
PART II: Classification of semi-simple Lie algebras.

NOTES BY DR. JAN GUTOWSKI

Preliminary comments:

These notes appeared as part of an earlier version of the Symmetries and Particle Physics
course notes. The notation is slightly different from that of the preceding part of the present
course. However, since there are no universal conventions this is something you will have
to get used to!

As in the bulk of the notes, the material is more detailed than the lectures. This is
intentional since the course is not long enough to present the material in depth. However,
in an examination you would only be expected to reproduce the proofs of the various
propositions, theorems and lemmas at the level that was explicitly presented in the lectures.
Nevertheless, it would be very beneficial for you to understand the content of these notes.
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1 The systematic classification of semi-simple Lie algebras.

1.1 Cartan’s Classification of Simple Lie Algebras

The simple Lie algebras have been completely classified by Cartan. They fall into four
infinite classes and five exceptional Lie algebras. The four infinite classes are the “classical
algebras” associated with classical groups:

Classical Notation Rank Cartan’s Notation
su(n + 1, C) n ≥ 1 An

so(2n + 1, C) n ≥ 1 Bn

sp(2n, C) n ≥ 1 Cn

so(2n, C) n > 2 Dn

Here su(n + 1, C) denotes the complexification of the Lie algebra of SU(n + 1), i.e. it
consists of complex linear combinations of the traceless hermitian n + 1 × n + 1 matri-
ces. so(2n, C) and so(2n + 1, C) are defined analogously. The Lie algebra sp(2n) is the
complexification of the Lie algebra of the Lie group Sp(2n).

There are also five exceptional lie algebras denoted G2, F4, E6, E7, E8 which have
dimension 14, 52, 78, 133 and 248 respectively.

The rank of the algebra is the dimension of a maximal commuting subalgebra.

1.2 Cartan Subalgebras

Definition 1. Let L be a complex semisimple Lie algebra. A Cartan subalgebra H is a
complex subspace of L such that

i) If h1, h2 ∈ H then [h1, h2] = 0

ii) For all v ∈ L, if [v, h] = 0 for all h ∈ H then v ∈ H.

iii) For all h ∈ H, the operator ad(h) is diagonalizable.

The conditions (i) and (ii) imply that H is a maximal commuting subalgebra of L. It
is straightforward to construct a subalgebra satisfying (i) and (ii), by induction, but it is
non-trivial to satisfy (iii). It can be shown (but not here) that if L is a complex semi-simple
Lie algebra, then L has a Cartan subalgebra. Cartan subalgebras are not unique; however
it can be shown that if H1 and H2 are two Cartan subalgebras of a matrix Lie algebra L(G)
then there exists some g ∈ G such that H1 = gH2g

−1. Hence the dimension of all Cartan
subalgebras is equal. The dimension of Cartan subalgebra H is called the rank r of L.

The diagonalizability condition (iii) together with (i) is sufficient to ensure that if
{h1, . . . , hr} is a basis for H then ad(h1), . . . , ad(hr) can be simultaneously diagonalized.
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Definition 2. Suppose that L is a complexified semi-simple Lie algebra of rank n, and
H is a Cartan subalgebra. Let {h1, . . . , hn} be a basis for H. Then as the ad(hi) can be
simultaneously diagonalized, it follows that L can be decomposed as

L = H ⊕
∑
α

Lα (1-1)

where the α ̸= 0 are vectors in Rn with

Lα = {v ∈ L : [hi, v] = αiv} (1-2)

The vectors α ̸= 0 are called roots and Lα ̸= 0 is called the root space. Although 0 is not a
root we will set L0 = H for convenience.

Lemma 1.

i) Lα ⊥ Lβ if α + β ̸= 0.

ii) The restriction of the Killing form κ to H is non-degenerate.

iii) Suppose α, β are roots. If α + β is a root then [Lα, Lβ ] ⊂ Lα+β, if α + β is not a root
then [Lα, Lβ ] = 0.

iv) If α is a root then so is −α.

Proof

i) Suppose xα ∈ Lα and xβ ∈ Lβ then

(αi + βi)κ(xα, xβ) = κ([hi, xα], xβ) + κ(xα, [hi, xβ ]) (1-3)

But κ([hi, xα], xβ) + κ(xα, [hi, xβ ]) = 0 by the associativity of κ.

Hence (αi + βi)κ(xα, xβ) = 0. So if α + β ̸= 0 then κ(xα, xβ) = 0 for all xα ∈ Lα and
xβ ∈ Lβ .

ii) Suppose that κ restricted to H is degenerate. Then there exists some v ∈ H such
that κ(v, h) = 0 for all h ∈ H. And if α is a root then by the reasoning used in (i) it
follows that κ(v, xα) = 0 for all xα ∈ Lα. So it follows that κ(v, ℓ) = 0 for all ℓ ∈ L,
in contradiction with the fact that κ is non-degenerate on L. So κ restricted to H is
non-degenerate. Hence the equation αi = κ(hi, uα) can be solved for unique uα.

iii) Suppose that xα ∈ Lα and xβ ∈ Lβ .

Then from the Jacobi identity

[hi, [xα, xβ ]] = [[hi, xα], xβ ] + [xα, [hi, xβ]]
= αi[xα, xβ] + βi[xα, xβ]
= (αi + βi)[xα, xβ] (1-4)

Hence if α + β is a root then this implies that [xα, xβ ] ∈ Lα+β . If, however, α + β is
not a root then one must have [xα, xβ ] = 0.

3



iv) Suppose −α is not a root. Suppose xα ∈ Lα. Then if β is any root, then α + β ̸= 0.
Then by (i) if xβ ∈ Lβ then κ(xα, xβ) = 0. Similarly, also by the reasoning in (i),
κ(xα, h) = 0 for all h ∈ H. This then implies that xα = 0, so Lα = 0, a contradiction.
�

Corollory 1. If α is a root then [Lα, L−α] ⊂ H.

Proof From the reasoning used to prove (iii) in the above lemma, if xα ∈ Lα and x−α ∈ L−α

then [hi, [xα, x−α]] = 0 which implies [xα, x−α] ∈ H. �

Lemma 2. If α is a root then there exists a unique yα ∈ H such that αi = κ(hi, yα).

Proof As the restriction of κ to H is non-degenerate, the equation αi = κ(hi, yα) can be
solved uniquely for yα ∈ H. Note that as α ̸= 0, yα ̸= 0. �

Corollory 2. Suppose that α is a root. If X ∈ Lα, Y ∈ L−α then [X,Y ] = κ(X, Y )yα.

Proof From the above it follows that [X,Y ] ∈ H. If h = uihi ∈ H then

κ([X, Y ], h) = κ(X, [Y, h])
= κ(X, uiαiY )
= uiαiκ(X,Y )
= κ(yα, h)κ(X, Y ) (1-5)

Hence κ([X,Y ] − κ(X, Y )yα, h) = 0 for all h ∈ H. But κ restricted to H is non-
degenerate, so [X, Y ] = κ(X, Y )yα as required. �

Lemma 3. Suppose that α is a root. There exists some xα ∈ Lα and x−α ∈ L−α such that
yα = [xα, x−α] and κ(yα, yα) ̸= 0.

Proof Pick some x−α ∈ L−α with x−α ̸= 0.

Suppose that κ(x−α, xα) = 0 for all xα ∈ Lα. Then L−α ⊥ Lβ for all roots β and
L−α ⊥ H. Hence L−α ⊥ L. But κ is non-degenerate on L, so this implies L−α = 0, a
contradiction.

So there must exist some xα ∈ Lα with κ(x−α, xα) ̸= 0. By rescaling, we can take
κ(x−α, xα) = 1

Then by the corollory above, one finds yα = [xα, x−α].

