟩hw we may construct, just as
in (6.10), a basis for an associated invariant subspace

V−n−2 ⊂ Vn . (6.15)

Hence the representation space defined by the basis Vn is therefore reducible under the action
of su(2). An irreducible representation is obtained by restricting to the finite dimensional
quotient space

Vn = Vn
/
V−n−2 . (6.16)

In general for a vector space V with a subspace U the quotient V/U is defined by

V/U =
{
|v⟩/∼ : |v⟩ ∼ |v′⟩ if |v⟩ − |v′⟩ ∈ U

}
. (6.17)

It is easy to verify that V/U is a vector space and, if V,U are finite-dimensional, dim(V/U) =
dimV − dimU . If X is a linear operator acting on V then

U →
X
U ⇒ {X|v⟩/ ∼} = {X|v′⟩/ ∼} if |v⟩ ∼ |v′⟩ ⇒ X : V/U → V/U . (6.18)

Thus, if U ⊂ V is an invariant subspace under X, then X has a well defined action on V/U .
Furthermore for traces

trV/U (X) = trV (X) − trU (X) . (6.19)

Since V−n−2 is an invariant subspace under the action of the su(2) Lie algebra generators
we may then define E±,H to act linearly on the quotient Vn given by (6.16). On Vn this
ensures

E−
n+1|n⟩hw = 0 , (6.20)

so that there is a finite basis {E−
r|n⟩hw : r = 0, . . . , n}. In terms of the angular momentum

representations constructed in section 2, n = 2j. The space Vn may equally be constructed
from a lowest weight state |−n⟩ satisfying H|−n⟩ = −n |−n⟩, E−|−n⟩ = 0, in accord with
the automorphism symmetry (6.4) of the su(2) Lie algebra.

If we define a formal trace over all vectors belonging to Vn then

Cn(t) = t̃rVn

(
tH
)

=
∞∑
r=0

tn−2r =
tn+2

t2 − 1
, (6.21)
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where convergence of the sum requires |t| > 1. Then for the irreducible representation
defined on the quotient Vn, by virtue of (6.19), the character is

χn(t) = trVn

(
tH
)

= Cn(t) − C−n−2(t) =
tn+2 − t−n

t2 − 1
=
tn+1 − t−n−1

t− t−1
. (6.22)

This is just the same as (2.81) with t→ ei
1
2
θ and n→ 2j. It is easy to see that

χn(1) = dimVn = n+ 1 . (6.23)

Although the irreducible representation of su(2) are labelled by n ∈ N0 the characters may
be extended to any integer n with the property

χn(t) = −χ−n−2(t) , (6.24)

as follows directly from (6.22). Clearly χ−1(t) = 0.

The su(2) Casimir operator in this basis

C = E+E− + E−E+ + 1
2H

2 = 2E−E+ + 1
2H

2 +H , (6.25)

and it is easy to see that

C|n⟩hw = cn|n⟩hw for cn = 1
2n(n+ 2) . (6.26)

Note that c−n−2 = cn as required from (6.14) as all vectors belonging to Vn must have the
same eigenvalue for C.

6.2 A su(3) Lie algebra basis and its automorphisms

We consider a basis for the su(3) Lie algebra in terms of 3× 3 matrices as in (5.214). Thus
we define

e1+ =

0 1 0
0 0 0
0 0 0

 , e2+ =

0 0 0
0 0 1
0 0 0

 , e3+ =

0 0 1
0 0 0
0 0 0

 , (6.27)

and their conjugates
ei− = ei+

† , i = 1, 2, 3 , (6.28)

together with the hermitian traceless diagonal matrices

h1 =

1 0 0
0 −1 0
0 0 0

 , h2 =

0 0 0
0 1 0
0 0 −1

 . (6.29)

The commutator algebra satisfied by {e1±, e2±, e3±, h1, h2} is invariant under simultane-
ous permutations of the rows and columns of each matrix. For b corresponding to the
permutation (1 2) and a to the cyclic permutation (1 2 3)

b =

0 1 0
1 0 0
0 0 1

 , a =

0 0 1
1 0 0
0 1 0

 , (6.30)
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then

b{h1, h2}b−1 = {−h1, h1 + h2} , b{e1±, e2±, e3±}b−1 = {e1∓, e3±, e2±} ,
a{h1, h2}a−1 = {h2,−h1 − h2} , a{e1±, e2±, e3±}a−1 = {e2±, e3∓, e1∓} . (6.31)

The matrices in (6.30) satisfy

b2 = I , a3 = I , ab = ba2 , (6.32)

so that they generate the permutation group S3 = {e, a, a2, b, ab, a2b}.

For representations of su(3) it is then sufficient to require operators

{E1±, E2±, E3±,H1,H2} →
[
R̂ij
]

=

1
3(2H1 +H2) E1+ E3+

E1−
1
3(−H1 +H2) E2+

E3− E2− −1
3(H1 + 2H2)

 ,

(6.33)
acting on a vector space, and satisfying the same commutation relations as the corresponding
matrices {e1±, e2±, e3±, h1, h2}. The commutation relations may be summarised in terms
of R̂ij by [

R̂ij , R̂
k
l

]
= δkj R̂

i
l − δil R̂

k
j , (6.34)

since, for X,Y appropriate matrices, (6.34) requires[
tr(XR̂), tr(Y R̂)] = tr

(
[X,Y ]R̂

)
, (6.35)

and with the definitions (6.27) and (6.29) we have, from (6.33), tr(ei±R̂) = Ei±, i = 1, 2, 3
and tr(hiR̂) = Hi, i = 1, 2.

Just as with su(2) the possible irreducible representation spaces may be determined
algebraically from the commutation relations of the operators in the privileged basis given
in (6.33). Crucially there are two commuting generators H1,H2 so that

[H1,H2] = 0 . (6.36)

For Ei+ the commutation relations are

[E1+, E2+] = E3+ , [E1+, E3+] = [E2+, E3+] = 0 . (6.37)

while under commutation with H1,H2[
H1, {E1±, E2±, E3±}

]
= ± {2E1±,−E2±, E3±} ,[

H2, {E1±, E2±, E3±}
]

= ± {−E1±, 2E2±, E3±} . (6.38)

The remaining commutators involving Ei± are

[E1+, E1−] = H1 , [E1+, E2−] = 0 , [E2+, E2−] = H2 ,

[E3+, E1−] = − E2+ , [E3+, E2−] = E1+ , [E3+, E3−] = H1 +H2 , (6.39)

together with those obtained by conjugation, [X,Y ]† = −[X†, Y †], where Ei±† = Ei∓ and
Hi

† = Hi.
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The su(3) Lie algebra basis in (6.33) can be decomposed into three su(2) Lie algebras,

l1 = {E1+, E1−,H1} , l2 = {E2+, E2−,H2} , l3 = {E3+, E3−,H1 +H2} , (6.40)

where each li satisfies (6.5). From (6.31) the automorphism symmetries of the privileged
basis in (6.33) are generated by

l1 →
b

l1R , l2 →
b

l3 , l3 →
b

l2 , l1 →
a

l2 , l2 →
a

l3R , l3 →
a

l1R , (6.41)

with the reflected su(2) Lie algebra defined by (6.6). The corresponding Weyl group, defined
in terms of transformations a, b satisfying (6.32), W (su(3)) ≃ S3.

If we define
H⊥ = 1√

3
(H1 + 2H2) , (6.42)

then the automorphism symmetries become(
H1,H⊥

)
→
b

(
−H1,H⊥

)
,

(
H1,H⊥

)
→
a

(
−1

2H1 +
√

3
2 H⊥,−

√
3

2 H1 − 1
2H⊥

)
. (6.43)

Regarding H1,H⊥ as corresponding to Cartesian x, y coordinates then b represents a reflec-
tion in the y-axis and a a rotation through 2π/3.

6.3 Highest Weight Representations for su(3)

H1,H2 commute, (6.36), and a standard basis for the representation space for su(3) is given
by their simultaneous eigenvectors |r1, r2⟩ where

H1|r1, r2⟩ = r1|r1, r2⟩ , H2|r1, r2⟩ = r2|r1, r2⟩ . (6.44)

As a consequence of (6.38) we must then have

E1±|r1, r2⟩ ∝ |r1 ± 2, r2 ∓ 1⟩ ,
E2±|r1, r2⟩ ∝ |r1 ∓ 1, r2 ± 2⟩ ,
E3±|r1, r2⟩ ∝ |r1 ± 1, r2 ± 1⟩ , (6.45)

unless Ei+ and/or Ei− annihilate |r1, r2⟩ for one or more individual i. The set of values
[r1, r2], linked by (6.45), are the weights of the representation. The may be plotted on a
triangular lattice with r1 along the x-axis and 1√

3
(r1 + 2r2) along the y-axis.
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1−

E

E

E3+

E1+

E

E2+

2−
3−

For any element σ ∈ W (su(3)) there is an associated action on the weights for su(3),
σ[r1, r2], such that

Hi →
σ
H ′
i , H ′

i|r1, r2⟩ = r′i|r1, r2⟩ , i = 1, 2 ⇒ [r′1, r′2] = σ[r1, r2] . (6.46)

From (6.41) this is given by

b[r1, r2] = [−r1, r1 + r2] , ab[r1, r2] = [r1 + r2,−r2] , a2b[r1, r2] = [−r2,−r1] ,
a[r1, r2] = [r2,−r1 − r2] , a2[r1, r2] = [−r1 − r2, r1] . (6.47)

As will become apparent the set of weights for any representation is invariant under the
action of the Weyl group, thus su(3) weight diagrams are invariant under rotations by 2π/3
and reflections in the y-axis.

For a highest weight representation there is a unique vector |n1, n2⟩hw, such that for all
other weights r1 + r2 < n1 + n2. [n1, n2] is the highest weight and we must then have

E1+|n1, n2⟩hw = E2+|n1, n2⟩hw = 0 ⇒ E3+|n1, n2⟩hw = 0 . (6.48)

The corresponding representation space V[n1,n2] is formed by the action of arbitrary products
of the lowering operators Ei−, i = 1, 2, 3 on the highest weight vector. For a basis for V[n1,n2]

we may choose {
E3−

tE2−
sE1−

r|n1, n2⟩hw : r, s, t = 0, 1, . . .
}
, (6.49)

where the ordering of E1−, E2−, E3− in (6.49) reflects an arbitrary choice, any polynomial
in E1−, E2−, E3− acting on |n1, n2⟩ may be expressed uniquely in terms of the basis (6.49)
using the commutation relations given by the conjugate of (6.37).

For these basis vectors

H1E3−
tE2−

sE1−
r|n1, n2⟩hw = (n1 − 2r + s− t)E3−

tE2−
sE1−

r|n1, n2⟩hw ,

H2E3−
tE2−

sE1−
r|n1, n2⟩hw = (n2 + r − 2s− t)E3−

tE2−
sE1−

r|n1, n2⟩hw , (6.50)
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so that the weights of vectors belonging to V[n1,n2] are those belonging to a 2π/3 segment
in the weight diagram with vertex at [n1, n2], as shown by the shaded region in the figure
below.

1[n  ,n  ]2

It is clear that the basis (6.49) for V[n1,n2] requires that in general the allowed weights
are degenerate, i.e. there are multiple vectors for each allowed weight in the representation
space V[n1,n2] except on the boundary. For a particular weight [r1, r2], (6.49) gives the k+1
or l + 1, depending on which is the less, independent vectors,

E3−
tE2−

l−tE1−
k−t|n1, n2⟩hw , 0 ≤ t ≤ k, l , (6.51)

where
k = 1

3

(
2n1 + n2 − 2r1 − r2

)
, l = 1

3

(
n1 + 2n2 − r1 − 2r2

)
. (6.52)

The representation of su(3) is determined then in terms of the action of Ei± on the basis
(6.49). For the lowering operators it is easy to see that

E3−E3−
tE2−

sE1−
r|n1, n2⟩hw = E3−

t+1E2−
sE1−

r|n1, n2⟩hw ,

E2−E3−
tE2−

sE1−
r|n1, n2⟩hw = E3−

tE2−
s+1E1−

r|n1, n2⟩hw ,

E1−E3−
tE2−

sE1−
r|n1, n2⟩hw = E3−

tE2−
sE1−

r+1|n1, n2⟩hw

− sE3−
t+1E2−

s−1E1−
r|n1, n2⟩hw , (6.53)

using [E1−, E2−
s] = −sE3−E2−

s−1.

The action of Ei+ on the basis (6.49) may then be determined by using the basic
commutation relations (6.39), with (6.38) and (6.37), and then applying (6.48). Just as in
(6.12) we may obtain[
E1+, E1−

r
]

= E1−
r−1 r(H1 − r + 1) ,

[
E1+, E2−

s
]

= 0 ,
[
E1+, E3−

t
]

= −t E3−
t−1E2− ,

(6.54)
so that

E1+E3−
tE2−

sE1−
r|n1, n2⟩hw

= r(n1 − r + 1)E3−
tE2−

sE1−
r−1|n1, n2⟩hw − t E3−

t−1E2−
s+1E1−

r|n1, n2⟩hw . (6.55)

105



Similarly [
E2+, E3−

t
]

= t E3−
t−1E1− ,

[
E1−, E2−

s
]

= −sE3−E2−
s−1 ,[

E2+, E2−
s
]

= E2−
s−1 s(H2 − s+ 1) ,

[
E2+, E1−

r
]

= 0 , (6.56)

which leads to

E2+E3−
tE2−

sE1−
r|n1, n2⟩hw

= s(n2 + r − s− t+ 1)E3−
tE2−

s−1E1−
r|n1, n2⟩hw + t E3−

t−1E2−
sE1−

r+1|n1, n2⟩hw . (6.57)

Furthermore

E3+E3−
tE2−

sE1−
r|n1, n2⟩hw = [E1+, E2+]E3−

tE2−
sE1−

r|n1, n2⟩hw

= t(n1 + n2 − r − s− t+ 1)E3−
t−1E2−

sE1−
r|n1, n2⟩hw

+ rs(n1 − r + 1)E3−
tE2−

s−1E1−
r−1|n1, n2⟩hw . (6.58)

The results (6.50), (6.53) with (6.55), (6.57) and (6.58) demonstrate how V[n1,n2] forms
a representation space for su(3).

Defining now
W = {[m,n] : m,n ∈ N0} , (6.59)

which corresponds to the sector of a weight diagram shown below,

then, if [n1, n2] ∈ W, V[n1,n2] contains further highest weight vectors, satisfying (6.48), which
may be used to construct invariant subspaces. Directly from (6.55) and (6.57) it is easy to
see that

|−n1 − 2, n1 + n2 + 1⟩hw = E1−
n1+1|n1, n2⟩hw ,

|n1 + n2 + 1,−n2 − 2⟩hw = E2−
n2+1|n1, n2⟩hw ,

|n2,−n1 − n2 − 3⟩hw = E2−
n2+n1+2|−n1 − 2, n1 + n2 + 1⟩hw , (6.60)

satisfy the necessary conditions (6.48). In general, a linear combination of the vectors in
(6.51)

|r1, r2⟩ =
∑

0≤t≤k,l
at E3−

tE2−
l−tE1−

k−t|n1, n2⟩hw , (6.61)
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satisfies the highest weight conditions (6.48), by virtue of (6.55) and (6.57), only if

(k − t)(n1 − k + 1 + t) at − (t+ 1) at+1 = 0 ,
(l − t)(n2 + k − l + 1 − t) at + (t+ 1) at+1 = 0 , (6.62)

for all relevant t. This requires

(k − t)(n1 − k + 1 + t) = −(l − t)(n2 + k − l + 1 − t) , (6.63)

which has two solutions

k = n1 + n2 + 2 ⇒ l = n2 + 1 or l = n1 + n2 + 2 . (6.64)

It is then possible to construct two further highest weight vectors |−n1 − n2 − 3, n1⟩hw and
|−n2 − 2,−n1 − 2⟩hw. Just as in (6.60) we may write

|−n1 − n2 − 3, n1⟩hw = E1−
n2+n1+2|n1 + n2 + 1,−n2 − 2⟩hw , (6.65)

and furthermore20

|−n2−2,−n1−2⟩hw = E1−
n2+1|n2,−n1−n2−3⟩hw = E2−

n1+1|−n1−n2−3, n1⟩hw . (6.66)

It is not difficult to see that for each of highest weight vectors given in (6.60), (6.65) and
(6.66), |n′1, |n′2⟩, there are associated invariant, under the action of su(3), subspaces Vn′

1,|n′
2

contained in V[n1,n2]. In particular

V[−n1−2, n1+n2+1] , V[n1+n2+1,−n2−2] ⊂ V[n1,n2] ,

V[n2,−n1−n2−3] ⊂ V[−n1−2, n1+n2+1] , V[−n1−n2−3, n1] ⊂ V[n1+n2+1,−n2−2] ,

V[−n2−2,−n1−2] ⊂ V[n2,−n1−n2−3] ∩ V[−n1−n2−3, n1] . (6.67)

The highest weight vectors which are present are illustrated on the weight diagram below,
with the shaded regions indicating where the associated invariant subspaces are present.

20To show this use E1−
rE2−

s =
Pr

t=0(−1)t
`

r
t

´

s!
(s−t)!

E3−
tE2−

s−tE1−
r−t.
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2[n  ,n  ]11 1[−n  ,n  +n  ]2

1 2[−n  −n  ,n  ]1 1 2[n  +n  ,−n  ]2

2[−n  ,−n  ]1
2 1[n  ,−n  −n  ]2

l=0

k=0

k=l+n2

2l=n  +n1

k=l+n1

1 2[−n  −n  −3,n  ]1 1 2[n  +n  +1,−n  −2]1

1 1[−n  −2,n  +n  +1]2

[−n  −2,−n  −2]2 2[n  ,−n  −n  −3]1 21

k=n  +n1 2

The reduction to an irreducible representation space becomes less trivial than that
given by (6.16) for su(2) due to this nested structure of invariant subspaces. Using the
same definition of the quotient of a vector space by a subspace as in (6.16) we may define

V(2)
[n1,n2] =

(
V[n2,−n1−n2−3] ⊕ V[−n1−n2−3, n1]

)/
V[−n2−2,−n1−2] ,

V(1)
[n1,n2] =

(
V[−n1−2, n1+n2+1] ⊕ V[n1+n2+1,−n2−2]

)/
V(2)

[n1,n2] ,

V[n1,n2] = V[n1,n2]

/
V(1)

[n1,n2] . (6.68)

In V[n1,n2] there then are no highest weight vectors other than |n1, n2⟩hw so invariant sub-
spaces are absent and V[n1,n2] is a representation space for an irreducible representation
of su(3). Although it remains to be demonstrated the representation space is then finite-
dimensional and the corresponding weight diagram has vertices with weights

[n1, n2] , [−n1, n1+n2] , [n1+n2,−n2] , [−n1−n2, n1] , [n2,−n1−n2] , [−n2,−n1] ,
(6.69)

which are related by the transformations of the Weyl group as in (6.47).