Next, suppose that β is a root. Consider W =
⊕

j∈Z Lβ+jα. By (iii) of Lemma 19 it
follows that W is an invariant subspace of ad x±α and W is also an invariant subspace of
ad yα.

Then

TrW (ad yα) = TrW (ad [xα, x−α]) = TrW [ad xα, ad x−α] = 0 (1-6)
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where here the trace TrW denotes the trace restricted to the subspace W . As yα ∈ H,
set yα = yi

αhi.

Then note that

TrW (ad yα) =
⊕
j∈Z

yi
α(βi + jαi)dim Lβ+jα (1-7)

We therefore obtain the equality

yi
αβidim W + yi

ααi

∑
j∈Z

jdim Lβ+jα = 0 (1-8)

Note that

κ(yα, yα) = κ(yα, [xα, x−α])
= κ[yα, xα], x−α

= κ(yi
ααixα, x−α)

= yi
ααiκ(xα, x−α)

= yi
ααi (1-9)

Hence

yi
αβidim W + κ(yα, yα)

∑
j∈Z

jdim Lβ+jα = 0 (1-10)

If κ(yα, yα) = 0 then yi
αβi = 0 for all roots β. This implies that [yα, Xβ ] = 0 for all

Xβ ∈ Lβ. Hence [yα, ℓ] = 0 for all ℓ ∈ L. It follows that ad yα = 0. So

κ(yα, ℓ) = Tr (ad yαad ℓ) = 0 (1-11)

for all ℓ ∈ ℓ, where the trace is now taken over L. As κ is non-degenerate, this implies that
yα = 0, a contradiction.

Hence κ(yα, yα) ̸= 0. �

Proposition 1. For each root α there is an associated SU(2) algebra

Proof

Recall that we have obtained yα ∈ H and x±α ∈ L±α satisfying αi = κ(hi, yα),
κ(xα, x−α) = 1, κ(yα, yα) ̸= 0 and

[xα, x−α] = yα (1-12)
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Set J±α = 1√
κ(yα,yα)

x±α and hα = 1
κ(yα,yα)yα.

Then it is straightforward to verify that

[hα, J±α] = J±α, [J+α, J−α] = hα (1-13)

So hα and J±α satisfy the complexified SU(2) algebra (hα is analogous to J3 and J±α

are analogous to the raising and lowering operators J±.)

Note however that we are not assuming any hermiticity properties for hα or J±α. �
Proposition 2. If α is a root then L±α are both 1-dimensional and kα is not a root for
any k ∈ C unless k = ±1.

Proof

Define

V =
⊕
k∈C

Lkα (1-14)

(including k = 0).

Note that if z ∈ Lkα then J±α ∈ L(k±1)α and it is straightforward to check that

[hα, z] = kz (1-15)

Hence V is invariant under the adjoint action with respect to hα, and J±α; hα acts on Lkα

with SU(2) weigh k.

Consider the adjoint action of the SU(2) generators J±α and hα on V . This represen-
tation of SU(2) is not necessarily irreducible.

However, taking some z ∈ Lkα one constructs an irreducible represenation by acting on
z with all possible powers of J+α and J−α. Then by the reasoning used in the analysis of
the SU(2) irreducible representations, it follows that as ad (hα)z = [hα, z] = kz we must
have 2k ∈ Z (note that hermiticity properties of the SU(2) generators are not required to
obtain this result).

Consider the number of times that 0 appears as a SU(2) weight. This must be n times
as H has dimension n, we will identify where these zero weights appear in the decomposition
of V into subspaces on which the SU(2) action is irreducible.

First note that as κ(hα, hα) ̸= 0 we can decompose H into a 1-dimensional subspace
spanned by hα and a n − 1-dimensional subspace spanned by elements of H which are
orthogonal to hα with respect to the Killing form. Suppose u = uihi ∈ H with κ(hα, u) = 0.

Then

[J±α, u] = −[uihi, J±α]
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= −ui[hi, J±α]
= ∓uiαiJ±α

= ∓κ(u, yα)J±α

= 0 (1-16)

because κ(u, yα) = 0. Hence the n − 1 linearly independent states in H which are
orthogonal to hα are SU(2) singlets with weight 0.

Also, observe that there is a SU(2) triplet of weights −1, 0, 1 which corresponds from
the adjoint action of J±α and hα on themselves.

This accounts for all occurrences of the weight 0.

Hence there are no other integral weights, for if there were then the corresponding
multiplet would contain 0 as a weight, and this cannot be so, for we have accounted for all
of the 0-weights.

Hence it follows that Lα must have dimension 1. (If it had greater dimension then there
would be too many linearly independent states of weight 0).

Also, 2α cannot be a root.

This then implies that 1
2α cannot be a root, for if it were, then both 1

2α and 2(1
2α)

would be roots, in contradiction with the above.

Hence k = 1
2 cannot be a weight. This then removes all weights of the type N + 1

2 for
N ∈ Z, because if such a weight were allowed, then k = 1

2 would be an allowed weight.

It follows then that

V = H ⊕ Lα ⊕ L−α (1-17)

where L±α are 1-dimensional. �.

Proposition 3. Suppose α, β are roots. Consider the vectors β + nα for n ∈ Z. This
sequence consists of a string of roots for p ≤ n ≤ q for some p, q ∈ Z with p ≤ 0 ≤ q.
Moreover,

2κ(yβ ,yα)

κ(yα,yα) = −(p + q).

Proof

Consider the space
V =

⊕
n∈Z

Lβ+nα (1-18)

where the sum is taken over those n such that β + nα is a root. Then V is invariant under
the adjoint action of the SU(2) generators hα, J±α.

As each Lβ+nα is one-dimensional, it follows that the representation is irreducible, the
elements of V consist of elements of the form (ad Jα)m1Jβ and (ad J−α)m2Jβ for m1,m2 ∈
N.
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Hence there exist integers p, q with p ≤ 0 ≤ q such that β + nα is a root if and only if
p ≤ n ≤ q.

Note that if X ∈ Lβ+nα then

[hα, X] =
1

κ(yα, yα)
[yα, X]

=
1

κ(yα, yα)
(yi

α)[hi, X]

=
1

κ(yα, yα)
(yi

α)(βi + nαi)X

=
(
n +

κ(yβ , yα)

κ(yα, yα)
)
X (1-19)

But the largest and smallest of the possible eigenvalues is ±r where 2r ∈ N, i.e.

q +
κ(yβ , yα)

κ(yα, yα)
= r, p +

κ(yβ , yα)

κ(yα, yα)
= −r (1-20)

and hence

2κ(yβ , yα)

κ(yα, yα)
= −(p + q) (1-21)

as required. �.

Definition 3. Suppose α, β are roots. The roots β + nα for n ∈ Z. where p ≤ n ≤ q for
some p, q ∈ Z with p ≤ 0 ≤ q are called the α-string of roots through β.

Corollory 3. If α and β are roots then so is β − 2κ(yβ ,yα)

κ(yα,yα) α

Proof Consider the string of roots β + nα, n ∈ Z, p ≤ n ≤ q for some p, q ∈ Z with

p ≤ 0 ≤ q passing through β. We have shown that
2κ(yβ ,yα)

κ(yα,yα) = −(p + q)

Then it follows that p ≤ −2κ(yβ ,yα)

κ(yα,yα) ≤ q.

Hence β − 2κ(yβ ,yα)

κ(yα,yα) α is a root. �

Lemma 4. Suppose α, β and α + β are roots. Then [Lα, Lβ ] = Lα+β.

Proof The adjoint action of J±α and hα on V =
⊕

n∈Z Lβ+nα is irreducible, as all the root
spaces are 1-dimensional.