6.3.1 Analysis of the Weight Diagram

To show how (6.68) leads to a finite-dimensional representation we consider how it applies
to for the vectors corresponding to particular individual weights [r1, r2]. Accordingly we
consider restrictions of the highest weight spaces. For V[n1,n2] the relevant subspace is formed
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by the basis in (6.51)

V
(k,l)
[n1,n2] =

{∑
0≤t≤k,l at E3−

tE2−
l−tE1−

k−t|n1, n2⟩hw

}
, (6.70)

where k, l are determined as in (6.52). Clearly these subspaces are finite-dimensional with

dimV
(k,l)
[n1,n2] =

{
k + 1 , k ≤ l ,

l + 1 , l ≤ k .
(6.71)

In a similar fashion we may define

V
(k−n1−1,l)
[−n1−2,n1+n2+1] , V

(k,l−n2−1)
[n1+n2+1,−n2−2] ,

V
(k−n1−1,l−n1−n2−2)
[n2,−n1−n2−3] , V

(k−n1−n2−2,l−n2−1)
[−n1−n2−3,n1] , V

(k−n1−n2−2,l−n1−n2−2)
[−n2−2,−n1−2] , (6.72)

which form nested subspaces, just as in (6.67), and whose dimensions are given by the
obvious extension of (6.71).

To illustrate how the construction of the representation space V[n1,n2] in terms of quotient
spaces leads to cancellations outside a finite region of the weight diagram we describe how
this is effected in particular regions of the weight diagram by showing that the dimensions
of the quotient spaces outside the finite region of the weight diagram specified by vertices in
(6.69) are zero and also that on the boundary the dimension is one. For k ≤ n1, l ≤ n2 there
are no cancellations for V (k,l)

[n1,n2]. Taking into account the contributions from V
(k−n1−1,l)
[−n1−2,n1+n2+1]

and V (k,l−n2−1)
[n1+n2+1,−n2−2] gives

dimV
(k,l)
[n1,n2] − dimV

(k−n1−1,l)
[−n1−2,n1+n2+1] =

{
0 if k ≥ l + n1 + 1, l ≥ 0 ,
1 if k = l + n1, l ≥ 0 ,

(6.73)

and

dimV
(k,l)
[n1,n2] − dimV

(k,l−n2−1)
[n1+n2+1,−n2−2] =

{
0 if l ≥ k + n2 + 1, k ≥ 0 ,
1 if l = k + n2, k ≥ 0 .

(6.74)

Furthermore

dimV
(k,l)
[n1,n2] − dimV

(k−n1−1,l)
[−n1−2,n1+n2+1] − dimV

(k,l−n2−1)
[n1+n2+1,−n2−2]

=

{
l + 1 − n2 − (l − n2) = 1 , k = n1 + n2, n2 ≤ l ≤ n1 + n2 ,

k + 1 − (k − n1) − n1 = 1 , l = n1 + n2, n1 ≤ k ≤ n1 + n2 .
(6.75)

The remaining contributions, when present, give rise to a complete cancellation so that the
representation space given by (6.68) is finite dimensional. When l ≥ n2, k ≥ n1 + n2 + 1,

dimV
(k,l)
[n1,n2] − dimV

(k−n1−1,l)
[−n1−2,n1+n2+1] − dimV

(k,l−n2−1)
[n1+n2+1,−n2−2] + dimV

(k−n1−n2−2,l−n2−1)
[−n1−n2−3,n1]

=

{
(l + 1) − (l + 1) − (l − n2) + (l − n2) , k ≥ l + n1 + 1
(l + 1) − (k − n1) − (l − n2) + (k − n1 − n2 − 1) , l ≤ k ≤ l + n1 + 1

= 0 , (6.76)
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and for k, l ≥ n1 + n2 + 1 in an analogous fashion

dimV
(k,l)
[n1,n2] − dimV

(k−n1−1,l)
[−n1−2,n1+n2+1] − dimV

(k,l−n2−1)
[n1+n2+1,−n2−2] + dimV

(k−n1−1,l−n1−n2−2)
[n2,−n1−n2−3]

+ dimV
(k−n1−n2−2,l−n2−1)
[−n1−n2−3,n1] − dimV

(k−n1−n2−2,l−n1−n2−2)
[−n2−2,−n1−2] = 0 . (6.77)

For the finite representation space V[n1,n2] then at each vertex of the weight diagram
as in (6.69) there are associated vectors which satisfy analogous conditions to (6.48), in
particular

(E1−, E3+) |−n1, n1 + n2⟩ = 0 , (E2−, E3+) |n1 + n2,−n2⟩ ,
(E2+, E3−) |−n1 − n2, n1⟩ = 0 , (E1+, E3−) |n2,−n1 − n2⟩ = 0 ,

(E1−, E2−) |−n2,−n1⟩ = 0 . (6.78)

Each vector may be use to construct the representation space by acting on it with ap-
propriate lowering operators. In this fashion V[n1,n2] may be shown to be invariant under
W (su(3)).

A generic weight diagram has the structure shown below. The multiplicity for each
weight is the same on each layer. For n1 ≥ n2 there are n2 +1 six-sided layers and then the
layers become triangular. For the six-sided layers the multiplicity increases by one as one
moves from the outside to the inside, the triangular layers all have multiplicity n2 + 1. In
the diagram different colours have the same multiplicity.
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6.3.2 SU(3) Characters

A much more straightforward procedure for showing how finite dimensional representations
of SU(3) are formed is to construct their characters following the approach described for
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SU(2) based on (6.21) and (6.22). For the highest weight representation space V[n1,n2] we
then define in terms of the basis (6.49)

C[n1,n2](t1, t2) = t̃rV[n1,n2]

(
t1
H1 t2

H2
)

=
∑
r,s,t≥0

t1
n1−2r+s−t t2

n2+r−2s−t

= t1
n1 t2

n2
∑
r,s,t≥0

(
t2/t1

2
)r (

t1/t2
2
)s (1/t1t2)t . (6.79)

For a succinct final expression it is more convenient to use the variables

u = (u1, u2, u3) , u1 = t1 , u3 = 1/t2 , u1u2u3 = 1 , (6.80)

so that t2/t12 = u2/u1, t1/t2
2 = u3/u2, 1/t1t2 = u3/u1 and convergence of the sum requires

u1 > u2 > u3. Then

C[n1,n2](u) =
u1
n1+n2+2 u2

n2+1

(u1 − u2)(u2 − u3)(u1 − u3)
. (6.81)

Following (6.68) the character for the irreducible representation of su(3) obtained from the
highest weight vector |n1, n2⟩hw is then

χ[n1,n2](u) = C[n1,n2](u) − C[−n1−2,n1+n2+1](u) − C[n1+n2+1,−n2−2](u)

+ C[−n1−n2−3,n1](u) + C[n2,−n1−n2−3](u) − C[−n2−2,−n1−2](u)

=
1

(u1 − u2)(u2 − u3)(u1 − u3)
×
(
u1
n1+n2+2 u2

n2+1 − u2
n1+n2+2 u1

n2+1 − u1
n1+n2+2 u3

n2+1

+ u2
n1+n2+2 u3

n2+1 − u3
n1+n2+2 u2

n2+1 + u3
n1+n2+2 u1

n2+1
)
. (6.82)

It is easy to see that both the numerator and the denominator are completely antisymmetric
so that χ[n1,n2](u) is a symmetric function of u1, u2, u3, the S3 ≃W (su(3)).

If we consider a particular restriction we get

χ[n1,n2](q, 1, q
−1) =

1 − qn1+1

1 − q

1 − qn2+1

1 − q

1 − q−n1−n2−2

1 − q−2
, (6.83)

and hence it is then easy to calculate

dimV[n1,n2] = χ[n1,n2](1, 1, 1) = 1
2(n1 + 1)(n2 + 1)(n1 + n2 + 2) . (6.84)

The relation of characters to the Weyl group is made evident by defining, for any element
σ ∈W (su(3)), a transformation on the weights such that

[r1, r2]σ = σ[r1 + 1, r2 + 1] − [1, 1] . (6.85)

Directly from (6.47) we easily obtain

[r1, r2]b = [−r1 − 2, r1 + r2 + 1] , [r1, r2]ab = [r1 + r2 + 1,−r2 − 2] ,

[r1, r2]a = [r2,−r1 − r2 − 3] , [r1, r2]a
2

= [−r1 − r2 − 3, r1] ,

[r1, r2]a
2b = [−r2 − 2,−r1 − 2] . (6.86)
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Clearly [n1, n2]σ generates the weights for the highest weight vectors contained in V[n1,n2],
as shown in (6.60), (6.65) and (6.66). Thus (6.82) may be written more concisely as

χ[n1,n2](u) =
∑
σ∈S3

Pσ C[n1,n2]σ(u) =
∑
σ∈S3

C[n1,n2](σu) , (6.87)

with, for σ ∈ S3,

Pσ =

{
−1 , σ odd permutation ,
1 , σ even permutation ,

(6.88)

and where σu denotes the corresponding permutation, so that b(u1, u2, u3) = (u2, u1, u3),
a(u1, u2, u3) = (u2, u3, u1). The definition of χ[n1,n2](u) extends to any [n1, n2] by taking

χ[n1,n2]σ(u) = Pσχ[n1,n2](u) . (6.89)

Since [−1, r]b = [−1, r], [r,−1]ab = [r,−1] and [r,−r− 2]a
2b = [r,−r− 2] we must then have

χ[−1,r](u) = χ[r,−1](u) = χ[r,−r−2](u) = 0 . (6.90)

This shows the necessity of the three factors in the dimension formula (6.84). It is important
to note that for any [n1, n2]

n1, n2 ̸= −1, n1 + n2 ̸= −2 , [n1, n2]σ ∈ W for a unique σ ∈ S3 , (6.91)

where W is defined in (6.59).

6.3.3 Casimir operator

For the basis in (6.33) the su(3) quadratic Casimir operator is given by

C = R̂ij R̂
j
i =

∑3
i=1

(
Ei+Ei− +Ei−Ei+

)
+ 2

3

(
H1

2 +H2
2 +H1H2

)
=
∑3

i=1Ei−Ei+ + 2
3

(
H1

2 +H2
2 +H1H2

)
+ 2
(
H1 +H2

)
. (6.92)

Acting on a highest weight vector

C|n1, n2⟩hw = c[n1,n2]|n1, n2⟩hw , (6.93)

where, from the explicit form in (6.92),

c[n1,n2] = 2
3(n1

2 + n2
2 + n1n2) + 2(n1 + n2) . (6.94)

It is an important check that c[n1,n2]σ = c[n1,n2] as required since C has the same eigenvalue
c[n1,n2] for all vectors belonging to V[n1,n2].

112



6.3.4 Particular SU(3) Representations

We describe here how the general results for constructing a finite dimensional su(3) irre-
ducible representation spaces V[n1,n2] apply in some simple cases which are later of physical
relevance. The general construction in (6.68) ensures that the resulting weight diagram is
finite but in many cases the results can be obtained quite simply by considering the su(2)
subalgebras in (6.40) and then using results for su(2) representations.

The trivial singlet representation of course arises for n1 = n2 = 0 when there is unique
vector |0, 0⟩ annihilated by Ei± and Hi.

A particularly simple class of representations arises when n2 = 0. In this case applying
the su(2) representation condition (6.20) the highest weight vector must satisfy

E1−
n1+1|n1, 0⟩hw = 0 , E2−|n1, 0⟩hw = 0 . (6.95)

Furthermore, using [E3+, E1−
r] = −rE1−

r−1E2+,

E3+E1−
r|n1, 0⟩hw = 0 , (H1 +H2)E1−

r|n1, 0⟩hw = (n1 − r)E1−
r|n1, 0⟩hw , (6.96)

so that E1−
r|n1, 0⟩hw is a su(2)i3 highest weight vector so that from (6.20) again

E3−
n1−r+1E1−

r|n1, 0⟩hw = 0 . (6.97)

Hence a finite dimensional basis for V[n1,0] is given by

E3−
tE1−

r|n1, 0⟩hw , t = 0, . . . n1 − r , r = 0, . . . , n1 , (6.98)

where there is a unique vector for each weight [n1 − 2r − t, r − t], which therefore has
multiplicity one. It is easy to check that this is in accord with the dimension of this
representation dimV[n1,0] = 1

2(n1 + 1)(n1 + 2).

These representations have triangular weight diagrams as shown below.
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A corresponding case arises when n1 = 0 and the roles of E1− and E2− are interchanged.
In this case the basis vectors for V[0,n2] are just E3−

tE2−
s|0, n2⟩hw for t = 0, . . . n2 − s,

s = 0, . . . , n2 and the weight diagram is also triangular.

In general the weight diagrams for V[n2,n1] may be obtained from that for V[n1,n2] by
rotation by π, these two representations are conjugate to each other.

The next simplest example arises for n1 = n2 = 1. The su(2) conditions (6.20) for the
highest weight state require

E1−
2|1, 1⟩hw = E2−

2|1, 1⟩hw = E3−
3|1, 1⟩hw = 0 . (6.99)

Since E1−|1, 1⟩hw is a highest weight vector for su(2)i2 and, together with E2−|1, 1⟩hw, is
also a su(2)i3 highest weight vector then the weights and associated vectors obtained from
|1, 1⟩hw in terms of the basis (6.49) are then restricted to just

[−1, 2] : E1−|1, 1⟩hw , [2,−1] : E2−|1, 1⟩hw , [0, 0] : E3−|1, 1⟩hw , E2−E1−|1, 1⟩hw ,

[−2, 1] : E3−E1−|1, 1⟩hw , [1, 0] : E3−E2−|1, 1⟩hw , E2−
2E1−|1, 1⟩hw ,

[−1,−1] : E3−
2|1, 1⟩hw , E3−E2−E1−|1, 1⟩hw . (6.100)

However (6.99) requires further relations since

E2−
2E1−|1, 1⟩hw =

(
E2−E1−E2− + E3−E2−

)
|1, 1⟩hw = 2E3−E2−|1, 1⟩hw , (6.101)

which then entails

E1−E2−
2E1−|1, 1⟩hw = −2E3−E2−E1−|1, 1⟩hw

= 2E1−E3−E2−|1, 1⟩hw = 2
(
E3−E2−E1− − E3−

2
)
|1, 1⟩hw , (6.102)
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so that furthermore
E3−

2|1, 1⟩hw = 2E3−E2−E1−|1, 1⟩hw . (6.103)

All weights therefore have multiplicity one except for [0, 0] which has multiplicity two. The
overall dimension is then 8 and V[1,1] corresponds to the SU(3) adjoint representation. The
associated weight diagram is just a regular hexagon, invariant under the dihedral group
D3 ≃ S3, with the additional symmetry under rotation by π since this representation is
self-conjugate.

6.4 SU(3) Tensor Representations

Just as with the rotational group SO(3), and also with SU(2), representations may be
defined in terms of tensors. The representation space for a rank r tensor is defined by
the direct product of r copies of a fundamental representation space, formed by 3-vectors
for SO(3) and 2-spinors for SU(2), and so belongs to the r-fold direct product of the
fundamental representation. Such tensorial representations are reducible for any r ≥ 2 with
reducibility related to the existence of invariant tensors. Contraction of a tensor with an
invariant tensor may lead to a tensor of lower rank so that these form an invariant subspace
under the action of the group. Tensor representations become irreducible once conditions
have been imposed to ensure all relevant contractions with invariant tensors are zero.

For SU(N) it is necessary to consider both the N -dimensional fundamental representa-
tion and its conjugate, SU(2) is a special case where these are equivalent. When N = 3 we
then consider a complex 3-vector qi and its conjugate q̄i = (qi)∗, i = 1, 2, 3, belonging to
the vector space S and its conjugate S̄, and which transform as

qi → Aij q
j , q̄i → q̄j (A−1)ij ,

[
Aj i
]
∈ SU(3) . (6.104)

A (r, s)-tensor T i1...irj1...js
is then one which belongs to S(⊗S)r−1(⊗ S̄)s and which transforms

as
T i1...irj1...js

→ Ai1k1 . . . A
ir
kr T

k1...kr
l1...ls

(A−1)l1j1 . . . (A
−1)lsjs . (6.105)

The conjugate of a (r, s)-tensor is a (s, r)-tensor

T̄ j1...jsi1...ir
=
(
T i1...irj1...js

)∗
. (6.106)
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The invariant tensors are a natural extension of those for SU(2), as exhibited in (2.156)
and (2.157). Thus there are the 3-index antisymmetric ε-symbols, forming (3, 0) and (0, 3)-
tensors, and the Kronecker δ, which is a (1, 1)-tensor,

εijk , εijk , δij . (6.107)

That εijk and εijk are invariant tensors is a consequence of the transformation matrix A
satisfying detA = 1. The transformation rules (6.105) guarantee that the contraction of an
upper and lower index maintains the tensorial transformation properties. In consequence
from a tensor T i1...irj1...js

then contracting with εijmjn or εjimin , for some arbitrary pair of
indices, generates a (r+ 1, s− 2) or a (r− 2, s+ 1)-tensor. Similarly using δij we may form
a (r − 1, s − 1)-tensor. Thus the vector space of arbitrary (r, s)-tensors contains invariant
subspaces, except for the fundamental (1, 0) or (0, 1) tensors or the trivial (0, 0) singlet.
Just as for SO(3) or SU(2) we may form an irreducible representation space by requiring
all such contractions give zero, so we restrict to (r, s)-tensors with all upper and lower
indices totally symmetric, and also traceless on contraction of any upper and lower index,

Si1...irj1...js
= S

(i1...ir)
(j1...js)

, S
i1...ir−1 i
j1...js−1 i

= 0 . (6.108)

The vector space formed by such symmetrised traceless tensors forms an irreducible
SU(3) representation space V[r,s]. To determine its dimension we may use the result in
(2.124) for the dimension of the space of symmetric tensors, with indices taking three
values, for n = r, s and then take account of the trace conditions by subtracting the results
for n = r − 1, s− 1. This gives

dimV[r,s] = 1
2(r + 1)(r + 2) 1

2(s+ 1)(s+ 2) − 1
2r(r + 1) 1

2s(s+ 1)

= 1
2(r + 1)(s+ 1)(r + s+ 2) . (6.109)

This is of course identical to (6.84). The irreducible representation space constructed in
terms of (r, s)-tensors is isomorphic with the finite dimensional irreducible space constructed
previously by analysis of the Lie algebra commutation relations.

6.4.1 su(3) Lie algebra again

For many applications involving SU(3) symmetry it is commonplace in physics papers to
use a basis of hermitian traceless 3 × 3 matrices, forming a basis for the su(3) Lie algebra,
which are a natural generalisation of the Pauli matrices in (2.11), the Gell-Mann λ-matrices
λa, a = 1, . . . , 8,

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 .

(6.110)
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These satisfy
tr(λaλb) = 2 δab , (6.111)

and
[λa, λb] = 2i fabcλc , (6.112)

for totally antisymmetric structure constants, fabc. In terms of the matrices defined in (6.27)
and (6.29) it is easy to see that e1+ = 1

2(λ1 + iλ2), e2+ = 1
2(λ6 + iλ7), e3+ = 1

2(λ4 + iλ5)
and also λ3 = h1, λ8 = 1√

3
(h1 + 2h2).

The relation between SU(3) matrices and the λ-matrices is in many similar to that for
SU(2) and the Pauli matrices, for an infinitesimal transformation the relation remains just
as in (2.28). (2.15) needs only straightforward modification while instead of (2.12) we now
have

λaλb = 2
3 I + dabc λc + ifabc λc , (6.113)

with dabc totally symmetric and satisfying dabb = 0.

6.5 SU(3) and Physics

Besides its virtues in terms of understanding more general Lie groups a major motivation
in studying SU(3) is in terms of its role in physics. Historically SU(3) was introduced, as
a generalisation of the isospin SU(2)I , to be an approximate symmetry group for strong
interactions, in current terminology a flavour symmetry group, and the group in this con-
text is often denoted as SU(3)F . Unlike isospin, which was hypothesised to be an exact
symmetry for strong interactions, neglecting electromagnetic interactions, SU(3)F is intrin-
sically approximate. The main evidence is the classification of particles with the same spin,
parity into multiplets corresponding to SU(3) representations. For the experimentally ob-
served SU(3)F particle multiplets, unlike for isospin multiplets, the masses are significantly
different.

For SU(3)F the two commuting generators are identified with I3, belonging to SU(2)I ,
and also the hypercharge Y , where [Ii, Y ] = 0 so that Y takes the same value for any
isospin multiplet. Y is related to strangeness S, a quantum number invented to explain
why the newly discovered, in the 1940’s, so-called strange particles were only produced in
pairs, the precise relation is Y = B + S, with B the baryon number. For any multiplet
we must have tr(I3) = tr(Y ) = 0. Expressed in terms of the su(3) operators H1,H2,
I3 = H1, Y = 1

3(H1 + 2H2). For SU(3)F multiplets the electric charge is determined by
Q = I3 + 1

2Y and so must be always conserved, but Y is not conserved by weak interactions
which are responsible for the decay of strange particles into non-strange particles.

For SU(3)F symmetry of strong interactions to be realised there must be 8 operators
satisfying the su(3) Lie algebra. If the same basis as for the λ-matrices in (6.110) is adopted
then these are Fa, a = 1, . . . , 8, where Fa are hermitian, and

[Fa, Fb] = ifabcFc , Fi = Ii , i = 1, 2, 3 , F8 = 1√
3
Y . (6.114)

From a more modern perspective SU(3)F is understood to be a consequence of the
fact that low mass hadrons are composed of the three light quarks q = (u, d, s) and their

117



anti-particles q̄ = (ū, d̄, s̄), corresponding to three quark flavours. These belong respectively
to the fundamental [1, 0] and [0, 1] representations, more often denoted by 3 and 3∗. On
a weight diagram these are the simplest triangular representations. With axes labelled by
I3, Y these are

Y

I3

1/3

−2/3

d u

s

−1/2                                                                    1/2
I3−1/2                                                                    1/2

Y
2/3

−1/3

s

u d

The charges of quarks are dictated by the requirement Q = I3 + 1
2Y and so for q are

fractional, 2
3 and −1

3 , while for q̄ they are the opposite sign. We may further interpret the
quantum numbers in terms of the numbers of particular quarks minus their anti-quarks,
hence I3 = Nu−Nū−Nd+Nd̄ and S = −Ns+Ns̄, where each q has baryon number B = 1

3
and each q̄, B = −1

3 ,

As is well known isolated quarks are not observed, they are present as constituents of
the experimentally observed mesons, which are generally qq̄ composites, or baryons, whose
quantum numbers are consistent with a qqq structure. The associated representations have
zero triality, elements belonging to the centre Z(SU(3)) act trivially, or equivalently the
observed representations correspond to the group SU(3)/Z3.

For the mesons we have self-conjugate octets belonging to the [1, 1], or 8, SU(3) repre-
sentations. The weight diagram for the lightest spin-0 negative parity mesons is

Y

I3

+  −

−

1/2

1

−1/2

−1

Mass(Mev)
495

137

549

495

K K

K K
0

0 +  

π π π0

η−1 −1/2 1/2 1

Here the kaons K+,K0 and K̄0,K− are I = 1
2 strange particles with S = 1 and S = −1.
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A similar pattern emerges for the next lightest spin one negative parity mesons.

Y

I3

+  −

−

1/2

1

−1/2

−1

Mass(Mev)
892

770

783

892

K K

K K
0

0 +  

0

∗ ∗

∗ ∗

ρ ρ ρ

ω−1 −1/2 1/2 1

The lightest multiplet of spin-1
2 baryons is also an octet, with a similar weight diagram, the

same set of I3, Y although of course different particle assignments.

Y

I3

n p

Σ Σ

Ξ Ξ

+  

+  

Σ−

−

Λ

0

0

1/2

1

−1/2

−1

Mass(Mev)
939

1193

1116

1318

−1/2 11/2−1

The novelty for baryons is that there are also decuplets, corresponding to the [3, 0] and [0, 3]
representations, or labelled by their dimensionality 10 and 10∗. The next lightest spin-3

2
baryons and their anti-particles belong to decuplets.
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Y

I3

1/2

  1

−1/2

−1

−3/2

  −2

∆ ∆ ∆ ∆

Σ Σ Σ

Ξ Ξ

Ω

+

+

++0

0

0

−

−

−

−

∗ ∗ ∗

∗ ∗

Mass (Mev)

1235

1385

1530

1670

 −3/2       −1      −1/2                   1/2        1        3/2

Except for the Ω− the particles in the decuplet are resonances, found as peaks in the
invariant mass distribution for various cross sections. Since mΞ +mK > mΩ− the Ω− can
decay only via weak interactions and its lifetime is long enough to leave an observable track.

6.5.1 SU(3)F Symmetry Breaking

Assuming quark masses are not equal there are no exact flavour symmetries in strong
interactions, or equivalently QCD, save for a U(1) for each quark. Even isospin symmetry
is not exact since mu ̸= md. Restricting to the three light q = (u, d, s) quarks the relevant
QCD mass term may be written as

Lm = −mu ūu−md d̄d−ms s̄s

= − m̄ q̄q − 1
2(mu −md) q̄λ3q − 1

2
√

3
(mu +md − 2ms) q̄λ8q , (6.115)

for m̄ = 1
3(mu +md +ms). If the difference between mu,md is neglected then the strong

interaction Hamiltonian must be of the form

H = H0 + T8 , (6.116)

where H0 is a SU(3) singlet and T8 is part of an octet of operators {Ta} so that, with the
SU(3) operators {Fa} as in (6.114), we have the commutation relations [Fa,H0] = 0 and
[Fa, Tb] = ifabcTc. The Hamiltonian in (6.116) is invariant under isospin symmetry since
[Ii, T8] = 0.

In any SU(3) multiplet the particle states may be labelled |II3, Y ⟩ for various isospins I
and hypercharges Y , depending on the particular representation. For I3 = −I,−I+1, . . . , I
the vectors |II3, Y ⟩ form a standard basis under SU(2)I . With isospin symmetry the particle
masses are independent of I3 and to first order in SU(3) symmetry breaking

mI,Y = m0 + ⟨II3, Y |T8|II3, Y ⟩ . (6.117)

It remains to determine a general expression for ⟨II3, Y |T8|II3, Y ⟩, which is essentially
equivalent to finding the extension of the Wigner-Eckart theorem, described in section 2.9,
to SU(3).
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Instead of finding results for SU(3) Clebsch-Gordan coefficients the necessary calculation
may be accomplished, in this particular case, with less effort. It is necessary to recognise that
the crux of the Wigner-Eckart theorem is that, as far as the I, Y dependence is concerned,
⟨II3, Y |T8|II3, Y ⟩ is determined just by the SU(3) transformation properties of T8. Hence,
apart from overall undetermined constants, T8 may be replaced by any other operator with
the same transformation properties. For convenience we revert to a tensor basis for the
octet Ta → T ij , T ii = 0, and then with Fa → R̂ij as in (6.33),[

R̂ij , T
k
l

]
= δkj T

i
l − δil T

k
j , T8 = 1

3

(
T 1

1 + T 2
2 − 2T 3

3

)
. (6.118)

This ensures that T ij is a traceless (1, 1) irreducible tensor operator. Any such tensor
operator constructed in terms of R̂ij has the same SU(3) transformation properties. The
simplest case is if T ij = R̂ij when (6.118) requires

T8 = 1
3

(
H1 + 2H2

)
= Y , (6.119)

with Y the hypercharge operator. An further independent (1, 1) operator is also given by
the quadratic expression T ij = 1

2(R̂ikR̂kj + R̂kjR̂
i
k) − 1

3δ
i
j R̂

k
lR̂

l
k which then leads to

T8 = 1
4

(
R̂1

kR̂
k
1 + R̂k1R̂

1
k + R̂2

kR̂
k
2 + R̂k2R̂

2
k − R̂3

kR̂
k
3 − R̂k3R̂

3
k

)
− 1

6 C , (6.120)

where C is the SU(3) Casimir operator defined in (6.92). Using (6.33) then

T8 = 1
2

(
E1+E1− + E1−E1+ + 1

2H1
2
)
− 1

36

(
H1 + 2H2

)2 − 1
6 C

= IiIi − 1
4 Y

2 − 1
6 C , (6.121)

with Ii the isospin operators and (6.25) has been used for the SU(2)I Casimir operator.
For a 3 × 3 traceless matrix R, R3 − 1

3I tr(R3) = 1
2R tr(R2) so that there are no further

independent cubic, or higher order, traceless (1, 1) tensor operators formed from R̂ij .

The results of the Wigner-Eckart theorem imply that, to calculate ⟨II3, Y |T8|II3, Y ⟩,
it is sufficient to replace T8 by an arbitrary linear combination of (6.119) and (6.121).
Absorbing an I, Y independent constant into m0 and replacing the operators IiIi and Y by
their eigenvalues this gives the first order mass formula

mIY = m0 + aY + b
(
I(I + 1) − 1

4Y
2
)
, (6.122)

with a, b undetermined coefficients.

For the baryon octet (6.122) gives 2(mN +mΞ) = 3mΣ +mΛ, which is quite accurate.
For the decuplet the second term is proportional to the first so that the masses are linear
in Y , again in accord with experimental data. For mesons, for various reasons, the mass
formula is applied to m2, so that 4m 2

K = 3m 2
π +m 2

η .

6.5.2 SU(3) and Colour

The group SU(3) plays a more fundamental role, other than a flavour symmetry group,
as the gauge symmetry group of QCD. Each quark then belongs to the three dimensional
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fundamental, 3 or [1, 0], representation space for SU(3)colour so that there is an additional
colour index r = 1, 2, 3 and hence, for each of the six different flavours of quarks q =
u, d, s, c, b, t in the standard model, we have qr. The antiquarks belong to the conjugate, 3∗

or [0, 1], representation space, q̄r. The crucial assumption, yet to be fully demonstrated, is
that QCD is a confining theory, the states in the physical quantum mechanical space are
all colour singlets. No isolated quarks are then possible and this matches with the observed
mesons and baryons since the simplest colour singlets are just

q̄1rq2
r , εrst q1

rq2
sq3

t . (6.123)

Baryons are therefore totally antisymmetric in the colour indices. Fermi statistics then
requires that they should be symmetric under interchange with respect to all other variables,
spatial, spin and flavour. This provides non trivial constraints on the baryon spectrum which
match with experiment. The additional colour degrees of freedom also play a role in various
dynamical calculations, such as the total cross section for e−e+ scattering or π0 → γγ decay.

6.6 Tensor Products for SU(3)

Just as for angular momentum it is essential to be able to decompose tensor products
of SU(3) representations into irreducible components in applications of SU(3) symmetry.
Only states belonging to the same irreducible representation will have the same physical
properties, except for dynamical accidents or a hidden addition symmetry.

For small dimensional representations it is simple to use the tensor formalism described
in section 6.4 with irreducible representations characterised by symmetric traceless tensors
as in (6.108). Thus for the product of two fundamental representations it is sufficient to
express it in terms of its symmetric and antisymmetric parts

q1
i q2

j = Sij + εijkq̄k , Sij = q1
(iq2

j) , q̄k = 1
2εkijq1

iq2
j . (6.124)

while for the product of the fundamental and its conjugate it is only necessary to separate
out the trace

q̄iq
j = M j

i + δjiS , M j
i = q̄iq

j − 1
3δ
j
i q̄kq

k , S = 1
3 q̄iq

i . (6.125)

These correspond respectively to

3 ⊗ 3 = 6 ⊕ 3∗ , 3∗ ⊗ 3 = 8 ⊕ 1 . (6.126)

For the product of three fundamental representations then the decomposition may be ex-
pressed in terms of an irreducible (3, 0) tensor, two independent (1, 1) tenors and a singlet

q1
i q2

j q3
k = Dijk + εiklBj

l + εjklBi
l + εijlB′k

l + εijkS ,

Dijk = q1
(i q2

j q3
k) , S = 1

6εijk q1
i q2

j q3
k ,

Bi
l = 1

3εjkl q1
(i q2

j) q3
k , B′k

l = 1
2εijl q1

i q2
j q3

k − δkl S . (6.127)

To verify that this is complete it is necessary to recognise, since the indices take only three
values, that

εijlBk
l + εkilBj

l + εjklBi
l = εijkBl

l = 0 , (6.128)
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for any Bi
j belonging to the 8 representation. (6.127) then corresponds to

3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 . (6.129)

These of course are the baryon representations for SU(3)F .

In general it is only necessary to use the invariant tensors in (6.107) to reduce the tensor
products to irreducible tensors. Thus for the product of two octets the irreducible tensors
are constructed by forming first the symmetric (2, 2), (3, 0), (0, 3) tensors as well as two
(1, 1) tensors and also a singlet by

Bi
j B

′k
l → B

(i
(jB

′k)
l) , ε

jl(mBi
jB

′k)
l , εik(mB

i
jB

′k
l) , Bi

j B
′j
l , Bi

j B
′j
i , Bi

j B
′j
i . (6.130)

and then subtracting the required terms to cancel all traces formed by contracting upper
and lower indices, as in (6.125). This gives the decomposition

8 ⊗ 8 = 27 ⊕ 10 ⊕ 10∗ ⊕ 8 ⊕ 8 ⊕ 1 . (6.131)

6.6.1 Systematic Discussion of Tensor Products

For tensor products of arbitrary representations there is a general procedure which is quite
simple to apply in practice. The derivation of this is straightforward using characters to find
an algorithm for the expansion of the product of two characters for highest weight irreducible
representations as in (1.47). For su(3), characters are given by (6.82). In general these have
an expansion in terms of a sum over the weights in the associated weight diagram

χΛ(u) =
∑
λ

nΛ, λ u1
r1+r2+2u2

r2+1 , Λ = [n1, n2] , λ = [r1, r2] , (6.132)

where nΛ, λ is then the multiplicity in the representation space VΛ for vectors with weight
λ. Due to the symmetry of the weight diagram under the Weyl group we have

nΛ, λ = nΛ, σλ . (6.133)

Using (6.81) it is easy to see that

CΛ(u)χΛ′(u) =
∑
λ

nΛ′, λCΛ+λ(u) , (6.134)

and since, for the weights {λ} corresponding to the representation with highest weight Λ,

{λ} = {σλ} , (Λ + λ)σ = Λσ + σλ , (6.135)

then, with (6.133), we may use (6.87) to obtain

χΛ(u)χΛ′(u) =
∑
λ

nΛ′, λ χΛ+λ(u) . (6.136)
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However in general Λ + λ /∈ W, as defined in (6.59). In this case (6.89) may be used to
rewrite (6.136) as

χΛ(u)χΛ′(u) =
∑
λ

nΛ′, λ Pσ χ(Λ+λ)σ(u) , (Λ + λ)σ ∈ W , (6.137)

dropping all terms where Λ+λ satisfies any of the conditions in (6.90) ensuring χΛ+λ(u) = 0,
so that, by virtue of (6.91), σ in (6.137) is then unique. Since in (6.137) some terms may
now contribute with a negative sign there are then cancellations although the final result is
still a positive sum of characters.

The result (6.137) may be re-expressed in terms of the associated representation spaces.
For a highest weight Λ the representation space VΛ has a decomposition into subspaces for
each weight,

VΛ =
⊕
λ

V(λ)
Λ , dimV(λ)

Λ = nΛ, λ , (6.138)

and then (6.137) is equivalent to

VΛ ⊗ VΛ′ ≃
⊕
λ

nΛ′, λ Pσ V(Λ+λ)σ , (Λ + λ)σ ∈ W . (6.139)

This implies the corresponding decomposition for the associated representations.

As applications we may consider tensor products involving V[1,0] which has the weight
decomposition

V[1,0] → [1, 0] , [−1, 1] , [0,−1] , (6.140)

and then

V[n1,n2] ⊗ V[1,0] ≃ V[n1+1,n2] ⊕ V[n1−1,n2+1] ⊕ V[n1,n2−1]

=

{
V[1,n2] ⊕ V[0,n2−1] , n1 = 0 ,
V[n1+1,0] ⊕ V[n1−1,1] , n2 = 0 .