Consider the string of roots containing β obtained by acting on Jβ with Jα, corre-
sponding to an irreducible representation of SU(2) on V . β + α lies in this string, hence
[Jα, Jβ ] ̸= 0. As [Jα, Jβ ] ∈ Lα+β and all the root spaces are 1-dimensional, it follows that
[Lα, Lβ ] = Lα+β . �

8



Proposition 4. Suppose that L is a complex semisimple Lie algebra. Then H is spanned
by the yα.

Proof

Suppose that the yα do not span H. Then there exists some non-vanishing y⊥ ∈ H
which is orthogonal to all the yα. It follows that [Jα, y⊥] = 0 for all roots α, and so y⊥
commutes with all elements of L. This in turn implies ad y⊥ = 0.

Then κ(y⊥, ℓ) = Tr (ad y⊥ad ℓ) = 0 for all ℓ ∈ L. As κ is non-degenerate on L, it
follows that y⊥ = 0, a contradiction. �

Proposition 5. There exists a basis of H with respect to which the components of the yα

and of the restriction of the Killing form to H are real. In addition, κ is positive definite
over the span of the yα over R.

Proof

Consider the yα for all roots α. These span H and are all non-vanishing. Hence, there
exists a basis S of H consisting of some subset of the yα.

In this basis, consider yβ for roots β. We have shown that the ad yβ are simultaneously
diagonalizable over L with real eigenvalues.

Suppose that λα are some real constants. Then ad (
∑

α λαyα) is diagonal with real
diagonal entries, so on taking the trace we find that κ(

∑
α λαyα,

∑
α λαyα) is a sum of

squares of reals, and hence is non-negative, and can only vanish if ad
∑

α λαyα = 0, which
in turn implies that

∑
α λαyα = 0 as the Killing form is non-degenerate on a semi-simple

Lie algebra.

This implies that κ(yα, yα) > 0, and κ is positive definite on the real span of the yα.

If α, β are any two roots, recall that

2κ(yα, yβ)

κ(yα, yα)
∈ Z (1-22)

Hence it follows that κ(yα, yβ) ∈ R, so the components of κ restricted to H are real in
the basis S.

Therefore, one can construct an orthonormal (with respect to κ) basis S′ of H consisting
of real linear combinations of elements of S. It follows that if yi is a basis element of S′ and
α is a root then κ(yi, yα) ∈ R. �

1.3 Geometric Properties of Roots

We have shown that there exists a basis of H, S′ = {yi, i = 1, . . . , n} such that κ(yi, yj) = δij ,
and κ(yi, yα) ∈ R for all roots α. In this basis, αi = κ(yi, yα) so the components of the root
α are also real. One can view the root space as being isomorphic to Rn. Note that as the
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yα span H it follows that the α span Rn. Henceforth we shall adopt this basis on H, so one
can consider the roots as points in Rn equipped with the standard inner product.

Recall that if α and β are roots then so is β −
(2α.β

α.α

)
α. This has a simple interpretation

in terms of reflection symmetry; because β−
(2α.β

α.α

)
α is the reflection of β in the hyperplane

passing through the origin with normal parallel to α.

2α.β
α.α

α

ββ−(    ) α

0

These reflection symmetries generate a group which is called the Weyl group. One
can also obtain further constraints on possible roots. In particular, suppose that α and β
(β ̸= ±α) are roots with angle θ subtending between them.

α

β

θ

Then

2α.β

α.α
= 2

|β|
|α|

cos θ ∈ Z (1-23)

and

2β.α

β.β
= 2

|α|
|β|

cos θ ∈ Z (1-24)

Taking the product we find that 4 cos2 θ ∈ Z. So 4 cos2 θ must be an non-negative integer
≤ 4
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This condition means that θ must be an integer multiple of π
4 or π

6 .

Moreover, given such θ, if |β| ≥ |α| then the constraint 2 |α|
|β| cos θ ∈ Z imposes strict

constraints on possible values of the ratio |α|
|β| . The possibilities can be tabulated straight-

forwardly

2α.β

α.α

2β.α

β.β θ
|β|
|α|

0 0 π
2 Undetermined

1 1 π
3 1

−1 −1 2π
3 1

2 1 π
4

√
2

−2 −1 3π
4

√
2

3 1 π
6

√
3

−3 −1 5π
6

√
3

Moreover, given a root β there is an α-string passing through β, of the form β + nα for
p ≤ n ≤ q. Suppose that β lies at the end of the string. Then either p = 0 or q = 0.

Now we have shown that

2α.β

α.α
= −(p + q) (1-25)

and there are q − p + 1 roots in the string. Hence it follows that there are |2α.β

α.α | + 1 roots

in the string. But from the tabulation of possible values of
2α.β

α.α it follows that the number
of possible roots on the string cannot exceed 4.

1.4 Simple Roots

Although the symmetries derived so far place considerable constraints on possible roots, it
will be convenient to single out a special class of roots, called simple roots. To do this, we
must first define an ordering on the space of roots.

Definition 4. Choose some p ∈ Rn such that κijp
i
αj ̸= 0 for all roots α. Then one obtains

an ordering on vectors β, χ in Rn by defining β > χ if κijp
i
β

j
> κijp

i
χ

j
. In particular,

β ∈ Rn is said to be positive if κijp
i
β

j
> 0.

Geometrically, if one works with a basis in which κij = δij , then it is clear that p
can be found. This is because there are only finitely many roots, hence there exists some
hyperplane through the origin which contains no roots. Then one can take p to be a normal
vector to this hyperplane. With this definition, it is clear that a root must be either positive
or negative; and the sum of two positive roots is also positive. The hyperplane so chosen
splits the root space into two halves- the positive and negative roots.
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There is clearly some ambiguity in the choice of p; though it makes no difference to the
classification of semisimple Lie algebras and their representations.

Definition 5. A root is simple if it is positive and cannot be written as a sum of positive
roots.

Lemma 5. If α and β are different simple roots, then α − β is not a root.

Proof Suppose that α − β is a root. If β > α then β − α is positive and one can write
β = (β−α)+α which is a sum of two positive roots, which is a contradiction as β is simple.
Similarly, if α > β then α − β is positive and α = (α − β) + β, again a contradiction. So
α − β cannot be a root. �

Lemma 6. If α and β are different simple roots then α.β ≤ 0

Proof Consider the α string of roots through β, β + nα for p ≤ n ≤ q (p ≤ 0 ≤ q).

Then
2α.β

α.α = −(p + q). But β − α is not a root, hence we must have p = 0, so
2α.β

α.α = −q ≤ 0. �

Lemma 7. The set of simple roots is linearly independent over R.

Proof

Suppose that αi are simple roots, and set γ =
∑

i ciαi where ci are real constants.
Suppose that γ = 0. Split γ into two parts

γ = µ − ν (1-26)

where
µ =

∑
ci>0

ciαi, ν = −
∑
ci<0

ciαi (1-27)

By construction µ and ν are positive vectors. Then

(µ − ν).(µ − ν) = µ.µ + ν.ν − 2µ.ν ≥ µ.µ + ν.ν > 0 (1-28)

where we have used the fact that µ.ν ≤ 0 using the result of the previous lemma. �

Lemma 8. If α is a positive root then it can be written as a linear combination

α =
∑

i

ciβi
(1-29)

where ci ∈ N and β
i
are simple roots.

Proof

If α is simple then we are done. Otherwise, it is not, and can be written as a sum of two
positive roots. By repeating this process (which must end after a finite number of steps),
one must eventually obtain the decomposition into simple roots. �
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Lemma 9. There are n simple roots (where L is of rank n).

Proof

As the simple roots are linearly independent, there cannot be more than n of them.

Suppose that there are fewer than n simple roots. Then there exists some non-vanishing
ω ∈ Rn which is orthogonal to all simple roots α. As all positive (and hence negative) roots
can be written as a linear combination of simple roots, it follows that ω is orthogonal to all
roots β. This implies that there exists some w ∈ H which commutes with all root spaces
Lα, in contradiction with the non-degeneracy of the Killing form.

Hence there must be n simple roots. �.

Next we shall show that by generating all possible root strings from the simple roots,
one obtains the whole root space in a unique fashion.

Lemma 10. Suppose that α is a positive, but non-simple root. There exists some simple
root β such that α − β is a root.

Proof

Suppose that α is positive, and that α − β is not a root for all simple roots β.

Now suppose that β is a simple root.

If α.β > 0 then the β string through α, α + nβ, p ≤ n ≤ q must have p < 0. Hence
α − β must be a root. Contradiction.

Hence we must have α.β ≤ 0 for all simple roots. But as α can be written as a (non-
negative) integer linear combination of simple roots this implies α.α ≤ 0, a contradiction.
�

Definition 6. Suppose that α is a positive root. Then α can be written uniquely as a sum
α =

∑
i ciαi where ci ∈ N and the αi are simple.

We define c =
∑

i ci to be the height of the root α.

Lemma 11. Suppose that α is a positive root. Then one can write α = α1 + · · ·+αk where
the αi are simple roots which are not necessarily distinct and the partial sums α1 + · · ·+ αi

are roots

Proof

We will prove the lemma by induction on the height of α.

First note that it is true for roots of height 1, as these are just simple roots. Suppose
that it is true for roots of height 1 ≤ m.

Then let α be a root of height m + 1. As α is not simple, there exists some simple β
such that χ = α − β is a root. Then β = α − g. g cannot be negative, for then −g would
be positive, and one could write β as a sum of two positive roots, which is a contradiction
because β is simple. Hence g must be positive.
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Then α = χ + β. χ has height ≤ m, and can be decomposed as χ = β
1

+ . . . β
k

for
simple β

i
such that the partial sums β

1
+ · · ·+ β

i
are roots. Setting β

k+1
= β we therefore

obtain the same decomposition for α, α = β
1
+ · · · + β

k
+ β

k+1
. �

Lemma 12. Suppose that α is a positive non-simple root and β is simple. Then the β-string
of roots passing through α consists entirely of positive roots.

Proof

Suppose χ = α + nβ for n ∈ Z, lies on the root string. If n ≥ 0 then clearly χ must be
positive.

Suppose n < 0. If χ is negative then there exists some m ∈ Z, n < m ≤ 0 such that
g ≡ α + mβ is a positive root but f ≡ α + (m − 1)β is a negative root (such m must exist
as we know that α is positive but χ is negative).

But g − f = β, which implies that β can be written as a sum of two positive roots, a
contradiction, as β is simple. �.

Bringing these results together we have

Theorem 1. Any positive root can be obtained by proceeding from a simple root along root
strings generated by simple roots. The root space structure is determined uniquely by the
simple roots.

Proof

We have shown that if α is a positive root, then α = α1 + · · · + αk where the αi are
simple roots which are not necessarily distinct and the partial sums α1 + · · ·+ αi are roots.

Hence one can obtain α by starting from α1, then passing to α1 +α2 along the α2 string
through α1, then to α1 + α2 + α3 along the α3 string through α1 + α2 and similarly until
one obtains α.

To establish that this construction determines the whole root space structure, observe
that the roots of height k + 1 are determined by the roots of height ≤ k. To see this, note
that all roots of height k + 1 can be obtained by passing along root strings generated by
simple roots. However, all strings passing through roots of height k are determined uniquely
by an end-point to the string of height ≤ k (as knowing where one end-point is enables one
to compute the string length and hence the other end-point.)

Once the positive roots α have been fixed in this fashion, the negative roots β are given
by β = −α. �

1.5 Rank Two Examples

It is instructive to compute all the possible rank 2 root diagrams, and plot them on the
plane. In these cases, there are exactly two simple roots α, β and without loss of generality
we can take |β| ≥ |α|. As we require that α.β ≤ 0 there are only four possible angles
between the simple roots; θ = π

2 , θ = 2π
3 , θ = 3π

4 and θ = 5π
6 . Our strategy will be to first

14



obtain all the positive roots which can be obtained by passing along simple root strings.
This then fixes all the negative roots as well.

1.5.1 Simple roots with θ = π
2

In this case α.β = 0 so the β string passing through α has only one element, and the α
string passing through β also has only one element. The only positive roots are therefore α
and β.

Therefore, there are four roots ±α and ±β with α and β orthogonal, this corresponds
to the (non-simple) Lie algebra A1 ⊕ A1:

α

β

The Lie algebra associated with this root diagram is not simple. This follows from the
proposition:

Proposition 6. Suppose that the root space of a semi-simple Lie algebra L decomposes into
R ∪ R⊥ with roots in R orthogonal to those in R⊥. Then L is not simple.

Proof

First we show that R ∩R⊥ = ∅. Suppose that α ∈ R ∩R⊥. Then α is orthogonal to all
roots. Hence hα must commute with all elements the root spaces, and thus with the whole
of L. Hence ad hα = 0, which implies κ(hα, ℓ) = 0 for all ℓ ∈ L. As κ is non-degenerate,
this implies hα = 0, a contradiction.

Let α denote the roots in R, and α̃ denote roots in R⊥, with corresponding elements hα

and hα̃ of H. Denote by L1 the span of the hα and Jα ∈ Lα and by L2 the span of the hα̃

and Jα̃ ∈ Lα̃. Then L1 is a Lie subalgebra of L because if α ∈ R, [hα, hβ ] = 0, [hα, Jβ ] ∈ Lβ

and if α, β ∈ R and α + β is a root then α + β ∈ R and [Jα, Jβ ] ∈ Lα+β , and if α + β is not
a root then [Jα, Jβ ] = 0. Similarly L2 is a Lie subalgebra of L.

Next we prove that L1 is an ideal of L. To do this, it suffices to prove that [ℓ, hα] ∈ L1

and [ℓ, Jα] ∈ L1 for all ℓ ∈ L and α ∈ R.

Note that if ℓ ∈ H then [ℓ, hα] = 0 ∈ L1 and [ℓ, Jα] ∈ Jα ⊂ L1.
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We have shown that if ℓ = Jβ ∈ R then [ℓ, hα] ∈ L1 and [ℓ, Jα] ∈ L1.

The only remaining case is when ℓ = Jβ̃ for some β̃ ∈ R⊥. Then [ℓ, hα] ∈ Lβ̃ .

Lastly, consider [Jβ̃ , Jα]. Note that α + β̃ cannot be a root, because if it were, it would
lie in either R or R⊥. In either case, one would find Jβ̃ ∈ R ∩ R⊥ or Jα ∈ R ∩ R⊥, a
contradiction. Hence [Jβ̃ , Jα] = 0. �.

1.5.2 Simple roots with θ = 2π
3

In this case,
2β.α

α.α =
2α.β

β.β = −1, It follows that the α string through β has two elements, β

and α + β. The β string through α also has two elements α and α + β.

Consider now simple root strings passing through α+β. The β simple root string starts
as α, and has therefore only the two roots already found (α and α + β). Similarly, the α
simple root string starts as β, and has therefore only the two roots already found (β and
α+β) Hence it is not possible to obtain any additional positive roots by constructing simple
root strings through α + β.

So there are six roots ±α, ±β and ±(α + β). The root diagram is that of A2, corre-
sponding to the weight diagram of the adjoint representation of SU(3).

β

α

All the roots in this diagram have the same length.