(6.141)

It is easy to see that this is in accord with the results in (6.129). For an octet

V[1,1] → [1, 1] , [2,−1] , [−1, 2] , [0, 0]2 , [1,−2] , [−2, 1] , [−1,−1] , (6.142)

so that, for n1, n2 ≥ 2,

V[n1,n2] ⊗ V[1,1] ≃ V[n1+1,n2+1] ⊕ V[n1+2,n2−1] ⊕ V[n1−1,n2+2] ⊕ V[n1,n2]

⊕ V[n1,n2] ⊕ V[n1+1,n2−2] ⊕ V[n1−2,n2+1] ⊕ V[n1−1,n2−1] , (6.143)

with special cases

V[1,1] ⊗ V[1,1] ≃ V[2,2] ⊕ V[3,0] ⊕ V[0,3] ⊕ V[1,1] ⊕ V[1,1] ⊕ V[0,0] , (6.144)

which is in accord with (6.131), and

V[3,0] ⊗ V[1,1] ≃ V[4,1] ⊕ V[2,2] ⊕ V[3,0] ⊕ V[1,1] , (6.145)

using V[4,−2] ≃ −V[3,0]. Equivalently, labelling the representations by their dimensions

10 ⊗ 8 = 35 ⊕ 27 ⊕ 10 ⊕ 8 . (6.146)
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7 Gauge Groups and Gauge Theories

Gauge theories are fundamental to our understanding of theoretical physics, many successful
theories such as superconductivity and general relativity are best understood in terms of
an appropriate gauge symmetry and its implementation. High energy particle physics is
based on quantum gauge field theories. A gauge theory is essentially one where there are
redundant degrees of freedom, which cannot in general be eliminated, at least without
violating other symmetries that are present. The presence of such superfluous degrees of
freedom requires a careful treatment when gauge theories are quantised and a quantum
vector space for physical states is constructed. If the basic variables in a gauge theory are
denoted by q then gauge transformations q → qg, for g ∈ G for some group G, are dynamical
symmetries which define an equivalence q ∼ qg. The objects of interest are then functions of
q which are invariant under G, in a physical theory these are the physical observables. For
a solution q(t) of the dynamical equations of motion then a gauge symmetry requires that
qg(t)(t) is also a solution for arbitrary continuously differentiable g(t) ∈ Gt ≃ G. For this to
be feasible G must be a Lie group, group multiplication is defined by g(t)g′(t) = gg′(t) and
the full group of gauge transformations is then essentially G ≃ ⊗tGt. A gauge theory in
general requires the introduction of additional dynamical variables which form a connection,
depending on t, on MG and so belongs to the Lie algebra g.

For a relativistic gauge field theory there are vector gauge fields, with a Lorentz index
Aµ(x), belonging to g. Denoting the set of all vector fields, functions of x and taking values
in g, by A, we can then write

Aµ ∈ A . (7.1)

In a formal sense, the gauge group G is defined by

G ≃
⊗
x

Gx , (7.2)

i.e. an element of G is a map from space-time points to elements of the Lie group G (the
definition of G becomes precise when space-time is approximated by a lattice). Gauge
transformations act on the gauge fields so that

Aµ(x) −→
g(x)

Aµ
g(x)(x) ∼ Aµ(x) . (7.3)

Gauge transformations g(x) are then the redundant variables and the physical space is
determined by the equivalence classes of gauge fields modulo gauge transformations or

A/G . (7.4)

If Aµ(x) is subject to suitable boundary conditions as |x| → ∞, or we restrict x ∈ M for
some compact M, then this is topologically non trivial.

The most significant examples of quantum gauge field theories are21,

Theory: QED Weinberg-Salam model QCD,
Gauge Group: U(1) SU(2) ⊗ U(1) SU(3).

21Steven Weinberg, (1933-), American. Abdus Salam, (1926-1996), Pakistani. Nobel Prizes 1979.
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Renormalisable gauge field theories are almost uniquely determined by specifying the gauge
group and then the representation content of any additional fields.

7.1 Abelian Gauge Theories

The simplest example arises for G = U(1), which is the gauge group for Maxwell22 electro-
magnetism, although the relevant gauge symmetry was only appreciated by the 1920’s and
later. For U(1) the group elements are complex numbers of modulus one, so they can be
expressed as eiα, 0 ≤ α < 2π. For a gauge theory the group transformations depend on x
so we can then write eiα(x). The representations of U(1) are specified by q ∈ R, physically
the charge, so that for a complex field ϕ(x) the group transformations are

ϕ −→
eiα

eiqαϕ = ϕ′ . (7.5)

If the field ϕ forms a non projective representation we must have

q ∈ Z = {0,±1,±2, . . . } . (7.6)

In quantum mechanics this is not necessary but if the U(1) is embedded in a semi-simple
Lie group then, with a suitable convention, q can be chosen to satisfy (7.6). For U(1) the
multiplication of representations is trivial, the charges just add, and also under complex
conjugation q → −q. It is then easy to construct lagrangians Lϕ which are invariant under
(7.5) for global transformations, where α is independent of x. Restricting to first derivatives
this requires

Lϕ(ϕ, ∂µϕ) = Lϕ(ϕ′, ∂µϕ′) , (7.7)

and an obvious solution, which defines a Lorentz invariant theory for complex scalars ϕ, is
then

Lϕ(ϕ, ∂µϕ) = ∂µϕ⋆ϕµϕ− V (ϕ∗ϕ) . (7.8)

For local transformations, when the elements of the gauge group depend on x, the initial
lagrangian is no longer invariant due to the presence of derivatives since

∂µϕ
′ = eiqα

(
∂µϕ+ iq∂µαϕ

)
, (7.9)

and the ∂µα terms fail to cancel. This is remedied by introducing a connection, or gauge
field, Aµ and then defining a covariant derivative on ϕ by

Dµϕ = ∂µϕ− iqAµϕ . (7.10)

If under a local U(1) gauge transformation, as in (7.5), the gauge field transforms as

Aµ −→
eiα

Aµ + ∂µα = A′
µ , (7.11)

so that
D′
µϕ

′ = eiαDµϕ , (7.12)

22James Clerk Maxwell, 1831-79, Scottish, second wrangler 1854.
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and then it is easy to see that, for any globally invariant lagrangian satisfying (7.7),

Lϕ
(
ϕ,Dµϕ

)
= Lϕ

(
ϕ′, D′

µϕ
′) . (7.13)

It is important to note that for abelian gauge theories Aµ ∼ A′
µ, which corresponds precisely

to the freedom of polarisation vectors in (4.197) when Lorentz vector fields are used for
massless particles with helicities ±1.

The initial scalar field theory then includes the gauge field Aµ, as well as the scalar
fields ϕ, both gauge dependent. For well defined dynamics the scalar lagrangian Lϕ must
be extended to include an additional gauge invariant kinetic term for Aµ. In the abelian
case it is easy to see that the curvature

Fµν = ∂µAν − ∂νAµ = F ′
µν , (7.14)

is gauge invariant, since ∂µ∂να = ∂ν∂µα. In electromagnetism Fµν decomposes in to the
electric and magnetic fields and is related to the commutator of two covariant derivatives
since

[Dµ, Dν ]ϕ = −iqFµνϕ . (7.15)

The simplest Lorentz invariant, gauge invariant, lagrangian is then

L = Lgauge + Lϕ
(
ϕ,Dµϕ

)
, Lgauge = − 1

4e2
FµνFµν , (7.16)

with e an arbitrary parameter, unimportant classically. It is commonplace to rescale the
fields so that

Aµ → eAµ , Dµϕ = ∂µϕ− ieqAµϕ , (7.17)

so that e disappears from the gauge field term in (7.16). The dynamical equations of motion
which flow from (7.16) are, for the gauge field,

1
e2
∂µFµν = jν = − ∂

∂Aν
Lϕ
(
ϕ,Dµϕ

)
, (7.18)

which are of course Maxwell’s equations for an electric current jν and e becomes the basic
unit of electric charge. A necessary consistency condition is that the current is conserved
∂νjν = 0. In addition Fµν satisfies an identity, essentially the Bianchi identity, which follows
directly from its definition in (7.14),

∂ωFµν + ∂νFωµ + ∂µFνω = 0 . (7.19)

In the language of forms, A = Aµdxµ, F = 1
2Fµν dxµ ∧ dxν = dA, this is equivalent to

dF = d2A = 0.

7.2 Non Abelian Gauge Theories

In retrospect the generalisation of gauge theories to non abelian Lie groups is a natural
step. A fully consistent non abelian gauge theory was first described in 1954, for the group
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SU(2), by Yang and Mills23 so they are often referred to, for the particular gauge invariant
lagrangian generalising the abelian lagrangian given in (7.16) and obtained below, as Yang-
Mills theories. Nevertheless the same theory was also developed, but not published, by
R. Shaw24 (it appeared as an appendix in his Cambridge PhD thesis submitted in 1955
although this work was done in early 1954). Such theories were not appreciated at first
since they appeared to contain unphysical massless particles, and also since understanding
their quantisation was not immediate.

Following the same discussion as in the abelian case we first consider fields ϕ belonging
to the representation space V for a Lie group G. Under a local group transformation then

ϕ(x) −→
g(x)

g(x)ϕ(x) = ϕ′(x) , (7.20)

for g(x) ∈ R for R an appropriate representation, acting on V, of G. Manifestly derivatives
fail to transform in the same simple homogeneous fashion since

∂µϕ(x) −→
g(x)

g(x)
(
∂µϕ(x) + g(x)−1∂µg(x)ϕ(x)

)
= ∂µϕ

′(x) , (7.21)

where g−1∂µg belongs to the corresponding representation of the Lie algebra of G, g, which
is assumed to have a basis {ta} satisfying the Lie algebra (5.60). As before to define a
covariantly transforming derivative Dµ it is necessary to introduce a connection belonging
to this Lie algebra representation which may be expanded over the basis matrices ta,

Aµ(x) = Aaµ(x) ta , (7.22)

and then
Dµϕ = (∂µ +Aµ)ϕ . (7.23)

Requiring
D′
µϕ

′ = gDµϕ , (7.24)

or
g−1A′

µ g + g−1∂µg = Aµ , (7.25)

then the gauge field must transform under a gauge transformation as

Aµ −→
g
A′
µ = gAµ g

−1 − ∂µg g
−1 = gAµ g

−1 + g∂µg
−1 . (7.26)

Hence if Lϕ(ϕ, ∂µϕ) is invariant under global transformations ϕ → gϕ then Lϕ(ϕ,Dµϕ) is
invariant under the corresponding local transformations, so long as Aµ also transforms as
in (7.26).

It is also useful to note, since G is a Lie group, the associated infinitesimal transforma-
tions when

g = I + λ , λ = λata . (7.27)
23Chen-Ning Franklin Yang, 1922-, Chinese then American, Nobel prize 1957. Robert L. Mills, 1927-99,

American.
24Ron Shaw, 1929-, English.
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Then from (7.20) and (7.24), for arbitrary λa(x),

δϕ = λϕ , δDµϕ = λDµϕ , (7.28)

and from (7.26)

δAµ = [λ,Aµ] − ∂µλ ⇒ δAaµ = −fabcAbµλc − ∂µλ
a . (7.29)

The associated curvature is obtained from the commutator of two covariant derivatives,
as in the abelian case in (7.15), which gives

[Dµ, Dν ]ϕ = Fµνϕ , Fµν = F aµνta , (7.30)

so that
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , (7.31)

or
F aµν = ∂µA

a
ν − ∂νA

a
µ + fabcA

b
µA

c
ν . (7.32)

Unlike the abelian case, but more akin to general relativity, the curvature is no longer linear.
The same result is expressible more elegantly using differential form notation by

F = dA+A ∧A , A = Aµ dxµ , A ∧A = 1
2 [Aµ, Aν ] dxµ ∧ dxν . (7.33)

For a gauge transformation as in (7.26)

Fµν −→
g
F ′
µν = gFµν g

−1 , (7.34)

or, infinitesimally,

δFµν = [λ, Fµν ] ⇒ δF aµν = −fabcF bµνλc , (7.35)

which are homogeneous.

As a consistency check we verify the result (7.35) for δF aµν from the expression (7.32)
using (7.29) for δAaµ. First

δ
(
∂µA

a
ν − ∂νA

a
µ

)
= −fabc

(
∂µA

b
ν − ∂νA

b
µ

)
λc − fabc

(
Abν∂µλ

c −Abµ∂νλ
c
)
. (7.36)

Then
δ
(
fabcA

b
µA

c
ν

)∣∣
∂λ

= −fabc
(
∂µλ

bAcν +Abµ∂νλ
c
)
, (7.37)

which cancels, using (5.39), the ∂λ terms in (7.36). Furthermore

δ
(
fabcA

b
µA

c
ν

)∣∣
λ

= − fabc
(
f bdeA

d
µλ

eAcν +Abµ f
c
deA

d
νλ

e
)

= −
(
fafdf

f
be + facff

f
be

)
AbµA

d
νλ

e = −fafe ffbdAbµAdν λe , (7.38)

by virtue of the Jacobi identity in the form (5.43). Combining (7.36), (7.37) and (7.38)
demonstrates (7.35) once more.
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The gauge fields Aaµ are associated with the adjoint representation of the gauge group
G. For any adjoint field Φata then the corresponding covariant derivative is given by

DµΦ = ∂µΦ + [Aµ,Φ] ⇒ (DµΦ)a = ∂µΦa + fabcA
b
µΦc . (7.39)

This is in accord with the general form given by (7.23), with (7.22), using (5.180) for the
adjoint representation generators. Note that (7.29) can be written as δAaµ = −(Dµλ)a and
for an arbitrary variation δAaµ from (7.32),

δF aµν = (DµδAν)a − (DνδAµ)a . (7.40)

From the identity(
[Dω, [Dµ, Dν ]] + [Dν , [Dω, Dµ]] + [Dµ, [Dν , Dω]]

)
ϕ = 0 , (7.41)

for any representation, we have the non abelian Bianchi identity, generalising (7.19),

DωFµν +DνFωµ +DµFνω = 0 , (7.42)

where the adjoint covariant derivatives are as defined in (7.39). Alternatively with the
notation in (7.33)

dF +A ∧ F − F ∧A = 0 . (7.43)

To construct a lagrangian leading to dynamical equations of motion which are covariant
under gauge transformations it is necessary to introduce a group invariant metric gab = gba,
satisfying (5.195) or equivalently

gdbf
d
ca + gadf

d
cb = 0 , (7.44)

which also implies, for finite group transformations g and with X,Y belonging to the asso-
ciated Lie algebra,

gab (gXg−1)a (gY g−1)b = gabX
aY b . (7.45)

IfX,Y are then adjoint representation fields the definition of the adjoint covariant derivative
in (7.39) gives

∂µ
(
gabX

aY b
)

= gab
(
(DµX)aY b +Xa(DµY )b

)
, (7.46)

in a similar fashion to covariant derivatives in general relativity.

The simplest gauge invariant lagrangian, extending the abelian result in (7.16), is then,
as a result of the transformation properties (7.34) or (7.35), just the obvious extension of
that proposed by Yang and Mills for SU(2)

LYM = −1
4
gabF

aµνF bµν . (7.47)

It is essential that the metric be non degenerate det[gab] ̸= 0, and then using (7.40) requiring
the action to be stationary gives the gauge covariant dynamical equations

(DµFµν)a = 0 . (7.48)
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These equations, as well as (7.42) and unlike the abelian case, are non linear. As described
before a necessary consequence of gauge invariance is that if Aµ is a solution then so is
any gauge transform as in (7.26) and hence the time evolution of Aµ is arbitrary up to this
extent, only gauge equivalence classes, belonging to (7.4), have a well defined dynamics. If
the associated quantum field theory is to have a space of quantum states with positive norm
then it is also necessary that the metric gab should be positive definite. This requires that
the gauge group G should be compact and restricted to the form exhibited in (5.202). Each
U(1) factor corresponds to a simple abelian gauge theory as described in 7.1. If there are
no U(1) factors G is semi-simple and gab is determined by the Killing form for each simple
group factor. For G simple then by a choice of basis we may take

gab =
1
g2
δab , (7.49)

with g the gauge coupling. For G a product of simple groups then there is a separate
coupling for each simple factor, unless additional symmetries are imposed.

If the condition that the metric gab be positive definite is relaxed then the gauge group
G may be non compact, but there are also examples of non semi-simple Lie algebras with
a non-degenerate invariant metric. The simplest example is given by the Lie algebra iso(2)
with a central extension, which is given in (5.136). Choosing Ta = (E1, E2, J3, 1) then it is
straightforward to verify that

[gab] =


1 0 0 0
0 1 0 0
0 0 β c
0 0 c 0

 , β arbitrary , (7.50)

is invariant. The Killing form only involves the matrix with the element proportional to β
non zero. Since it is necessary that c ̸= 0 for the metric to be non-degenerate the presence
of the central charge in the Lie algebra is essential. For any β it is easy, since det[gab] = −c2,
to see that [gab] has one negative eigenvalue.

An illustration of the application of identities such as (7.46) is given by the conservation
of the gauge invariant energy momentum tensor defined by

Tµν = gab
(
F aµσF bνσ − 1

4g
µνF aσρF bσρ

)
. (7.51)

Then

∂µT
µ
ν = gab

(
(DµF

µσ)aF bνσ + F aµσ(DµFσν)b − 1
2F

aσρ(DνFσρ)b
)

= gab(DµF
µσ)a − 1

2gabF
aσρ
(
(DρFνσ)b − (DσFνρ)b + (DνFσρ)b

)
= gab(DµF

µσ)a , (7.52)

using the Bianchi identity (7.42). Clearly this is conserved subject to the dynamical equation
(7.48).
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7.2.1 Chern-Simons Theory

The standard gauge invariant lagrangian is provided by (7.47). However in order to obtain
a gauge invariant action, given by the integral over space-time of the lagrangian, it is only
necessary that the lagrangian is invariant up to a total derivative. This allows for additional
possibility for gauge field theories, with gauge group G a general Lie group, in three space-
time dimensions, termed Chern-Simons25 theories.