1.5.3 Simple roots with θ = 3π
4

In this case,
2β.α

α.α = −2,
2α.β

β.β = −1

Hence the α root string through β has three roots β, β + α and β + 2α, and the β root
string through α has two roots, α and α + β.
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Consider constructing simple root strings through β + nα for n = 1, 2. The α root
string has already been constructed. Consider the β root string. The β root string passing
through α + β has also already been constructed. It remains to consider the β root string
through β + 2α; this contains only β + 2α as neither 2α or 2(β + α) can be roots.

So there are eight roots ±α, ±β, ±(α + β) and ±(β + 2α), which give the root diagram
of B2:

β

α

The ratio of the long root length to short root length is
√

2.

1.5.4 Simple roots with θ = 5π
6

In this case,
2β.α

α.α = −3,
2α.β

β.β = −1,

Hence the α root string through β contains 4 roots, β, β + α, β + 2α and β + 3α. The
β root string through α contains only two roots, α and α + β.

Consider then simple root strings through β + nα for n = 1, 2, 3. As we have already
constructed the α root string through these points, it suffices to consider the β root string.
The β root string through β + α has already been constructed. The β root string through
β + 2α can only contain β + 2α as neither 2α or 2(β + α) can be roots.

Consider the β root string through β + 3α. This cannot contain 3α, so β + 3α is an

endpoint of this string. On computing −2
(β+3α).β

β.β = 1 we see that this string must contain
exactly two elements, β + 3α and 2β + 3α.

Lastly, consider a α string through 2β + 3α. As α.(2β + 3α) = 0 it follows that this
string contains just 2β + 3α.

Hence there are 12 roots, ±α, ±β, ±(3α + 2β), ±(α + β), ±(2α + β), ±(3α + β).

This root diagram corresponds to the exceptional group G2.
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α

β

The ratio of the long root length to short root length is
√

3.

1.6 Dynkin Diagrams

Definition 7. Suppose that αi are the simple roots associated with a complex semi-simple
Lie algebra. Then the Cartan matrix K is a matrix of integers with components given by

Kij =
2αi.αj

αj .αj

(1-30)

Given a Cartan matrix, one can reconstruct the simple roots of the algebra.

Definition 8. The Dynkin diagram associated with a complex semi-simple Lie algebra of
rank n is a graph with n nodes, each node corresponding to one of the simple roots. If i ̸= j
then the i-th and j-th node is connected by nij = KijKji edges (no sum over repeated indices
here).

If two nodes are connected by more than one edge then an arrow is added in the direction
of the shorter root. If two nodes are connected by only one edge, then no arrow is added.

Proposition 7. If the Lie algebra is simple, then the Dynkin diagram must be connected.

Proof

Suppose the diagram decomposes into two (or more) disconnected components, then
this implies that the simple roots can be split into two non-empty sets R and R⊥ with
elements in R orthogonal to those in R⊥ and R ∩ R⊥ = ∅.

Let L1 denote the Lie subalgebra of L obtained by taking the span of the elements
in R and those in the corresponding root spaces Lα for α ∈ R together with all possible
commutators between these elements.
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Suppose that L1 = L. Then consider some α ∈ R⊥. The root space Lα must correspond
to a root space Vβ for some β ∈ span R. Hence

α =
∑

i

kiβi
(1-31)

for β
i
∈ R and ki ∈ N. But this is not possible, as α and β

i
are simple roots, hence linearly

independent. �

Given such a diagram, one can reconstruct the Cartan matrix. This is because there
are only finitely many possible values for KijKji and knowing these, together with which
roots are shorter than others, is sufficient to fix Kij- e.g. if KijKji = 3 then one must have
Kij = −1 and Kji = −3 or Kij = −3 and Kji = −1 and one has |αi| ≠ |αj |; the direction of
the arrow determines which root is longer, the length ratio between the longer and shorter
root is

√
3. However, if KijKji = 1 then Kij = Kji = −1 and |αi| = |αj |.

From the table of possible values of Kij we observe that two nodes can be linked with at
most 3 edges. It is possible to obtain rather severe constraints on possible Dynkin diagrams.
In particular, suppose that ei = 1√

αi.αi
αi are the unit-normalized roots. Then if i ̸= j, it

follows that ei.ej = −1
2

√
nij

Proposition 8. A Dynkin diagram has no closed loops, and each vertex meets at most 3
lines.

Proof Suppose a Dynkin diagram has a closed loop in it, with no subloops. Let the nodes
on the rim of the loop be 1, 2, . . . , k; as there are no subloops we observe that the only
non-vanishing inner products of ei.ej for i ̸= j are of the form ei.ei+1 (with the definition
that ek+1 = e1), and ei.ei+1 ≤ −1

2 .

Set α = ei + · · · + ek. Then

α.α =
k∑

i=1

ei.ei + 2
k∑

i=1

ei.ei+1 = k + 2
k∑

i=1

ei.ei+1 ≤ k + 2(−1
2
k) = 0 (1-32)

Hence α = 0. But α cannot vanish as the simple roots are linearly independent, which
is a contradiction.

Next consider a normalized simple root e which is joined to the simple roots ei, and e
is joined to ei by ni edges. If i ̸= j then ei.ej = 0 as we have shown that there can be no
closed loops. Set β = e −

∑
i(e.ei)ei. Then β.ei = 0 and hence

e.e = (β +
∑

i

(e.ei)ei).(β +
∑

j

(e.ej)ej) = β.β +
∑

i

(e.ei)
2 = β.β +

1
4

∑
i

ni (1-33)

But e.e = 1 hence

1 = β.β +
1
4

∑
i

ni (1-34)
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However, as β cannot vanish (because of the linear independence of the simple roots),
β.β > 0, and hence

∑
i ni < 4. Hence it follows that e can be linked to by at most 3 edges.

�.

Note that this means that the only Dynkin diagram which contains a triple edge is that
for G2:

Proposition 9. It is not possible for a Dynkin diagram to contain the following sub-
diagram:

p nodes in a horizontal line
   (linked by single edges)

Proof

Suppose that this sub-diagram is allowed.

Denote the normalized roots corresponding to the horizontal nodes e1, . . . , ep running
from left to right. Denote the two normalized roots to the far left by α1, α2 and the two
normalized roots to the far right by β

1
and β

2
.

As there are no closed loops we must have α1.α2 = β
1
.β

2
= αi.βj

= 0; also αi.ej = 0

unless j = 1, then αi.e1 = −1
2 and β

i
.ej = 0 unless j = p then β

i
.ep = −1

2 . The only
non-vanishing values for ei.ej for i ̸= j are obtained from e1.e2 = · · · = ep−1.ep = −1

2 .

Set e = e1 + · · · + ep. Note that e.e = 1.

Also set χ = e + 1
2(α1 + α2 + β

1
+ β

2
). Then χ.αi = χ.β

i
= 0, and

1 = e.e = (χ − 1
2
(α1 + α2 + β

1
+ β

2
)).(χ − 1

2
(α1 + α2 + β

1
+ β

2
))

= χ.χ +
1
4
(α1 + α2 + β

1
+ β

2
).(α1 + α2 + β

1
+ β

2
)

= χ.χ + 1 (1-35)

Hence χ.χ = 0, which implies χ = 0. But χ cannot vanish as the ei, αj and β
k

are
linearly independent, a contradiction. �
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By essentially analogous reasoning, it is also possible to exclude the following two sub-
diagrams (double arrows have not been included here)

p nodes in a horizontal line
   (linked by single edges)

Exercise: Prove that these two subdiagrams are forbidden.

Proposition 10. The following subdiagram is forbidden:

Proof

Label the unit normalized roots e1, e2, e3, e4 and e5 from left to right.

Set e =
√

2e1 + 2
√

2e2 + 3e3 + 2e4 + e5

Then by direct computation e.e = 0 which implies that e = 0, in contradiction to the
linear independence of e1, e2, e3, e4 and e5. �

This classifies all possible diagrams with a double edge; it is not possible for a double
edge to appear more than once. They are:

n

n−1 nodes linked by
single edges

B   : n nodes

and
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n

n−1 nodes linked by
single edges

C   : n nodes

and

F
4

It remains to classify diagrams with only single edges. We have already proven that
such a diagram can have at most one branch point. Diagrams with a single branch point
can be constrained further:

Proposition 11. If there is a branch point in a diagram with only single edges then one of
the branches has length 1.

Proof

Suppose that this is not the case. Then the diagram contains the sub-diagram:

Suppose that α1 is the normalized root at the centre, with α2, α3, α4 the normalized
roots adjacent to the centre and α5, α6, α7 the normalized outer roots.

Consider χ = 3α1 + 2(α2 + α3 + α4) + α5 + α6 + α7 Then χ.χ = 0, a contradiction. �.

Proposition 12. The subdiagram

is forbidden.
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Proof

Label the horizontal normalized roots from left to right as α1, . . . , α7 with the remaining
normalized root α8.

Then set χ = α1+2α2+3α3+4α4+3α5+2α6+α7+2α8. Then χ.χ = 0, a contradiction.
�

Proposition 13. The subdiagram

is forbidden.

Proof

Label the horizontal normalized roots from left to right as α1, . . . , α8 with the remaining
normalized root α9.

Then set χ = α1 + 2α2 + 3α3 + 4α4 + 5α5 + 6α6 + 4α7 + 2α8 + 3α9. Then χ.χ = 0, a
contradiction. �

Hence this constrains the possible diagrams involving only single edges to the two clas-
sical algebras:

nA   : n nodes

nD   : n nodes

and the three exceptional algebras

6E
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7E

8E

1.6.1 Summary of results so far

We have shown that a semi-simple Lie algebra is completely described by its decomposi-
tion into a Cartan subalgebra and root spaces. The simple roots are particularly important,
as all roots can be written as integer linear combinations of simple roots, and the structure
of the simple roots determines the entire root space. Simple roots of are described entirely
by their associated Dynkin diagram (which is connected if the Lie algebra is simple), and
we have classified all such Dynkin diagrams.

The remaining steps in classifying the simple Lie algebras are:

i) Show that the structure of the root diagram fixes the commutation relations.

ii) Show that each allowed Dynkin diagram is in fact obtained from one of the classical
or exceptional algebras (we have labelled them accordingly, because they do- but we
have not proved this!)

In order to show (i) it suffices to obtain a special basis for the Lie algebra in which the
structure constants can be read off directly from the properties of the root space. We will
not prove this explicitly (the proof is straightforward but rather involved).

To establish (ii) one must compute the root spaces for the classical and exceptional Lie
groups. We will not do this for all cases, but rather compute the root space associated with
An as an example.

1.7 The Lie Algebra An

The Lie algebra of An has the Dynkin diagram

We will show that this diagram can be obtained from the complexification of L(SU(n+1)),
making use of the results of (3.7) in Chapter 3 [corresponding to question 10 of Example
Sheet 4.]
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The Cartan subalgebra H can be taken to be the traceless diagonal matrices; there are
n(n+1) roots associated with the Ei,j for i ̸= j. If the root associated with Ei,j is a positive
root then the root associated with Ej,i is a negative root.

It is useful to construct a basis of H defined by

ep =
1√

2(n + 1)p(p + 1)

p∑
r=1

r(Er,r − Er+1,r+1)

=
1√

2(n + 1)p(p + 1)

( p∑
r=1

Er,r − pEp+1,p+1

)
(1-36)

Then

κ(ep, eq) = δpq (1-37)

In this basis,

[ep, Ei,j ] = αi,j
p Ei,j (1-38)

for p = 1, . . . , n where

αi,j
p =

1√
2(n + 1)p(p + 1)

(
p(δj,p+1 − δi,p+1) +

p∑
r=1

(δi,r − δj,r)
)

(1-39)

denote the root components. One can arrange for an ordering on the space spanned by
the roots so that the positive roots are αi,j for i < j, to see this note that if λ ∈ Rn and
i < j then

λ.αi,j =
1√

2(n + 1)

( n∑
r=i

λr√
r(r + 1)

−
√

1 − 1
i
λi−1−

n∑
r=j

λr√
r(r + 1)

+
√

1 − 1
j
λj−1

)
(1-40)

(where if i = 1 the term
√

1 − 1
i λi−1 is taken to vanish). So setting λp =

√
p+1

p we see that

λ.αi,j ≥ 1√
2(n + 1)

j∑
r=i

1
r

> 0 (1-41)

and so if i > j then λ.αi,j < 0. The positive roots αi,j for i < j can be written as positive
integer linear sums of βi = αi,i+1 for i = 1, . . . , n.

The βi are the simple roots, which are linearly independent, and have components (for
p = 1, . . . , n)
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(βi)p =
1√

2(n + 1)p(p + 1)
(−pδp,i−1 + (p + 1)δp,i) i = 1, . . . , n (1-42)

It is then straightforward to verify that

βj .βj =
1

n + 1
j = 1, . . . , n (1-43)

and

βi.βj = − δi,j−1

2(n + 1)
1 ≤ i < j ≤ n + 1 (1-44)

This produces the Dynkin diagram for An.

1.8 Real Forms and the Chevalley Basis

Definition 9. Let L be a complex Lie algebra. A real basis for L consists of a basis for L
for which all the structure constants are real.

Definition 10. Let L be a complex Lie algebra. Suppose that {Ta} is a real basis for L.
Let L′ be the vector space obtained from the span of the Ta over R. Then as the structure
constants with respect to the basis Ta are real, it follows that L′ is a Lie algebra. L′ is called
the real form of L. The Lie algebra L is obtained by complexifying L′.

Definition 11. Let L be a complex Lie algebra with real basis {Ta}. Let L′ be the real Lie
algebra obtained from the span of the Ta over R. Then L′ is called a compact real form if
the Killing form of L′ is negative definite.

Theorem 2. Let L be a semisimple complex Lie algebra. Then there exists a basis of L
consisting of {hαi

: i = 1, . . . , n} and {Jα} where αi are the simple roots and α are roots
satisfying

[hαi
, hαj

] = 0

[hαi
, Jα] = (

2αi.α

α.α
)Jα

[Jα, J−α] = hα (1-45)

where hα is an integer linear combination of the hαi
; and if α, β and α + β are roots

[Jα, Jβ ] = ±(1 − p)Jα+β (1-46)

where p is the smallest integer such that β + pα is a root.

This basis is called the Chevalley basis.
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Proof

We have already established much of this. In particular, as the αi are linearly indepen-
dent on Rn it follows that the hαi

are linearly independent on H and therefore form a basis
for H. It remains to establish (1-46). In general, from our previous reasoning, if α, β are
roots with α ± β ̸= 0, then by constructing the α string through β we find

[Jα, Jβ] = Nα,βJα+β (1-47)

for some Nα,β ∈ C with Nα,β ̸= 0 if α + β is a root, and Nα,β = 0 otherwise. Next note
that the commutation relations (1-45) are left invariant under the re-scaling Jα → cαJα

provided that cαc−α = 1 for all roots α. This re-scales Nα,β as Nα,β → c−αc−βNα,β. We
will not present the remainder of the argument here; it involves establishing some additional
constraints on the Nα,β, such as Nα,β = N−α,−β , which are sufficient, together with the
rescaling freedom, to establish (1-46) (the details can be found in Samelson). �

Proposition 14. If L is a semi-simple complex Lie algebra then L has a compact real form.