First we note that in four dimensions the Bianchi identity (7.42) may be alternatively
be written using the four dimensional antisymmetric symbol as

εµνσρDνFσρ = 0 . (7.53)

Apart from (7.47) there is then another similar gauge invariant and Lorentz invariant

1
4
εµνσρgabF

a
µνF

b
σρ , (7.54)

which may be used as an additional term in the lagrangian. However the corresponding
contribution to the action is odd under x → −x or t→ −t. Such a term does not alter the
dynamical equations since its variation is a total derivative and thus the variation of the
corresponding term in the action vanishes. To show this under arbitrary variations of the
gauge field we use (7.40) and (7.53) to give

δ
1
4
εµνσρgabF

a
µνF

b
σρ = εµνσρgab(DµδAν)aF bσρ = ∂µ

(
εµνσρgab δA

a
ν F

b
σρ

)
. (7.55)

This allows us to write
1
4
εµνσρgabF

a
µνF

b
σρ = ∂µω

µ , (7.56)

where
ωµ = εµνσρgab

(
Aaν∂σA

b
ρ + 1

3f
b
cdA

a
νA

c
σA

d
ρ

)
, (7.57)

since this has the variation

δωµ = εµνσρgab
(
δAaν∂σA

b
ρ +Aaν∂σδA

b
ρ + f bcd δA

a
ν A

c
σA

d
ρ

)
= εµνσρgab ∂σ

(
AaνδA

b
ρ

)
+ εµνσρgab δA

a
ν

(
2∂σAbρ + f bcdA

c
σA

d
ρ

)
= εµνσρgab ∂ν

(
δAaσA

b
ρ

)
+ εµνσρgab δA

a
νF

b
σρ , (7.58)

using that gabf bcd is totally antisymmetric as a consequence of (7.44). The result is then in
agreement with (7.55).

If the variation is a gauge transformation so that

Aaµ →
g
A′a

µ ⇒ ωµ →
g
ω′µ , (7.59)

then since (7.56) is gauge invariant we must require

∂µω
µ = ∂µω

′µ . (7.60)

25Shiing-Shen Chern, 1911-2004, Chinese, American after 1960. James Harris Simons, 1938-, American.
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This necessary condition may be verified for an infinitesimal gauge transformation by setting
δAaν = −(Dνλ)a in (7.58) which then gives, using the Bianchi identity (7.53) again,

δωµ = − εµνσρgab ∂ν
(
(Dσλ)aAbρ

)
− εµνσρgab (Dνλ)aF bσρ

= εµνσρgab ∂ν
(
λa(DσA)bρ − λaF bσρ

)
= − εµνσρgab ∂ν

(
λa∂σA

b
ρ

)
. (7.61)

Hence it is evident that the result in (7.61) satisfies

∂µδω
µ = 0 . (7.62)

In three dimensions the identities for ωµ may be applied to

LCS = ενσρgab
(
Aaν∂σA

b
ρ + 1

3f
b
cdA

a
νA

c
σA

d
ρ

)
, (7.63)

which defines the Chern-Simons lagrangian for gauge fields. For an infinitesimal gauge
transformation, by virtue of (7.61), LCS becomes a total derivative since

δAaν = −(Dνλ)a ⇒ δLCS = −ενσρgab ∂ν
(
λa∂σA

b
ρ

)
, (7.64)

so that the corresponding action is invariant. Under a general variation

δ

∫
d3x LCS =

∫
d3x ενσρgab δA

a
νF

b
σρ , (7.65)

so that the dynamical equations are

F aµν = 0 , (7.66)

so the connection Aµ is ‘flat’ since the associated curvature is zero (Cherns-Simons theory is
thus similar to three dimensional pure gravity where the Einstein equations require that the
Riemann curvature tensor vanishes). In a Chern-Simons theory there are no perturbative
degrees of freedom, as in the case of Yang-Mills theory, but topological considerations play
a crucial role.

Topology also becomes relevant as the Chern-Simons action is not necessarily invariant
under all gauge transformations if they belong to topological classes which cannot be con-
tinuously connected to the identity. To discuss this further it is much more natural again
to use the language of forms, expressing all results in terms of A(x) = Aaµ(x)ta dxµ a Lie
algebra matrix valued connection one-form, [ta, tb] = f cabtc as in (5.60), and replacing the
group invariant scalar product by the matrix trace. For any set of such Lie algebra matrices
{X1, . . . , Xn} the trace tr(X1 . . . Xn) is invariant under the action of adjoint group trans-
formations Xr → gXrg

−1 for all r. Since the wedge product is associative and the trace is
invariant under cyclic permutations we have

tr
(
A ∧ · · · ∧A︸ ︷︷ ︸

n

)
= tr

(
(A ∧ · · · ∧A︸ ︷︷ ︸

n−1

) ∧A
)

= (−)n−1tr
(
A ∧ (A ∧ · · · ∧A︸ ︷︷ ︸

n−1

)
)

= 0 for n even . (7.67)
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The Chern-Simons theory is then defined in terms of the three-form

ω = tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)

= tr
(
A ∧ F − 1

3 A ∧A ∧A
)
, (7.68)

with the two-form curvature F as in (7.33). It is easy to see that

dω = tr
(
dA ∧ dA+ 2 dA ∧A ∧A

)
= tr

(
F ∧ F ) , (7.69)

which is equivalent to (7.56) and (7.57). For a finite gauge transformation

A′ = gAg−1 + gdg−1 , F ′ = gFg−1 , (7.70)

so that, from (7.68),

ω′ = ω + tr
(
dg−1g ∧ (F −A ∧A)

)
− tr

(
dg−1g ∧ dg−1g ∧A

)
− 1

3 tr
(
dg−1g ∧ dg−1g ∧ dg−1g

)
. (7.71)

Using
dg−1g = −g−1dg , d

(
g−1dg

)
= −g−1dg ∧ g−1dg , (7.72)

we get
ω′ = ω + d tr

(
g−1dg ∧A

)
+ 1

3 tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
. (7.73)

In this discussion g−1dg is unchanged under g → g0g, for any fixed g0, and so defines a
left invariant one-form. If br are coordinates on the associated group manifold MG then
g−1(b)dg(b) = ωa(b)ta where ωa(b) are the one forms defined in the general analysis of Lie
groups in (5.48).

Since, using (7.72),

d tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= −tr

(
g−1dg ∧ g−1dg ∧ g−1dg ∧ g−1dg

)
= 0 , (7.74)

by virtue (7.67), we have
dω′ = dω , (7.75)

which is equivalent to (7.60). However although tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
is therefore a

closed three-form it need not be exact so that its integration over a three manifold M3 may
not vanish, in which case we would have∫

M3

ω′ ̸=
∫
M3

ω , (7.76)

for some g(x). The Cherns-Simons action is not then gauge invariant for such gauge trans-
formations g.

To discuss
I =

∫
M3

1
3 tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
, (7.77)

we note that for a variation of g, since

δ(g−1dg) = g−1d(δg g−1) g , (7.78)
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then

δ 1
3 tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= tr

(
d(δg g−1) ∧ dg g−1 ∧ dg g−1

)
= d tr

(
δg g−1 ∧ dg g−1 ∧ dg g−1

)
, (7.79)

since d(dg g−1 ∧ dg g−1) = −d2(dg g−1) = 0. Hence, for arbitrary smooth variations δg,

δI = 0 , (7.80)

so that I is a topological invariant, only when g(x) can be continuously transformed to the
identity must I = 0.

If we consider g(θ) ∈ SU(2) with coordinates θr, r = 1, 2, 3 then
1
3 tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= ρ(θ) d3θ , (7.81)

The integration measure in (7.81) is defined in terms of the left invariant Lie algebra one
forms so that for g(θ′) = g0g(θ) we have

ρ(θ′) d3θ′ = ρ(θ) d3θ . (7.82)

Up to a sign, depending just on the sign of det[∂′r/∂θs], this is identical with the re-
quirements for an invariant integration measure described in section 5.7. To check the
normalisation we assume that near the origin, θ ≈ 0, then g(θ) ≈ I + iσ · θ and hence

1
3 tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
≈ 1

3 i
3 tr
(
σ · dθ ∧ σ · dθ ∧ σ · dθ

)
= 2

3 εijk dθi ∧ dθj ∧ dθk = 4d3θ , (7.83)

assuming (5.21) and standard formulae for the Pauli matrices in (2.12) with (2.14). Thus
ρ(0) = 4 and the results for the group integration volume for SU(2) in (5.155) then imply,
integrating over MSU(2) ≃ S3,∫

MSU(2)

1
3 tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= 8π2 . (7.84)

In general the topological invariant defined by (7.77), for a compact 3-manifold M3,
corresponds to the index of the map defined by g(x) from M3 to a subgroup SU(2) ⊂ G,
i.e. the number of times the map covers the SU(2) subgroup for x ∈ M3. The result (7.84)
then requires that in general

I = 8π2n for n ∈ Z . (7.85)

In the functional integral approach to quantum field theories the action only appears in
the form eiS . In consequence S need only be defined up to integer multiples of 2π. Hence
despite the fact that the action is not invariant under all gauge transformations a well
defined quantum gauge Chern-Simons theory is obtained, on a compact 3-manifold M3, by
employing as the action

SCS =
k

4π

∫
M3

tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)
, k ∈ Z , (7.86)

so that, unlike Yang-Mills theory, the coupling is quantised. There is no requirement for k
to be positive, the cubic terms become effectively small, and the theory is weakly coupled,
when k is large.
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7.3 Gauge Invariants and Wilson Loops

Only gauge invariant quantities have any significance in gauge field theories. Although
it is necessary in non abelian gauge theories to solve the dynamical equations for gauge
dependent fields, or in a quantum theory, to integrate over the gauge fields, only for gauge
invariants is a well defined calculational result obtained. For abelian gauge theories this is
a much less significant issue. The classical dynamical equations only involve Fµν which is
itself gauge invariant, (7.14). However even in this case the associated quantum field theory,
QED, requires a much more careful treatment of gauge issues.

For a non abelian gauge theory Fµν = F aµνta is a matrix belonging to a Lie algebra
representation for the gauge group which transforms homogeneously under gauge transfor-
mations as in (7.34). The same transformation properties further apply to products of F ’s,
at the same space-time point, and also to the gauge covariant derivatives Dα1 . . . DαrFµν .
Since [Dα, Dβ ]Fµν = [Fαβ , Fµν ] the indices α1, . . . , αn may be symmetrised to avoid linear
dependencies. A natural set of gauge invariants, for pure gauge theories, is then provided by
the matrix traces of products of F ’s, with arbitrarily many symmetrised covariant deriva-
tives, at the same point,

tr
(
Dα11 . . . Dα1r1

Fµ1ν1 Dα21 . . . Dα2r2
Fµ2ν2 . . . Dαs1 . . . Dαsrs

Fµsνs

)
. (7.87)

Such matrix traces may also be further restricted to a trace over a symmetrised product
of the Lie algebra matrices, since any commutator may be simplified by applying the Lie
algebra commutation relations, and also to just one of the s invariants, in the above example,
related by cyclic permutation as the traces satisfy tr(X1 . . . Xs) = tr(XsX1 . . . Xs−1). If the
gauge group G has no U(1) factors then tr(ta) = 0. The simplest example of such an
invariant then involves just two F ’s, which include the energy momentum tensor as shown
in (7.51). In general there are also derivative relations since

∂µ tr(X1 . . . Xs) =
s∑
i=1

tr(X1 . . . DµXi . . . Xs) . (7.88)

However, depending on the gauge group, the traces in (7.87) are not independent for
arbitrary products of F ’s, even when no derivatives are involved. To show this we may
consider the identity

det(I −X) = etr ln(I−X) , (7.89)

which is easy to demonstrate, for arbitrary diagonaliseable matrices X, since both sides
depend only on the eigenvalues of X and the exponential converts the sum over eigenvalues
provided by the trace into a product which gives the determinant. Expanding the right
hand side gives

det(I −X) = e−
P

r≥1 tr(Xr)/r

= 1 − tr(X) + 1
2

(
tr(X)2 − tr(X2)

)
− 1

6

(
tr(X)3 − 3 tr(X)tr(X2) + 2 tr(X3)

)
+ . . . . (7.90)

If X is a N×N matrix then det(I−X) is at most O(XN ) so that terms which are of higher
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order on the right hand side must vanish identically26. If N = 2 this gives the relation

tr(X3) = 3
2 tr(X) tr(X2) − 1

2 tr(X)3 , (7.91)

and if N = 3, and also we require tr(X) = 0, the relevant identity becomes

tr(X4) = 1
2 tr(X2)2 . (7.92)

In general tr(Xn) when n > N is expressible in terms of products of tr(Xs) for s ≤ N .

For G = SU(N) and taking ta to belong to the fundamental representation these results
are directly applicable to simplifying symmetrised traces appearing in (7.87) since the results
for tr(Xn) are equivalent to relations for tr(t(a1

. . . taN )).

7.3.1 Wilson Loops

The gauge field Aµ is a connection introduced to ensure that derivatives of gauge dependent
fields transform covariantly under gauge transformations. It may be used, as with connec-
tions in differential geometry, to define ‘parallel transport’ of gauge dependent fields along a
path in space-time between two points, infinitesimally for x→ x+dx this gives dxµDµϕ(x),
where ϕ is a field belonging to a representation space for the gauge group G and Dµ is the
gauge covariant derivative for this representation. Any continuous path Γx,y linking the
point y to x may be parameterised by xµ(t) where xµ(0) = yµ, xµ(1) = xµ. For all such
paths there is an associated element of the gauge group G, as in (7.2), which is obtained by
integrating along the path Γx,y. For the particular matrix representation R of G determined
by ϕ this group element corresponds to P (Γx,y) ∈ R where P (Γx,y)ϕ(y) transforms under
local gauge transformations g(x) ∈ R belonging to Gx while ϕ(y) transforms as in (7.5) for
g(y) belonging to Gy.

For simplicity we consider an abelian gauge theory first. In this case P (Γx,y) ∈ U(1)
and under gauge transformations transforms as a local field at x and its conjugate at y. For
a representation specified by a charge q as in (7.5), this is defined in terms of the differential
equation (

d
dt

− iq ẋµ(t)Aµ
(
x(t)

))
P (t, t′) = 0 , P (t, t) = 1 , ẋµ =

dxµ

dt
, (7.93)

which has a solution,
P (t, t′) = eiq

R t
t′ dτ ẋµ(τ)Aµ(x(τ)) . (7.94)

We then require
P (Γx,y) = P (1, 0) = e

iq
R

Γx,y
dxµAµ(x) ∈ U(1) , (7.95)

26Equivalently if F (z) = det(I − zX) = 1 +
PN

r=1 ar(X) zr then

−F ′(z)

F (z)
= tr

`

X(I − zX)−1´

=

∞
X

r=0

zrtr(Xr+1) ,

and expanding the left hand side determines tr(Xn) for all n solely in terms of ar, r = 1, . . . N which are
also expressible in terms of tr(Xn) for n ≤ N .
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which is independent of the particular parameterisation of the path Γx,y. Under the abelian
gauge transformation in (7.11)

P (Γx,y) −→
eiα

P (Γx,y) e
iq

R

Γx,y
dxµ∂µα(x) = eiq α(x) P (Γx,y) e−iq α(y) , (7.96)

demonstrating that, for ϕ transforming under gauge transformations as in (7.5),

P (Γx,y)ϕ(y) −→
eiα

eiqα(x)P (Γx,y)ϕ(y) . (7.97)

If Γ is a closed path, with a parameterisation xµ(t) such that xµ(1) = xµ(0) = xµ ∈ Γ,
then Γ = Γx,x for any x on Γ. It is evident from (7.96) that P (Γ) is gauge invariant. In
this abelian case P (Γ) may be expressed just in terms of the gauge invariant curvature in
(7.14) using Stokes’ theorem

P (Γ) = eiq
H

Γ dxµAµ(x) = e
1
2
iq

R

S dSµνFµν(x) , (7.98)

for S any surface with boundary Γ and dSµν = −dSνµ the orientated surface area element
(in three dimensions the identity is

∮
Γ dx·A =

∫
S dS·B, B = ∇×A with dSi = 1

2εijkdS
jk).

For the non abelian case (7.93) generalises to a matrix equation(
I

d
dt

+A(t)
)
P (t, t′) = 0 , A(t) = ẋµAµ(x(t)) , P (t, t) = I , (7.99)

where A(t) is a matrix belonging to the Lie algebra for a representation R of G. (7.99) may
also be expressed in an equivalent integral form

P (t, t′) = I −
∫ t

t′
dτ A(τ)P (τ, t′) . (7.100)

Solving this iteratively gives

P (t, t′) = I +
∑
n≥1

(−1)n
∫ t

t′
dt1
∫ t1

t′
dt2 . . .

∫ tn−1

t′
dtn A(t1)A(t2) . . . A(tn)

= I +
∑
n≥1

(−1)n
1
n!

n∏
r=1

∫ t

t′
dtr T

{
A(t1)A(t2) . . . A(tn)

}
. (7.101)

where T denotes that the non commuting, for differing t, A(t) are t-ordered so that

T
{
A(t)A(t′)

}
=

{
A(t)A(t′) , t ≥ t′ ,

A(t′)A(t) , t < t′ .
(7.102)

The final expression can be simply written as a T-ordered exponential

P (t, t′) = T
{
e−

R t
t′dτ A(τ)

}
. (7.103)

The corresponding non abelian generalisation of (7.95) is then

P (Γx,y) = P (1, 0) = P
{
e
−

R

Γx,y
dxµ Aµ(x)

}
∈ R , (7.104)
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with P denoting path-ordering along the path Γ (this is equivalent to t-ordering with the
particular parameterisation xµ(t)). These satisfy the group properties

P (Γx,y)P (Γy,z) = P (Γx,y ◦ Γy,z) , (7.105)

where Γx,y ◦ Γy,z denotes path composition, and, if R is a unitary representation

P (Γx,y)−1 = P (Γ−1
y,x) = P (Γx,y)† , (7.106)

with Γ−1
y,x the inverse path to Γx,y.

For a gauge transformation as in (7.26), g(x) ∈ R, then in (7.99)

A(t) →
g
g(t)A(t)g(t)−1 − ġ(t)g(t)−1 , g(t) = g(x(t)) ⇒ P (t) →

g
g(t)P (t, t′)g(t′)−1 ,

(7.107)
and hence

P (Γx,y) −→
g
g(x)P (Γx,y) g(y)−1 . (7.108)

For Γ = Γx,x a closed path then we may obtain a gauge invariant by taking the trace

W (Γ) = tr
(
P (Γx,x)

)
. (7.109)

W (Γ) is a Wilson27 loop. It depends on the path Γ and also on the particular representation
R of the gauge group. Wilson loops form a natural, but over complete, set of non local
gauge invariants for any non abelian gauge theory. They satisfy rather non trivial identities
reflecting the particular representation and gauge group. Subject to these the gauge field can
be reconstructed from Wilson loops for arbitrary closed paths up to a gauge transformation.
The associated gauge groups elements for paths connecting two points, as given in (7.104),
may also be used to construct gauge invariants involving local gauge dependent fields at
different points. For the field ϕ, transforming as in (7.5), ϕ(x)†P (Γx,y)ϕ(y) is such a gauge
invariant, assuming the gauge transformation g is unitary so that (7.5) also implies ϕ(x)† →
ϕ(x)†g(x)−1.

If a closed loop Γ is shrunk to a point then the Wilson loop W (Γ) can be expanded in
terms of local gauge invariants, of the form shown in (7.87), at this point. As an illustration
we consider a rectangular closed path with the associated Wilson loop

W (�) = tr
(
P (Γx,x+bej

)P (Γx+bej ,x+aei+bej
)P (Γx+aei+bej ,x+aei

)P (Γx+aei,x)
)
, (7.110)

where here Γ are all straight line paths and ei, ej are two orthogonal unit vectors. To
evaluate W (�) as a, b → 0 it is convenient to use operators x̂ν , ∂̂µ with the commutation
relations [

x̂µ, x̂ν
]

= 0 ,
[
∂̂µ, ∂̂ν

]
= 0 ,

[
∂̂µ, x̂ν

]
= δµ

ν , (7.111)

which have a representation, acting on vectors |x⟩, x ∈ R4, where

x̂µ|x⟩ , ∂̂µ|x⟩ = −∂µ|x⟩ . (7.112)

27Kenneth Geddes Wilson, 1936-, American. Nobel prize 1982.
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In terms of these operators, since x̂ν e−te
µD̂µ = e−te

µD̂µ(x̂ν + teν),

e−te
µD̂µ |x⟩ = |x(t)⟩P (Γx(t),x) , D̂µ = ∂̂µ +Aµ(x̂) , xν(t) = xν + teν , (7.113)

which defines P (Γx(t),x) for the straight line path Γx(t),x from x to x(t), with P (Γx,x) = I.
To verify that P (Γx(t),x) agrees with (7.103) we note that

∂

∂t
e−te

µD̂µ |x⟩ = −eµD̂µ e
−teµD̂µ |x⟩ =

(
∂

∂t
|x(t)⟩ − |x(t)⟩ eµAµ(x(t))

)
P (Γx(t),x) , (7.114)

using (7.112) as well as (7.113). It is then evident that (7.114) reduces to

∂

∂t
P (Γx(t),x) = −eµAµ(x(t))P (Γx(t),x) , (7.115)

which is identical to (7.93). For the rectangular closed path in (7.110)

|x⟩P (Γx,x+bej
)P (Γx+bej ,x+aei+bej

)P (Γx+aei+bej ,x+aei
)P (Γx+aei,x)

= ebD̂j eαD̂i e−bD̂j e−αD̂i |x⟩

= eab [D̂j ,D̂i]− 1
2
a2b [[D̂j ,D̂i],D̂i]|+ 1

2
ab2 [D̂j ,[D̂j ,D̂i]]+... |x⟩

= |x⟩ e−abFij(x)− 1
2
a2bDiFij(x)− 1

2
ab2Dj Fij(x)+... , (7.116)

using the Baker Cambell Hausdorff formula described in 5.4.2 and [D̂i, D̂j ] = Fij(x̂). Hence,
for a N -dimensional representation with tr(ta) = 0, the leading approximation to (7.110) is
just

W (�) = N + 1
2a

2b2
(
1 + 1

2a∂i +
1
2b∂j + 1

6a
2∂i

2 + 1
6b

2∂j
2 + 1

4ab∂i∂j
)
tr
(
FijFij

)
− 1

24a
4b2 tr

(
DiFijDiFij

)
− 1

24a
2b4 tr

(
DjFijDjFij

)
− 1

6a
3b3 tr

(
FijFijFij

)
+ . . . , no sums on i, j . (7.117)

For completeness we also consider how P (Γx,y) changes under variations in the path
Γx,y. For this purpose the path Γ is now specified by xµ(t, s), depending continuously on
the additional variable s, which includes possible variations in the end points at t = 0, 1. If
we define t, s covariant derivatives on these paths by

Dt = I
∂

∂t
+At(t) , Ds = I

∂

∂s
+As(t) , At(t) =

∂xµ

∂t
Aµ(x) , As(t) =

∂xµ

∂s
Aµ(x) , (7.118)

leaving the dependence on s implicit, then

[Dt, Ds] = F (t) =
∂xµ

∂t

∂xν

∂s
Fµν(x) . (7.119)

With the definitions in (7.118), (7.99) becomes DtP (t) = 0. Acting with Ds gives

DtDsP (t, t′) = F (t)P (t, t′) , DsP (t, t) = As(t) , (7.120)

which has a straightforward solution giving

d
ds
P (1, 0) +As(1)P (1, 0) − P (1, 0)As(0) =

∫ 1

0
dt P (1, t)F (t)P (t, 0) . (7.121)
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The result (7.121) may be recast as

δΓP (Γx,y) + δxνAν(x)P (Γx,y) − P (Γx,y) δyνAν(y)

=
∫

Γx,y

dzµ P (Γx,z)Fµν(z)δxν(z)P (Γz,y) , (7.122)

where
Γx,y = Γx,z ◦ Γz,y for z ∈ Γx,y . (7.123)

For a Wilson loop

δΓW (Γ) =
∮

Γ
dxµ tr

(
Fµν(x)δxν(x)P (Γx,x)

)
. (7.124)

For a pure Chern-Simons theory then, as a consequence of the dynamical equation (7.66),
there are no local gauge invariants and also Wilson loops are invariant under smooth changes
of the loop path. The Wilson loop W (Γ) ̸= N only if it is not contractable to a point.

8 Integrations over Spaces Modulo Group Transformations

In a functional integration approach to quantum gauge field theories it is necessary to
integrate over the non trivial space of gauge fields modulo gauge transformations, as in (7.4)
with the definitions (7.1) and (7.2). This often becomes rather involved with somewhat
formal manipulations of functional integrals but the essential ideas can be illustrated in
terms of well defined finite dimensional integrals.

To this end we consider n-dimensional integrals of the form∫
Rn

dnx f(x) , (8.1)

for classes of functions f which are invariant under group transformations belonging to a
group G,

f(x) = f(xg) , for x→
g
xg for all g ∈ G . (8.2)

Necessarily we require
(xg1)g2 = xg1g2 , (xg)g

−1
= x , (8.3)

and also we assume, under the change of variable x→ xg,

dnx = dnxg . (8.4)

The condition (8.4) is an essential condition on the integration measure in (8.1), which is
here assumed for simplicity to be the standard translation invariant measure on Rn. If the
group transformation g acts linearly on x then it is necessary that G ⊂ Sl(n,R)nTn, which
contains the n-dimensional translation group Tn.

For any x the action of the group G generates the orbit Orb(x) and those group elements
which leave x invariant define the stability group Hx,

Orb(x) = {xg} , Hx = {h : xh = x} . (8.5)
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Clearly two points on the same orbit have isomorphic stability groups since

Hxg = g−1Hxg ≃ Hx ⊂ G . (8.6)

We further require that for arbitrary x, except perhaps for a lower dimension subspace, the
stability groups are isomorphic so that Hx ≃ H. Defining the manifold M to be formed by
the equivalence classes [x] = {x/ ∼}, where xg ∼ x, or equivalently by the orbits Orb(x),
then M ≃ Rn/(G/H). We here assume that G, and also in general H, are Lie groups, and
further that H is compact. In this case M has a dimension which is less than n. Although
Rn is topologically trivial, M may well have a non trivial topology.

In the integral (8.1), with a G-invariant function f , the integration may then be reduced
to a lower dimensional integration over M, by factoring off the invariant integration over
G. To achieve this we introduce ‘gauge-fixing functions’ P (x) on Rn such that,

for all x ∈ Rn then P (xg) = 0 for some g ∈ G ,

if P (x0) = 0 then P (x0
g) = 0 ⇒ g = h ∈ H , x0

h = x0 . (8.7)

In consequence the independent functions P (x) ∈ Rn̂ where n̂ = dimG − dimH. The
solutions of the gauge fixing condition may be parameterised in terms of coordinates θr,
r = 1, . . . , n− n̂, so that

P
(
x0(θ)

)
= 0 ⇒ θr coordinates on M , dimM = n− n̂ . (8.8)

For any P (x) an associated function ∆(x) is defined by integrating over the G-invariant
measure, as discussed in 5.7, according to∫

G
dρ(g) δn̂

(
P (xg)

)
∆(x) = 1 . (8.9)

Since by construction dρ(g) = dρ(g′g) then it is easy to see that

∆(xg) = ∆(x) for all g ∈ G . (8.10)

Using (8.9) in (8.1), and interchanging orders of integration, gives∫
Rn

dnx f(x) =
∫
G
dρ(g)

∫
Rn

dnx δn̂
(
P (xg)

)
∆(x) f(x)

=
∫
G
dρ(g)

∫
Rn

dnxg δn̂
(
P (xg)

)
∆(xg) f(xg)

=
∫
G
dρ(g)

∫
Rn

dnx δn̂
(
P (x)

)
∆(x) f(x) . (8.11)

using the invariance conditions (8.2), (8.4) and (8.10), and in the last line just changing the
integration variable from xg to x. For integration over M we then have a measure, which
is expressible in terms of the coordinates θr, given by

dµ(θ) = dnx δn̂
(
P (x)

)
∆(x) . (8.12)
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To determine ∆(x) in (8.9) then, assuming (8.7), if

g(α, h) = exp(α)h , α ∈ g/h , (8.13)

we define a linear operator D, which may depend on x0, such that

x0
g(α,h) = x0 +D(x0)α , for α ≈ 0 , D(x0) : g/h → Rn . (8.14)

If {Tâ} is a basis for g/h (if g has a non degenerate Killing form κ then κ(h, Tâ) = 0 for all
â and we may write g = h ⊕ g/h) then

α = αâTâ , (8.15)

and, with the decomposition in (8.13),

dρ(g) ≈
n̂∏
â=1

dαâ dρH(h) for αâ ≈ 0 , (8.16)

for dρH(h) the invariant integration measure on H. For x near x0 we define the linear
operator P ′ by

P (x0 + y) = P ′(x0)y for y ≈ 0 , P ′(x0) : Rn → Rn̂ . (8.17)

Then in (8.9), with (8.16),∫
G
dρ(g) δn̂

(
P (xg)

)
=
∫
G
dρ(g) δn̂

(
P (x0

g)
)

= VH

∫
dn̂α δn̂

(
P ′(x0)D(x0)α

)
= VH

1∣∣ detP ′(x0)D(x0)
∣∣ , VH =

∫
H

dρH(h) . (8.18)

Hence in (8.9)

∆(x) =
1
VH

∣∣detP ′(x0)D(x0)
∣∣ for x = x0

g . (8.19)

In a quantum gauge field theory context detP ′(x0)D(x0) is the Faddeev-Popov28 determi-
nant. The determinant is non vanishing except at points x0 such that P (x0

g) = 0 has
solutions for g ≈ e and g /∈ H and the gauge fixing condition P (x) = 0 does not sufficiently
restrict g. The resulting measure, since

P (x) = 0 ⇒ x = x(θ, α) = x0(θ)g(α,h) , (8.20)

from (8.12) becomes, with a change of variables x→ θ, α,

dµ(θ) =
1
VH

dnx δn̂
(
P (x)

) ∣∣detM(θ)
∣∣ , M(θ) = P ′(x0(θ))D′(x0(θ)) . (8.21)

Note that
δn̂
(
P (x(θ, α))

) ∣∣detM(θ)
∣∣ = δn̂(α) , (8.22)

28Ludvig Dmitrievich Faddeev, 1934-, Russian. Viktor Nikolaevich Popov, Russian.

143



and therefore the measure over M may also be expressed in terms of the Jacobian from θ, α
to x since

dµ(θ) = dn−n̂θ
∣∣∣∣ det

[
∂x

∂θ
,
∂x

∂α

]∣∣∣∣
α=0

. (8.23)

With these results, for G compact, (8.11) gives∫
Rn

dnx f(x) = VG

∫
Rn

dnx δn̂
(
P (x)

)
∆(x) f(x) = VG

∫
M

dµ(θ) f
(
x0(θ)

)
. (8.24)

As an extension we consider the situation when there is a discrete group W , formed by
transformations θ → θgi , such that

W =
{
gi : x0(θgi) = x0(θ)g(gi), g(gi) ∈ G

}
. (8.25)

It follows that M(θgi) = M(θ) and dµ(θgi) = dµ(θ). Since the stability group H leaves x0

invariant g(gi) is not unique, hence in general it is sufficient that g(gi)g(gj) = g(gigj)h for
h ∈ H. In many cases it is possible to restrict the coordinates {θr} so that W becomes
trivial but it is also often natural not to impose such constraints on the θr’s and to divide
(8.21) by |W | to remove multiple counting so that

dµ(θ) =
1

|W |VH
dnx δn̂

(
P (x)

) ∣∣ detM(θ)
∣∣ , (8.26)

8.1 Integrals over Spheres

As a first illustration of these methods we consider examples where the group G is one of
the compact matrix groups SO(n), U(n) or Sp(n) and the orbits under the action of group
transformations are spheres.

For the basic integral over x ∈ Rn in (8.1), where x = (x1, . . . , xn), we then consider

f(x) = F (x2) , (8.27)

where x2 = xixi is the usual flat Euclidean metric. In this case we take G = SO(n) which
acts as usual x →

R
x′ = Rx, regarding x here as an n-component column vector, for any

R ∈ SO(n). Since detR = 1 of course dnx′ = dnx. The orbits under the action of SO(n)
are all x with x2 = r2 fixed and so are spheres Sn−1 for radii r. A representative point on
any such sphere may be chosen by restricting to the intersection with the positive 1-axis or

x0 = r(1, 0, . . . , 0, 0) , r > 0 . (8.28)

In this case the stability group, for all r > 0, H ≃ SO(n − 1) since matrices leaving x0 in
(8.28) invariant have the form

R(R̂) =
(

1 0
0 R̂

)
, R̂ ∈ SO(n− 1) . (8.29)
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Note that dimSO(n) = 1
2n(n−1) so that in this example n̂ = dimSO(n)−dimSO(n−1) =

n− 1, and therefore n− n̂ = 1 corresponding to the single parameter r.

Corresponding to the choice (8.28) the corresponding gauge fixing condition, correspond-
ing to δn̂(P (x)), is

F(x) = θ(x1)
n∏
i=2

δ(xi) . (8.30)

The condition x1 > 0 may be omitted but then there is a residual group W ≃ Z2 cor-
responding to reflections x1 → −x1. For the generators of SO(n) given by (5.220) we
have

Ss1x0 = r(0, . . . , 1︸︷︷︸
s′th place

, . . . , 0) , s = 2, . . . , n , (8.31)

so that in (8.13) we may take

α =
n∑
s=2

αsSs1 , (8.32)

so that
exp(α)x0 = r(1, α2, . . . , αn) for α ≈ 0 . (8.33)

For the measure we assume a normalisation such that

dρSO(n)(R) ≈ dn−1α dρSO(n−1)(R̂) for R = exp(α)R(R̂) , α ≈ 0 , (8.34)

where R(R̂) is given in (8.29). With the gauge fixing function in (8.30)∫
SO(n)

dρSO(n)(R) F(Rx) = VSO(n−1)

∫
dn−1α

n∏
s=2

δ
(
αs|x1|

)
= VSO(n−1)

1
|x1|n−1

. (8.35)

Hence
∆(x) =

1
VSO(n−1)

rn−1 , x2 = r2 , r > 0 . (8.36)

With this (8.24) becomes∫
Rn

dnx F (x2) = VSO(n)

∫
Rn

dnx F(x)∆(x)F (x2) =
VSO(n)

VSO(n−1)

∫ ∞

0
dr rn−1F (r2) . (8.37)

Of course this is just the same result as obtained by the usual separation of angular variables
for functions depending on the radial coordinate r.

For a special case∫
Rn

dnx e−x
2

= π
1
2
n =

VSO(n)

VSO(n−1)

∫ ∞

0
dr rn−1e−r

2
=

VSO(n)

VSO(n−1)

1
2 Γ(1

2n) , (8.38)

giving
VSO(n)

VSO(n−1)
= Sn =

2π
1
2
n

Γ(1
2n)

, (8.39)
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where Sn is the volume of Sn−1. Since VSO(2) = 2π, or VSO(1) = 1, in general

VSO(n) = 2n−1 π
1
4
n(n+1)∏n

i=1 Γ
(

1
2 i
) . (8.40)

For the corresponding extension to the complex case we consider integrals over Cn ≃ R2n,
of real dimension 2n, with coordinates Z = (z1, . . . , zn), zi ∈ C. The analogous integrals
are then ∫

Cn

d2nZ F (Z̄Z) , Z̄Z =
n∑
i=1

|zi|2 , (8.41)

and where

d2nZ =
n∏
i=1

d2zi , d2z = dxdy for z = x+ iy . (8.42)

In this case we may take G = U(n) ⊂ O(2n) where the transformations act Z →
U
UZ for

U ∈ U(n) so that Z̄Z is invariant, as is also d2nZ. As in the discussion for SO(n) we may
take on each orbit

Z0 = r(1, 0, . . . , 0, 0) , r > 0 . (8.43)

The stability group H ≃ U(n− 1) corresponding to matrices

U(Û) =
(

1 0
0 Û

)
, Û ∈ U(n− 1) . (8.44)

In this case dimU(n) = n2 so that n̂ = dimU(n) − dimU(n− 1) = 2n− 1. The orbits are
just specified again by the single variable r.