Proof

The compact Lie form can be constructed from the Chevalley basis by taking a new
basis given by ihαi

, i(Jα + J−α) and Jα − J−α.

Then

[ihαi
, ihαj

] = 0

[ihαi
, i(Jα + J−α)] = −

(2αi.α

α.α

)
(Jα − J−α)

[ihαi
, Jα − J−α] =

(2αi.α

α.α

)
i(Jα + J−α) (1-48)

and if α ± β ̸= 0 then

[i(Jα + J−α), Jβ − J−β] = iNα,βJα+β − iN−α,−βJ−α−β + iN−α, βJ−α+β − iNα,−βJα−β

= iNα,β(Jα+β + J−(α+β)) + IN−α,β(J−α+β + Jα−β) (1-49)

and

[i(Jα + J−α), Jα − J−α] = −2i[Jα, J−α] = −2ihα (1-50)

where hα is an integer linear combination of the hαi
.

This is sufficient to show that there is a basis for which the structure constants are real.

Next we must consider the Killing form restricted to the linear span of this basis over
R.
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We have already proven that κ is positive definite when restricted to the real span of
the hαi

. So κ is negative definite when restricted to the real span of the ihαi
. In addition,

κ(h, Jα) = 0 (1-51)

for all h ∈ H and roots α. Also, if α ± β ̸= 0 then

κ(i(Jα +J−α), Jβ −J−β) = κ(i(Jα +J−α), i(Jβ +J−β)) = κ(Jα−J−α, Jβ −J−β) = 0 (1-52)

Also, recall that

κ(J±α, J±α) = 0, κ(Jα, J−α) =
1

κ(yα, yα)
(1-53)

Hence

κ((i(Jα + J−α), Jα − J−α)) = 0 (1-54)

and

κ(i(Jα + J−α), i(Jα + J−α)) = κ(Jα − J−α, Jα − J−α) = − 2
κ(yα, yα)

(1-55)

So, in this basis, κ is negative definite. �.

1.9 Representations and Weights

We shall use the techniques which we have developed to classify complex semisimple Lie
algebras in order to investigate representations of complex semisimple Lie algebras acting
on a vector space V .

Let d denote a representation of a semi-simple complex Lie algebra L of rank n, acting
on V (where V is a vector space over C). Let H denote the Cartan subalgebra of L. If
hα ∈ H, Jα ∈ Lα are as in the previous section, then d(hα) and d(J±α) generate a L(SU(2))
algebra acting on V . It follows that d(hα) is diagonalizable over V . As all elements of H
commute with each other, and the hα span H, it follows that d(hi) can be simultaneously
diagonalized for all roots hi ∈ H.

Definition 12. w is a weight of the representation d if there exists v ∈ V , v ̸= 0 such that
d(hi)v = wiv where hi is a basis of H.

The weights w are the simultaneous eigenvectors of all the d(hα). Given a weight w,
define

Vw = {v ∈ V : d(hi)v = wiv} (1-56)
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As the d(hα) can all be simultaneously diagonalized it follows that

V =
⊕

weights w

Vw (1-57)

Proposition 15. Let w be a weight of the representation d, and suppose that α is a root.
Suppose v ∈ Vw. If d(Jα)v ̸= 0, then d(Jα)v is a simultaneous eigenstate of d(hi) with
weight w + α.

Proof

This is established by noting that

d(hi)d(Jα)v = [d(hi), d(Jα)]v + d(Jα)d(hi)v
= d([hi, Jα])v + d(Jα)wiv
= αid(Jα)v + wid(Jα)v
= (w + α)id(Jα)v (1-58)

Hence if d(Jα)v ̸= 0 then w + α is also a weight. �

Proposition 16. Let w be a weight of the representation d, and suppose that α is a root.
Then the vectors w + nα are weights for all p ≤ n ≤ q for some p, q ∈ Z, p ≤ 0 ≤ q.

In addition 2w.α
α.α = −(p + q), and w − 2α.w

α.α α is a weight.

Proof

Let v ∈ Vw. Consider the vector space W obtained from the span of v and (J±α)mv
for m ∈ N. This is invariant under the action of d(hα) and d(J±α). If (J±α)mv ̸= 0 then
(J±α)mv is an eigenstate of d(hi) with weight w ± mα. Hence d(hα) and d(J±α) generate
an irreducible representation of L(SU(2)) acting on W . So there exist integers p, q with
p ≤ 0 ≤ q such that w + nα is a weight if n ∈ bZ, p ≤ n ≤ q.

Suppose that v′ ∈ Vw+nα for such n. We continue to work in a basis {hi} of H for which
κ(hi, hj) = δij , and αi = yi

α ∈ R.

Then

d(hα)v′ = d(
1

κ(yα, yα)
yα)v′

=
αi

α.α
d(hi)v′

=
α.(w + nα)

α.α
v′ (1-59)

The largest and smallest of the possible eigenvalues is ±r where 2r ∈ N.

Hence
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q +
w.α

α.α
= r, p +

w.α

α.α
= −r (1-60)

and therefore

2w.α

α.α
= −(p + q) (1-61)

In particular, this implies that p ≤ −2w.α
α.α ≤ q. Hence w − 2α.w

α.α α is a weight. �

Note that this implies that in the basis for H in which the Killing form and root com-
ponents are real, the weight components must also be real, so one can regard the weights
as vectors in Rn.

Definition 13. A weight w is a highest weight if w+α is not a weight for any positive root
α.

Proposition 17. If d is a representation of a complex semisimple Lie algebra acting on
the complex finite-dimensional vector space V , then there exists a highest weight.

Proof

We have shown that there exists at least one weight χ, with some v ∈ V , v ̸= 0 such
that d(hi)v = χ

i
v. Consider constructing all possible weights of the form χ + α for positive

roots α by acting on v by d(Jα). Then repeat this process. Eventually this process must
stop, otherwise, if it continued indefinitely, one could construct arbitrarily many linearly
independent vectors in V , in contradiction with the finite-dimensionality of V . Hence there
must exist a weight w such that w + α is not a weight for all positive roots α. �

Proposition 18. If w is a maximal weight and α is a simple root then w.α ≥ 0.

Proof

We have shown that w− 2w.α
α.α α is a weight. If α.w > 0 then this implies that the α string

of weights passing through w contains w +α, i.e. w +α is a weight. This is a contradiction,
as w is a highest weight. �

Proposition 19. Suppose that w is a highest weight, and let v ∈ Vw, v ̸= 0. Define V ′ to
be the span of v and all possible products of

∏
d(J−α)v for simple roots α. Then V ′ is an

invariant subspace of V .

Proof

Note that all vectors
∏

d(J−α)v either vanish or are eigenstates of d(hi) and hence of
d(hβ) for all roots β.

Suppose that β is a positive root. Then one can write β = β
1
+ · · ·+β

k
for simple roots

β
1
, and β

1
+ · · · + β

k
is a root for j = 1, . . . , k. It follows that

Jβ = λ[Jβ
k
, [Jβ

k−1
. . . , Jβ

1
] . . . ] (1-62)
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and
J−β = µ[J−β

k
, [J−β

k−1
. . . , J−β

1
] . . . ] (1-63)

for some constants λ, µ. Hence

d(Jβ) = λ[d(Jβ
k
), [d(Jβ

k−1
) . . . , d(Jβ

1
)] . . . ] (1-64)

and
d(J−β) = µ[d(J−β

k
), [d(J−β

k−1
) . . . , d(J−β

1
)] . . . ] (1-65)

As V ′ is invariant under d(J−β
i
) by construction, it follows that V ′ is invariant under d(J−β).