Corresponding to (8.43) the gauge fixing condition becomes

F(Z) = θ(Re z1)δ(Im z1)
n∏
i=2

δ2(zi) , δ2(z) = δ(x)δ(y) , z = x+ iy . (8.45)

In terms of the generators defined in (5.214) we let

α = iα1R
1
1 +

n∑
s=2

(
αsR

s
1 − αs

∗R1
s

)
, α1 ∈ R , αs ∈ C , s ≥ 2 . (8.46)

Hence
exp(α)Z0 = r(1 + iα1, α2, . . . , αn) , α ≈ 0 , (8.47)

and we take

dρU(n)(U) ≈ dα1
∏n
s=2 d2αs dρU(n−1)(Û) for U = exp(α)U(Û) , α ≈ 0 . (8.48)

With these results ∫
dρU(n)(U) F(UZ) = VU(n−1)

1
|z1|2n−1

, (8.49)
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which implies

∆(Z) =
1

VU(n−1)
r2n−1 , Z̄Z = r2 , r > 0 . (8.50)

Finally∫
Cn

d2nZ F (Z̄Z) = VU(n)

∫
Cn

d2nZ F(Z)∆(Z)F (Z̄Z) =
VU(n)

VU(n−1)

∫ ∞

0
dr r2n−1F (r2) . (8.51)

Corresponding to (8.39), (8.51) requires

VU(n)

VU(n−1)
= S2n . (8.52)

Taking VU(1) = 2π we have, with our normalisation,

VU(n) = 2n
π

1
2
n(n+1)∏n
i=1 Γ(i)

. (8.53)

Since U(n) ≃ SU(n) ⊗ U(1)/Zn

VU(n) =
2π
n
VSU(n) . (8.54)

A very similar discussion applies in terms of quaternionic numbers which are relevant
for Sp(n). For Q = (q1, . . . , qn) ∈ Hn the relevant integrals are∫

Hn

d4nQ F (Q̄Q) , Q̄Q =
n∑
i=1

|qi|2 , (8.55)

and where

d4nQ =
n∏
i=1

d4qi , d4q = dxdy du dv for z = x+ iy + ju+ kv . (8.56)

Q̄Q is invariant under Q→
M
MQ for M ∈ Sp(n) ⊂ SO(4n), regarded as n× n quaternionic

unitary matrices M satisfying (1.62). As before we choose

Q0 = r(1, 0, . . . , 0, 0) , r > 0 . (8.57)

The stability group H ≃ Sp(n − 1) corresponding to quaternionic matrices where M is
expressible in terms of M̂ ∈ Sp(n − 1) in an identical fashion to (8.44). We now have
dimSp(n) = n(2n+ 1) so that n̂ = dimSp(n) − dimSp(n− 1) = 4n− 1.

The associated gauge fixing condition becomes

F(Q) = θ(Re q1)δ3(Im q1)
n∏
i=2

δ4(qi) , δ4(q) = δ(x)δ(y)δ(u)δ(v) , q = x+ iy + iu+ iv .

(8.58)
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In terms of the generators defined in (5.214) we let

α = α1R
1
1 +

n∑
s=2

(
αsR

s
1 − αsR

1
s

)
, αs ∈ H , Reα1 = 0 . (8.59)

and
dρSp(n)(M) ≈ d3α1

∏n
s=2 d4αs dρSp(n−1)(M̂) α ≈ 0 . (8.60)

Hence we find
∆(Q) =

1
VSp(n−1)

r4n−1 , Q̄Q = r21 , r > 0 . (8.61)

The integral in (8.55) becomes∫
Hn

d4nQ F (Q̄Q) = VSp(n)

∫
Hn

d4nQ F(Q)∆(Q)F (Q̄Q) =
VSp(n)

VSp(n−1)

∫ ∞

0
dr r4n−1F (r2) ,

(8.62)
and corresponding to (8.39), (8.62) requires

VSp(n)

VSp(n−1)
= S4n . (8.63)

Since Sp(1) = {q : |q|2 = 1}, with the group property depending on |q1q2| = |q1| q2|, the
group manifold is just S3 and

VSp(1) =
∫

d4q δ(|q| − 1) = S4 = 2π2 , (8.64)

just as in (5.155). Hence

VSp(n) = 2n
πn(n+1)∏n
i=1 Γ(2i)

. (8.65)

The results for the group volumes in (8.40), (8.53) and (8.65) depend on the conven-
tions adopted in the normalisation of the group invariant integration measure which are
here determined by (8.34), (8.48) and (8.60) in conjunction with (8.32), (8.46) and (8.59)
respectively.

8.2 Integrals over Symmetric and Hermitian Matrices

A class of finite dimensional group invariant integrals which are rather more similar to
gauge theories are those which involve integrals over real symmetric or complex hermitian
matrices.

For the real case for n× n symmetric matrices X the relevant integrals are of the form∫
d

1
2
n(n+1)X f(X) , X = XT , d

1
2
n(n+1)X =

n∏
i=1

dXii

∏
1≤i<j≤n

dXij , (8.66)
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and we assume the invariance

f(X) = f(RXR−1) , R ∈ SO(n) . (8.67)

The measure d
1
2
n(n+1)X is invariant under X → RXR−1. A standard result in the discus-

sion of matrices is that any symmetric matrix such as X may be diagonalised so that

RXR−1 = Λ =

λ1 . . . 0
...

. . .
...

0 . . . λn

 , (8.68)

where λi are the eigenvalues of X. If {λi} are all different there is no continuous Lie
subgroup of SO(n) such that RΛR−1 = Λ since

dim{X : X = XT } − dimSO(n) = 1
2n(n+ 1) − 1

2n(n− 1) = n , (8.69)

corresponding to the number of independent λi. The orbits of X under the action of SO(n)
are then determined by the eigenvalues {λi}. For any SO(n) invariant function as in (8.67)
we may write

f(X) = f̂(λ) , λ = (λ1, . . . λn) . (8.70)

However there is a discrete stability group for Λ. The diagonal matrices corresponding
to reflections in the i-direction

i (8.71)

Ri = i



1 0
0 1 . . . . . . . . . . . . . . 0
...

. . .
...

...
1
−1

1

...
...

. . .
...

0 . . . . . . . . . . . . . . 1 0
0 1


∈ O(n) , i = 1, . . . , n , Ri

2 = In . (8.72)

generate the discrete group

{Ra1...an = R1
a1 . . . Rn−1

an : ai = 0, 1} ≃ Z2
⊗n , (8.73)

such that for any element
Ra1...anΛRa1...an

−1 = Λ . (8.74)

Furthermore for any permutation σ ∈ Sn there are corresponding matrices Rσ ∈ O(n), such
that (Rσ)ijxj = xσ(i). The matrices {Rσ} form a faithful representation of Sn and

RσΛRσ−1 = Λσ =

λσ(1) . . . 0
...

. . .
...

0 . . . λσ(n)

 . (8.75)
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For the permutation (i i+1) the associated matrix is

i (8.76)

R(i i+1) = i



1 0
0 1 . . . . . . . . . . . . 0
...

. . .
...

... 0 1
1 0

...
...

. . .
...

0 . . . . . . . . . . . . 1 0
0 1

 , i = 1, . . . , n− 1 , (8.77)

which may be used to determine Rσ for any σ by group multiplication. Since RσRiRσ−1 =
Rσ(i) the groups generated by permutations and reflections may be identified as the semi-
direct product Sn n Z2

⊗n. However detRσ = Pσ = ±1, with Pσ defined in (6.88), and
also detRa1...an = (−1)

P

i ai . Restricting to the subgroup belonging to SO(n), having
determinant one, we then take for the group W , as defined in (8.25),

W =
(
Sn n Z2

⊗n)/Z2 , |W | = 2n−1n! . (8.78)

It is possible to restrict W to Z2
⊗n−1, formed by Ra1...an with

∑
i ai even, by requiring that

the eigenvalues in (8.68) are ordered so that λi ≤ λi+1. However the choice of W in (8.78)
is generally more convenient.

Taking X0 = Λ, as in (8.68), the corresponding gauge fixing condition is

F(X) =
∏

1≤i<j≤n
δ(Xij) . (8.79)

For a rotation
R(α) = exp(α) , α = −αT , (8.80)

and the group invariant integration is then assumed to be normalised such that, for R as
in (8.80),

dρSO(n)

(
R(α)

)
≈

∏
1≤i<j≤n

dαij , α ≈ 0 . (8.81)

With these assumptions, applying (8.9),

1
∆(X)

=
∫
SO(n)

dρSO(n)(R) F
(
RXR−1

)
=

∏
1≤i<j≤n

∫
dαij δ

(
αij(λj − λi)

)
, (8.82)

so that
∆(X) = |∆̂(λ)| for ∆̂(λ) =

∏
1≤i<j≤n

(λi − λj) . (8.83)

The resulting SO(n) invariant integration over symmetric matrices becomes∫
d

1
2
n(n+1)X f(X) =

VSO(n)

|W |

∫
d

1
2
n(n+1)X F(X)∆(X) f(X)

=
VSO(n)

2n−1n!

∫
dnλ |∆̂(λ)| f̂(λ) . (8.84)
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Since the normalisations chosen in (8.80) and (8.81) are compatible with those assumed
previously we may use (8.40) for VSO(n).

For the particular example

f(X) = e−
1
2
κ tr(X2) , tr(X2) =

n∑
i=1

Xii
2 + 2

∑
1≤i<j≤n

Xij
2 =

n∑
i=1

λi
2 , (8.85)

then ∫
d

1
2
n(n+1)X e−

1
2
κ tr(X2) = 2

1
2
n
(π
κ

) 1
4
n(n+1)

. (8.86)

Using (8.40) this defines a normalised probability measure for the eigenvalues for a Gaussian
ensemble of symmetric real matrices

dµ(λ)symmetric matrices =
κ

1
4
n(n+1)

2
3
2
n ∏n

i=1 Γ
(
1 + 1

2 i
) n∏

i=1

dλi |∆̂(λ)| e−
1
2
κ

P

i λi
2
. (8.87)

There is a corresponding discussion for complex hermitian n × n matrices when the
integrals are of the form∫

dn
2
X f(X) , X = X† , dn

2
X =

n∏
i=1

dXii

∏
1≤i<j≤n

d2Xij , (8.88)

where f satisfies
f(X) = f(UXU−1) , U ∈ U(n) . (8.89)

Just as before hermitian matrices may be diagonalised

UXU−1 = Λ , (8.90)

where the diagonal elements of Λ are the eigenvalues of X as in (8.68). In this case there
is a non trivial continuous subgroup of U(n) leaving Λ invariant formed by the diagonal
matrices

U0(β) =


eiβ1 0 . . . 0

0 eiβ2
...

...
. . .

...
0 . . . . . . . . . eiβn

 , (8.91)

and hence we may identify
H ≃ U(1)⊗n . (8.92)

In addition we may identify W = Sn formed by {Rσ} ⊂ U(n) which permute the eigenvalues
in Λ.

The gauge fixing condition restricting X to diagonal form is now

F(X) =
∏

1≤i<j≤n
δ2(Xij) . (8.93)
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In this case we may write for arbitrary U ∈ U(n),

U(α, β) = exp(α)U0(β) , α = −α† , αii = 0 all i , (8.94)

and the group invariant integration is then assumed to be normalised such that, for U as
in (8.94),

dρU(n)

(
U(α, β)

)
≈

∏
1≤i<j≤n

d2αij

n∏
i=1

dβi , α ≈ 0 , 0 ≤ βi < 2π . (8.95)

With these assumptions∫
U(n)

dρU(n)(U) F
(
UXU−1

)
= (2π)n

∏
1≤i<j≤n

∫
d2αij δ

2
(
αij(λj − λi)

)
. (8.96)

Since
δ2(λz) =

1
|λ|2

δ2(z) , (8.97)

this gives

∆(X) =
1

(2π)n
∏

1≤i<j≤n
(λi − λj)2 =

1
(2π)n

∆̂(λ)2 . (8.98)

The result for U(n) invariant integration over hermitian matrices becomes∫
dn

2
X f(X) =

VU(n)

n!

∫
dn

2
X F(X)∆(X) f(X)

=
VU(n)

n! (2π)n

∫
dnλ ∆̂(λ)2 f̂(λ) , (8.99)

where we may use (8.53) for VU(n).

For a Gaussian function∫
dn

2
X e−

1
2
κ tr(X2) = 2

1
2
n
(π
κ

) 1
2
n2

, tr(X2) =
n∑
i=1

Xii
2 + 2

∑
1≤i<j≤n

|Xij |2 =
n∑
i=1

λi
2 .

(8.100)
Using (8.53) this defines a normalised probability measure for the eigenvalues for a Gaussian
ensemble of hermitian matrices

dµ(λ)hermitian matrices =
κ

1
2
n2

(2π)
1
2
n ∏n

i=1 i!

n∏
i=1

dλi ∆̂(λ)2 e−
1
2
κ

P

i λi
2
. (8.101)

Extending this to quaternionic hermitian n× n matrices the relevant integrals are∫
dn(2n−1)X f(X) , X = X̄ , dn(2n−1)X =

n∏
i=1

dXii

∏
1≤i<j≤n

d4Xij , (8.102)
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where X̄ is defined by (1.61) and integration over quaternions is given by (8.56). f is now
assumed to satisfy

f(X) = f(MXM−1) , M ∈ U(n,H) . (8.103)

Such quaternionic matrices may be diagonalised so that, for a suitable M ∈ U(n,H),

MXM−1 = Λ , λi = λ̄i . (8.104)

Using the correspondence with 2n × 2n complex matrices provided by (1.63) and (1.64),
when M → M ∈ USp(2n,C) and X → X where

X = X † , X = −JX TJ . (8.105)

The eigenvalues of X must then be ±λi, i = 1, . . . n, and (8.104) is equivalent to the matrix
theorem that the 2n× 2n antisymmetric matrix XJ may be reduced to a canonical form in
terms of {λi},

MXJMT =


0 λ1

−λ1 0 0
0 0 λ2

−λ2 0
. . .

0 λn
−λn 0

 for M ∈ U(2n) . (8.106)

In (8.104) the subgroup of U(n,H) leaving Λ invariant is formed by quaternionic matrices

M0(q) =


q1 0 . . . 0

0 q2
...

...
. . .

...
0 . . . . . . . qn

 , |qi| = 1 , (8.107)

giving
H ≃ U(1,H)⊗n . (8.108)

As before W = Sn formed by {Rσ} ⊂ U(n,H) which permute the diagonal elements in Λ.

The gauge fixing condition restricting X to diagonal form is now

F(X) =
∏

1≤i<j≤n
δ4(Xij) . (8.109)

In this case we may write for arbitrary M ∈ U(n,H),

M(α, q) = exp(α)M0(q) , α = −ᾱ , αii = 0 all i , (8.110)

and the group invariant integration is then assumed to be normalised such that, for M as
in (8.110),

dρU(n,H)

(
M(α, q)

)
≈

∏
1≤i<j≤n

d4αij

n∏
i=1

d4qi δ(|qi| − 1) , α ≈ 0 . (8.111)
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With these assumptions and using (8.64)∫
U(n,H)

dρU(n,H)(M) F
(
MXM−1

)
= (2π2)n

∏
1≤i<j≤n

∫
d4αij δ

4
(
αij(λj − λi)

)
. (8.112)

In this case
∆(X) =

1
(2π2)n

∏
1≤i<j≤n

(λi − λj)4 =
1

(2π2)n
∆̂(λ)4 . (8.113)

The result for U(n,H) invariant integration over quaternion hermitian matrices becomes∫
dn(2n−1)X f(X) =

VSp(n)

n!

∫
dn

2
X F(X)∆(X) f(X)

=
VSp(n)

n! (2π2)n

∫
dnλ ∆̂(λ)4 f̂(λ) , (8.114)

where we may use (8.65) for VSp(n).

For the Gaussian integral∫
dn(2n−1)X e−

1
2
κ tr(X2) = 2

1
2
n
(π
κ

) 1
2
n(2n−1)

, tr(X2) =
n∑
i=1

Xii
2 + 2

∑
1≤i<j≤n

|Xij |2 =
n∑
i=1

λi
2 .

(8.115)
Using (8.65) we therefore obtain a normalised probability measure for the eigenvalues for a
Gaussian ensemble of hermitian quaternionic matrices

dµ(λ)hermitian quaternionic matrices =
( 2
π

) 1
2
n κ

1
2
n(2n−1)∏n
i=1(2i)!

n∏
i=1

dλi ∆̂(λ)4 e−
1
2
κ

P

i λi
2
. (8.116)

8.2.1 Large n Limits

The results for the eigenvalue measure dµ(λ), given by (8.87), (8.101) and (8.116) for a
Gaussian distribution of real symmetric and hermitian complex and quaternion matrices,
can be simplified significantly in a limit when n is large. In each case the distribution has
the form

dµ(λ) = Nn dnλ e−W (λ) , W (λ) =
1
2
κ
∑
i

λi
2 − 1

2β
∑
i,j,i̸=j

ln |λi − λj | , (8.117)

where β = 1, 2, 4 and we may order the the eigenvalues so that

λ1 < λ2 < · · · < λn . (8.118)

For a minimum W (λ) is stationary when

κλi = β
∑
j ̸=i

1
λi − λj

. (8.119)
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In the large n limit we may approximate λi by a smooth function,

λi → λ(x) , x =
i

n
,

n∑
i=1

= n

∫ 1

0
dx = n

∫
dλ ρ(λ) , ρ(λ) =

dx
dλ

> 0 , (8.120)

where ρ(λ) determines the eigenvalue distribution and is normalised since∫
dλ ρ(λ) =

∫ 1

0
dx = 1 . (8.121)

As n → ∞ the distribution is dominated by λ(x) such that W (λ) is close to its minimum.
The minimum is determined by (8.119) or, taking the large n limit,

κ

nβ
λ = P

∫
dµ ρ(µ)

1
λ− µ

, (8.122)

where P denotes that the principal part prescription is used for the singularity in the integral
at µ = λ.

(8.122) is an integral equation for ρ. To solve this we define the function

F (z) =
∫ R

−R
dµ ρ(µ)

1
z − µ

∼ 1
z

as z → ∞ , (8.123)

using (8.121) and assuming

ρ(µ) > 0 , |µ| < R , ρ(µ) = 0 , |µ| > R . (8.124)

F (z) is analytic in z save for a cut along the real axis from −R to R. The integral equation
requires

F (µ± iϵ) =
κ

nβ
µ∓ iπ ρ(µ) , |µ| < R . (8.125)

Requiring F (z) = O(z−1) for large z this has the unique solution

F (z) =
κ

nβ

(
z −

√
z2 −R2

)
. (8.126)

The large z condition in (8.123) requires

R2 =
2nβ
κ

. (8.127)

This then gives

ρ(λ) =
2

πR2

√
R2 − λ2 . (8.128)

This is Wigner’s semi-circle distribution and is relevant for nuclear energy levels.
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8.3 Integrals over Compact Matrix Groups

Related to the discussion of integrals over group invariant functions of symmetric or her-
mitian matrices there is a corresponding treatment for integrals over functions of matrices
belonging to the fundamental representation for SO(n), U(n) or Sp(n). For simplicity we
consider the unitary case first.

For matrices U ∈ U(n) the essential integral to be considered is then defined in terms
of the n2-dimensional group invariant measure by∫

U(n)
dρU(n)(U) f(U) , (8.129)

where
f(U) = f(V UV −1) for all V ∈ U(n) . (8.130)

Just as for hermitian matrices U can be diagonalised so that

V UV −1 = U0(θ) , θ = (θ1, . . . , θn) , (8.131)

where U0 is defined in (8.91). For θi all different V is arbitrary up to V ∼ V U0(β), for
any β = (β1, . . . , βn) so that the associated stability group H = U(1)⊗n. The remaining
discrete symmetry group in this case is then

WU(n) ≃ Sn , (8.132)

since, for any permutation σ ∈ Sn, there is a Rσ ∈ O(n) such that

RσU0(θ)Rσ−1 = U0(θσ) , θσ = (θσ(1), . . . , θσ(n)) . (8.133)

Thus we use the gauge fixing condition

F(U) =
∏

1≤i<j≤n
δ2(Uij) . (8.134)

Using the same results as given in (8.94) and (8.95) we then get∫
U(n)

dρU(n)(V ) F
(
V UV −1

)
= (2π)n

∏
1≤i<j≤n

∫
d2αij δ

2
(
αij(eiθj − eiθi)

)
, (8.135)

so that, using (8.97),

∆(U) =
1

(2π)n
∏

1≤i<j≤n
|eiθj − eiθi |2 =

1
(2π)n

∏
1≤i<j≤n

(
2 sin 1

2(θi − θj)
)2

=
1

(2π)n
∆̂(eiθ)∆̂(e−iθ) , (8.136)

with the definition (8.83). The basic formula (8.26) then gives an integration measure over
the θi’s

dµU(n)(θ) =
1

n! (2π)n

n∏
i=1

dθi
∏

1≤i<j≤n

(
2 sin 1

2(θi − θj)
)2
, 0 ≤ θi ≤ 2π . (8.137)
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By restricting f(U) = 1 in (8.129) it is clear that this integration measure is normalised,∫
dµU(n)(θ) = 1, since VU(n) may be factored from both sides.

To reduce to SU(n) we let θi = θ + θ̂i, i = 1, . . . , n − 1, θn = θ −
∑n−1

i=1 θ̂i, where
now 0 ≤ θ̂i ≤ 2π and 0 ≤ θ ≤ 2π/n and also

∏n
i=1 dθi = ndθ

∏n−1
i=1 dθ̂i. The θ integral

may then be factored off, corresponding to the decomposition U(n) ≃ SU(n) ⊗ U(1)/Zn,
or equivalently θn is no longer an independent variable but determined by

∑
i θi = 0. For

any Rσ if detRσ = −1 we may define R̂σ = eπi/nRσ and otherwise R̂σ = Rσ so that
{R̂σ} ⊂ SU(n) and also R̂σU0(θ)Rσ−1 = U0(θσ). Hence, as in (8.132), we still have

WSU(n) ≃ Sn . (8.138)

Restricting (8.137) to SU(n) we then obtain

dµSU(n)(θ) =
1

n! (2π)n−1

n−1∏
i=1

dθi
∏

1≤i<j≤n

(
2 sin 1

2(θi − θj)
)2
, θn = −

n−1∑
i=1

θi . (8.139)

For real orthogonal matrices in a similar fashion∫
SO(n)

dρSO(n)(R) f(R) , f(R) = f(SRS−1) for all S ∈ SO(n) . (8.140)

In this case it is necessary to distinguish between even and odd n. For any R ∈ SO(2n) it
can be transformed to

SRS−1 = R0(θ) =


r(θ1) 0 . . . 0

0 r(θ2)
...

...
. . .

...
0 . . . . . . . . . . r(θn)

 , S ∈ SO(2n) , (8.141)

where R0(θ) is written as a n× n matrix of 2 × 2 blocks with

r(θ) =
(

cos θ sin θ
− sin θ cos θ

)
. (8.142)

In (8.141) S ∼ SR0(β), for arbitrary β = (β1, . . . , βn), so that the stability group for R0(θ)
is then SO(2)⊗n. The discrete group defined by 2n × 2n matrices {S} ∈ O(2n) such that
SR0(θ)S−1 = R0(θ′) is SnnZ2

⊗n, with the permutation group Sn formed by {Rσ⊗ I2} and
Z2

⊗n generated by

i

Ri = i



I2 . . . . . . . . . . . . . . . . . 0
...

. . .
...... I2
...... σ3
...... I2
......

. . .
...

0 . . . . . . . . . . . . . . . . . I2


∈ O(2n) , i = 1, . . . , n , Ri

2 = I2n , (8.143)
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since σ3 r(θ)σ3 = r(2π − θ), for σ3 =
(

1 0
0 −1

)
. Restricting to the subgroup formed my

matrices with determinant one

WSO(2n) ≃
(
Sn n Z2

⊗n)/Z2 . (8.144)

Writing R ∈ SO(2n) in terms of 2×2 blocks Rij , i, j = 1, . . . n, the gauge fixing condition
is then taken as

F(R) =
∏

1≤i<j≤n
δ4(Rij) , (8.145)

with the definitions

δ4(A) = δ(a)δ(b)δ(c)δ(d) , d4A = dadb dcdd for A =
(
a b
c d

)
. (8.146)

For a general rotation S ∈ SO(2n) we may write

S = eAS0(β) , AT = −A , Aii = 0 all i , (8.147)

and then

dρSO(2n)(S) ≈
∏

1≤i<j≤n
d4Aij

n∏
i=1

dβi for A ≈ 0 . (8.148)

Using (8.148) is then sufficient to obtain∫
SO(2n)

dρSO(2n)(S) F
(
SR0(θ)S−1

)
= (2π)n

∏
1≤i<j≤n

∫
d4Aij δ

4
(
Aijr(θj)−r(θi)Aij

)
. (8.149)

With
δ4
(
Ar(θ) − r(θ′)A

)
=

1
4(cos θ − cos θ′)2

δ4(A) , (8.150)

we then get for SO(2n)

∆(R) =
1

(2π)n
∏

1≤i<j≤n

(
2(cos θi − cos θj)

)2 =
1

(2π)n
(
∆̂(2 cos θ)

)2
, (8.151)

where ∆̂ is defined by (8.83).

Combining the ingredients the measure for integration reduces in the SO(2n) case to
an integral over the n θi’s given by

dµS0(2n)(θ) =
1

2n−1n! (2π)n

n∏
i=1

dθi
(
∆̂(2 cos θ)

)2
. (8.152)

For SO(2n+1) (8.141) may be modified, by introducing one additional row and column,
to

SRS−1 = R0(θ) =


r(θ1) 0 . . . 0 0

0 r(θ2)
...

...
. . .

...
0 r(θn) 0

0 . . . . . . . . . . . . . . . 1

 , S ∈ SO(2n+ 1) , (8.153)
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with r(θ) just as in (8.142). Instead of (8.143) we may now take

i

Ri = i



I2 . . . . . . . . . . . . . . . . . 0 0

...
. . .

...... I2

...... σ3

...... I2

......
. . .

...
0 I2 0

0 . . . . . . . . . . . . . . . . . . . . . −1


∈ SO(2n+ 1) , i = 1, . . . , n , (8.154)

and in a similar fashion, for any permutation σ ∈ Sn, there is a Rσ ∈ SO(2n+ 1), with the
matrix Rσ having 1,−1 in the bottom right hand corner according to whether σ is even,odd,
such that RσR0(θ)Rσ−1 = R0(θσ). Hence

WSO(2n+1) ≃ Sn n Z2
⊗n . (8.155)

In this case R ∈ SO(2n + 1) is expressible in terms of 2 × 2 blocks Rij , i, j = 1, . . . n,
2 × 1 blocks Ri n+1 and also 1 × 2 blocks Rn+1 i for i = 1, . . . n. The gauge fixing condition
is now

F(R) =
∏

1≤i<j≤n
δ4(Rij)

n∏
i=1

δ2(Ri n+1) , (8.156)

with δ2
(
a
b

)
= δ(a) δ(b), similarly to (8.146). Expressing S ∈ SO(2n+ 1) in the same form

as (8.147) we now have

dρSO(2n+1)(S) ≈
∏

1≤i<j≤n
d4Aij

n∏
i=1

d2Ai n+1

n∏
i=1

dβi for A ≈ 0 , (8.157)

so that∫
SO(2n+1)

dρSO(2n+1)(S) F
(
SR0(θ)S−1

)
= (2π)n

∏
1≤i<j≤n

∫
d4Aij δ

4
(
Aijr(θj) − r(θi)Aij

) n∏
i=1

∫
d2Ai n+1 δ

2
(
(I2 − r(θi))Ai n+1

)
.

(8.158)

In the SO(2n+ 1) case this implies

∆(R) =
1

(2π)n
(
∆̂(2 cos θ)

)2 n∏
i=1

(
2 sin 1

2θi
)2
, (8.159)

and in consequence

dµS0(2n+1)(θ) =
1

2nn! (2π)n

n∏
i=1

dθi
(
2 sin 1

2θi
)2 (∆̂(2 cos θ)

)2
. (8.160)
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The remaining case to consider is for integrals over M ∈ Sp(n) ≃ U(n,H) of the form∫
Sp(n)

dρSp(n)(M) f(M) , f(M) = f(NMN−1) for all N ∈ Sp(n) . (8.161)

By a suitable transformation the quaternion matrix M can be reduced to the diagonal form

NMN−1 = M0(θ) =


eiθ1 0 . . . 0

0 eiθ2
...

...
. . .

...
0 . . . . . . . . eiθn

 , N ∈ Sp(n) , (8.162)

As before N ∼ NM0(β) so the stability group is U(1)⊗n. The remaining discrete group
generated by Rσ1 ∈ Sp(n), for σ ∈ Sn and 1 the unit quaternion, and also by

i

Ni = i



1 . . . . . . . . . . . . . . 0
...

. . .
...... 1
...... j
...... 1
......

. . .
...

0 . . . . . . . . . . . . . . 1


∈ Sp(n) , i = 1, . . . , n . (8.163)

In this case Ni
2 = N0(β), with eiβi = −1. eiβj = 1, j ̸= i, so that Ni corresponds to a Z2

symmetry. Hence for Sp(n) we have

WSp(n) ≃ Sn n Z2
⊗n . (8.164)

For the Sp(n) case we take

F(M) =
∏

1≤i<j≤n
δ4(Mij)

n∏
i=1

δ2(Mii) , (8.165)

where, for any quaternion q, δ4(q) is defined as in (8.58) and also here

δ2(q) = δ(u)δ(v) for q = x+ iy + ju+ kv . (8.166)

Writing then, for any N ∈ Sp(n),

N = eαM0(β) , αij = −ᾱji ∈ H , i ̸= j , αii = jui + kvi , (8.167)

we have

dρSp(n)(N) ≈
∏

1≤i<j≤n
d4αij

n∏
i=1

d2αii

n∏
i=1

dβi for α ≈ 0 , (8.168)

so that∫
Sp(n)

dρSp(n)(N) F
(
NM0(θ)N−1

)
= (2π)n

∏
1≤i<j≤n

∫
d4αij δ

4
(
αij e

iθj − eiθi αij
) n∏
i=1

∫
d2αii δ

2
(
αii e

iθi − eiθi αii
)
. (8.169)
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For this case we may use

δ4
(
α eiθ − eiθ

′
α
)

=
1

4(cos θ − cos θ′)2
δ4
(
α
)
,

δ2
(
α eiθ − eiθ α

)
=

1
4 sin2 θ

δ2
(
α
)

for α = ju+ kv , (8.170)

to obtain

∆(M) =
1

(2π)n
(
∆̂(2 cos θ)

)2 n∏
i=1

(
2 sin θi

)2
. (8.171)

Hence

dµSp(n)(θ) =
1

2nn! (2π)n

n∏
i=1

dθi
(
2 sin θi

)2 (∆̂(2 cos θ)
)2
. (8.172)

As special cases we have dµSp(1)(θ) = dµSU(2)(θ), dµSO(3)(θ) = 2 dµSp(1)(1
2θ) and also,

from SO(4) ≃ (Sp(1) ⊗ Sp(1))/Z2, dµSO(4)(θ1 − θ2, θ1 + θ2) = 2 dµSp(1)(θ1) dµSp(1)(θ2)
with, from SO(5) ≃ Sp(2)/Z2, dµSO(5)(θ1 − θ2, θ1 + θ2) = 2 dµSp(2)(θ1, θ2), and, from
SO(6) ≃ SU(4)/Z2, dµSO(6)(θ2 + θ3, θ3 + θ1, θ1 + θ2) = 2 dµSU(4)(θ1, θ2, θ3).

8.4 Integration over a Gauge Field and Gauge Fixing

An example where the reduction of a functional integral over a gauge field A ∈ A can be
reduced to A/G, where G is a the gauge group, in an explicit fashion arises in just one
dimension. We then consider a gauge field A(t) with the gauge transformation, following
(7.26),

A(t) −→
g
A(t)g(t) = g(t)A(t)g(t)−1 − ∂tg(t) g(t)−1 , (8.173)

where here we take
A(t) = −A(t)† ∈ u(n) , g(t) ∈ U(n) . (8.174)

The essential functional integral has the form∫
d[A] f(A) , f(Ag) = f(A) , (8.175)

where we restrict to t ∈ S1 by requiring the fields to satisfy the periodicity conditions

A(t) = A(t+ β) , g(t) = g(t+ β) . (8.176)

In one dimension there are no local gauge invariants. However if we define

U = T
{
e−

R β
0 dt A(t)} ∈ U(n) , (8.177)

where T denotes t-ordering, then, as a consequence of the discussion in 7.3 and the pe-
riodicity requirement (8.176), the gauge invariant function f in (8.175) should have the
form

f(A) = f̂(U) where f̂(U) = f̂(g Ug−1) for all g ∈ U(n) . (8.178)
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In particular
Pβ(U) = tr(U) , (8.179)

is gauge invariant, being just the Wilson loop for the circle S1 arising from imposing peri-
odicity in t. Pβ(U) is a Polyakov29 loop.

The general discussion for finite group invariant integrals can be directly applied to the
functional integral (8.175). It is necessary to choose a convenient gauge fixing condition.
For any A(t) there is a gauge transformation g(t) such that

A(t)g(t) = iX , X† = X . (8.180)

In consequence we may choose a gauge condition ∂tA(t) = 0 or equivalently take

F [A] = δ′[A] , (8.181)

where δ′[A] is a functional δ-function, δ′ denoting the exclusion of constant modes. For a
general Fourier expansion on S1

A(t) = iX +
∑
n̸=0

An e
2πint/β , X† = X , An

† = −A−n , (8.182)

where X is a hermitian and An are complex n× n matrices, then

δ′[A] =
∏
n>0

Nn δ
2n2(

An
)
. (8.183)

Nn is a normalisation factor which is chosen later. With the expansion (8.182) the functional
integral can also be defined by taking

d[A] = dn
2
X
∏
n>0

1
Nn

d2n2
An . (8.184)

The integral (8.9) defining the Faddeev Popov determinant then becomes∫
G
dµ(g) δ′[Ag] where A(t) = (iX)g(t) for some g(t) , (8.185)

and where dµ(g) is the invariant measure for the gauge group G. From (8.173) for an
infinitesimal gauge transformation

(iX)g(t) = iX + i[λ(t), X] − ∂tλ(t) for g(t) ≈ I + λ(t) , λ(t)† = −λ(t) . (8.186)

If

g(t) = g0
(
I + λ(t)

)
for λ(t) ≈ 0 , λ(t) =

∑
n̸=0

λn e
2πint/β , λn

† = −λ−n , (8.187)

then we may take

dµ(g) ≈ dρU(n)(g0) d[λ] , d[λ] =
∏
n>0

d2n2
λn . (8.188)

29Alexandre M. Polyakov, 1945-, Russian.
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Hence from (8.185) we define ∫
G
dµ(g) δ′

[
(iX)g

]
=
VU(n)

∆(X)
, (8.189)

where

1
∆(X)

=
∫

d[λ] δ′
[
i[λ,X] − ∂tλ

]
=
∏
n>0

Nn

∫
d2n2

λn δ
2n2

(
2πn
iβ

λn − i[X,λn]
)

=
∏
n>0

∫
d2n2

λn δ
2n2

(
λn +

β

2πn
[X,λn]

)
for Nn =

(
β

2πn

)2n2

, (8.190)

which gives

∆(X) =
∏
n>0

(
det
(
In2 +

β

2πn
Xad

))2

. (8.191)

The essential functional integral in (8.175) then reduces to just an integral over hermitian
matrices X, ∫

d[A] f(A) =
1

VU(n)

∫
dn

2
X ∆(X) f(iX) . (8.192)

There is a remaining invariance under X → gXg−1 for constant g ∈ U(n). This may be
used to diagonalise X so that gXg−1 = Λ where Λ is the diagonal matrix in terms of the
eigenvalues λ1, . . . , λn, as in (8.68). In terms of these

eigenvalues{Xad} = λi − λj , i, j = 1, . . . , n . (8.193)

Hence

det
(
In2 +

β

2πn
Xad

)
=

∏
1≤i<j≤n

(
1 − (λi − λj)2β2

4π2n2

)
. (8.194)

Using ∏
n>0

(
1 − θ2

π2n2

)
=

sin θ
θ

, (8.195)

we get

∆(X) =
∏

1≤i<j≤n

(
sin 1

2(λi − λj)β
1
2(λi − λj)β

)2

. (8.196)

As a consequence of (8.99) we further express (8.192) in terms of an integral over the
eigenvalues {λi} using

1
VU(n)

∫
dn

2
X → 1

n! (2π)n

∫
dnλ

∏
1≤i<j≤n

(λi − λj)2 . (8.197)

Using this in conjunction (8.196) in (8.192) gives finally∫
d[A] f(A) =

1
βn2

∫
dµU(n)(βλ) f(iΛ) , (8.198)
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with the measure for integration over U(n) determined by (8.137).

Although the freedom of constant gauge transformations has been used in transforming
X → Λ there is also a residual gauge freedom given by

g(t) = e2πirt/βI , r = 0,±1,±2, . . . ⇒ Λg(t) = Λ − 2πr
β

I . (8.199)

For this to be a symmetry for f(iX) = f(iΛ) we must have

f(iX) = f̂(e−iβX) , (8.200)

where f̂ is defined in terms of the line integral over t in (8.178). The final result (8.198)
shows that the functional integral over A(t) reduces after gauge fixing just to invariant
integration over the unitary matrix U .
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