Also, to establish that d(Jβ)V ′ ⊂ V ′ it suffices to show that d(Jβ)V ′ ⊂ V ′ for simple roots
β.

Suppose then that β is a simple root. V ′ is spanned by
∏k

i=1 d(J−αi
)v where αi are

simple. First note that d(Jβ)v = 0 as w + β is not a weight.

It therefore suffices to establish that d(Jβ)
∏k

i=1 d(J−αi
)v ∈ V ′ for simple roots αi.

We do this by induction on k. This is true for k = 1, because

d(Jβ)d(J−α1
)v = [d(Jβ), d(J−α1

)]v = d([Jβ , J−α1
])v (1-66)

This vanishes unless β = α1, in which case [Jβ , J−α1
] ∝ d(hβ) and d(hβ)v = µv for some

constant µ.

Suppose it is true for k = ℓ. Consider

d(Jβ)
ℓ+1∏
i=1

d(J−αi
)v = d(Jβ)d(J−α1

)v′ (1-67)

where v′ =
∏ℓ+1

i=2 d(J−αi
)v ∈ V ′ is an eigenstate of d(hi).

However,

d(Jβ)d(J−α1
)v′ = [d(Jβ), d(J−α1

)]v′ + d(J−α1
)d(Jβ)v′

= d([Jβ , J−α1
])v′ + d(J−α1

)d(Jβ)v′ (1-68)

Now, from the induction, d(Jβ)v′ ∈ V ′ and hence d(J−α1
)d(Jβ)v′ ∈ V ′. Also, d([Jβ , J−α1

])v′

vanishes unless β = α1, in which case [Jβ , J−α1
] ∝ d(hβ) and d(hβ)v′ = νv′ for some constant

ν. If follows that d(Jβ)d(J−α1
)v′ ∈ V ′. This establishes the induction. �

From this construction of a d-invariant subspace from a state of highest weight, one
immediately finds the

Corollory 4. Suppose that d is an irreducible representation acting on V . Then there exists
a unique highest weight with multiplicity 1.

Proof
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Suppose that w and w′ are two highest weights with w ̸= w′. Let v and v′ ∈ V be
eigenstates corresponding to these two weights respectively.

We have shown that by acting on v with all lowering operators d(J−α) for positive roots
α, one obtains an invariant subspace of V . As d is irreducible, this invariant subspace must
be V . But w′ is a weight of d, so w′ = w−β where β is a positive integer linear combination
of positive roots.

However, by exactly the same reasoning, one must also have w = w′−β′ where β′ is also
a positive integer linear combination of positive roots. Hence β + β′ = 0, a contradiction,
as β and β′ are both positive vectors.

Hence it follows that there is only one highest weight w. If v is a corresponding eigenstate
associated with this weight, then one generates a spanning set for the whole of V by by
acting on v with all lowering operators d(J−α) for positive roots α. It follows that one can
construct a basis for V consisting of v with weight w and other vectors with weights w − β
where β is a sum of positive roots. Hence the weight space corresponding to w is spanned
by v, and is one-dimensional. �

We have shown that all weights w are constrained by 2α.w
α.α ∈ Z for all roots α. This

forces the weights to lie in a lattice in Rn called the weight lattice. The roots also lie in
a lattice defined by integer linear combinations of the simple roots. Hence, the difference
of any two weights of an irreducible representation corresponds to a sum of roots, which
therefore lies in the root lattice.

Definition 14. The fundamental weights wi satisfy
2αj .wi

αj .αj
= δij where αj is the j-th simple

root.

The fundamental weights are linearly independent vectors in Rn, so if w is a weight one
can write

w =
∑

niwi (1-69)

for constants ni. If αj is the j-th simple root then

ni =
2w.αi

αi.αi

∈ Z (1-70)

Hence the fundamental weights form a basis for the weight lattice. All weights can be
written as certain integer linear combinations of the fundamental weights.

Definition 15. The dominant weights Id consist of those elements w of the weight lattice
such that w.α ≥ 0 for all positive roots α.

We have shown that if w is a highest weight then w ∈ Id. The converse is also true. We
shall state, but not prove the following two important theorems

Theorem 3. Every irreducible representation of a complex semisimple Lie algebra L on a
finite-dimensional complex vector space has a unique highest weight w ∈ Id. Conversely,
given any w ∈ Id there exists an irreducible representation of L with highest weight w. If
two irreducible representations have the same highest weight they are equivalent.
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Theorem 4. Let d be a representation of a complex semisimple Lie algebra L acting on a
finite-dimensional complex vector space V . Then V can be decomposed as V = V1 ⊕ · · · ⊕
Vk where the Vi are invariant subspaces of V with respect to d, and d restricted to Vi is
irreducible.

In this way, the representations of L acting on V are classified entirely (up to equivalence)
by their highest weights. In particular, given a knowledge of the simple roots αi of L, one can
construct the fundamental weights wi. The dominant weights consist of Id = {

∑n
i=1 miwi :

mi ∈ N}.

So, the highest weight can be written w =
∑

niwi for ni ∈ N. The highest weight (and
therefore the entire representation) is therefore determined by the non-negative integers ni.
This information can be appended to the Dynkin diagram to classify the representation:
i.e. one writes the non-negative integer ni next to the node corresponding to the i-th simple
root. This then fixes the highest weight and therefore the representation.

1.9.1 The weights of L(SU(3))

As an example, we examine the weight lattice of SU(3). From our previous examination of
the structure of A2, we have computed the simple roots

α1 = (
1√
3
, 0), α2 = (− 1

2
√

3
,
1
2
) (1-71)

The corresponding fundamental weights are

w1 = (
1

2
√

3
,
1
6
), w2 = (0,

1
3
) (1-72)

Observe that α1 = 2w1 − w2, α2 = −w1 + 2w2.

Suppose that w is the highest weight w = n1w1 + n2w2 for some n1, n2 ∈ N. Then if
χ is any weight of the same representation, χ = m1w1 + m2w2 for some m1, m2 ∈ N the
difference w − χ lies in the root lattice, i.e.

(n1 − m1)w1 + (n2 − m2)w2 = k1(2w1 − w2) + k2(−w1 + 2w2)
= (2k1 − k2)w1 + (2k2 − k1)w2 (1-73)

for some k1, k2 ∈ N. Hence (n1 − m1) − (n2 − m2) = 3(k1 − k2) ≡ 0 mod 3.

We therefore find m1 − m2 ≡ n1 − n2 mod 3. This result is called triality- all weights
associated with a representation of L(SU(3)) have the same triality.

The highest weights computed here are of the form w = n1( 1
2
√

3
, 1

6)+n2(0, 1
3) for n1, n2 ∈

N, which when plotted in R2 occupy a sector subtending an angle π
3 at the origin:
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π
3

H1
3

3
H2

Note: The careful reader will observe that these roots and weights appear to be different
from those computed previously, by a factor of 1√

3
. This is because the components of the

roots and weights are defined with respect to some basis of the Cartan subalgebra. We have
worked with an orthonormal basis e1, e2 satisfying κ(ei, ej) = δij . It is straightforward to
see that this basis is related to the basis h1, h2 of the Cartan subalgebra which we used
before by a rescaling ei = 1√

3
hi, which accounts for the scale difference.

Finally, we can write down the Dynkin diagrams corresponding to representations of
SU(3): the generic diagram is

n                 m

which corresponds to a representation with highest weight nw1 + mw2.

The complex conjugate representation to this has Dynkin diagram

m                 n

The adjoint representation is real (i.e. it is its own complex conjugate), and corresponds
to

1                 1

The representations with triangular weight diagrams are

n                 0

and
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0                 n
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