Examples Sheet 1

1. (Warm-up) The dihedral group D_{4} describes the symmetries of a square and is generated by a 90° rotation $r=R\left(\frac{\pi}{2}\right)$ and a reflection m (say, about the vertical symmetry axis).
(a) Write the group multiplication table for D_{4}.
(b) What are the subgroups of D_{4} ?
(c) What are the conjugacy classes of D_{4} ?
(d) Which of the subgroups of D_{4} are normal?
(e) Can D_{4} be written as the non-trivial direct product of some of its subgroups?
2. $O(n)$ consists of $n \times n$ real matrices M satisfying $M^{T} M=I$ whereas $U(n)$ consists of $n \times n$ complex matrices U satisfying $U^{\dagger} U=I$. Check that $O(n)$ is a group. Check similarly that $U(n)$ is a group. Verify that the subset of all real matrices in $U(n)$ forms the group $O(n)$ and, similarly, that the subset of all real matrices in $S U(n)$ forms the group $S O(n)$. By considering the action of $U(n)$ on \mathbb{C}^{n}, and identifying \mathbb{C}^{n} with $\mathbb{R}^{2 n}$, show that $U(n)$ is a subgroup of $O(2 n)$.
3. Show that for matrices $M \in O(n)$, the first column of M is an arbitrary unit vector, the second is a unit vector orthogonal to the first, ..., the $k^{\text {th }}$ column is a unit vector orthogonal to the span of the previous ones, etc. Deduce the dimension of $O(n)$. By similar reasoning, determine the dimension of $U(n)$.
4. (a) Show that a general element of $S U(2)$ can be written as

$$
U=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right)
$$

where α, β are complex numbers satisfying $|\alpha|^{2}+|\beta|^{2}=1$.
(b) Deduce that an alternative form for an $S U(2)$ matrix is

$$
U=a_{0} I+i \mathbf{a} \cdot \boldsymbol{\sigma}
$$

with $\left(a_{0}, \mathbf{a}\right)$ real, $\boldsymbol{\sigma}$ the Pauli matrices, and $a_{0}^{2}+\mathbf{a} \cdot \mathbf{a}=1$.
(c) Using the second form, calculate the product of two $S U(2)$ matrices.
5. A Lie group has group elements $g(x)$ depending on group parameters x^{r}, with $g(0)=e$, the identity, and under group multiplication $g(x) g(y)=g(\varphi(x, y))$ for some $\varphi^{r}(x, y)$. Let $g(x)^{-1}=g(\bar{x})$ where $\varphi^{r}(\bar{x}, x)=0$.
(a) Why must $\varphi^{r}(x, 0)=x^{r}, \varphi^{r}(0, y)=y^{r}$?
(b) Show that $\varphi^{r}(x, y)$ may be expanded near the origin according to

$$
\begin{equation*}
\varphi^{a}(x, y)=x^{a}+y^{a}+c_{b c}^{a} x^{b} y^{c}+O\left(x^{2} y, x y^{2}\right) . \tag{1}
\end{equation*}
$$

Use this to find $\bar{x}(x)$ for x small.
(c) Let $g(d)=g(x)^{-1} g(y)^{-1} g(x) g(y)$ and show that for x, y small $d^{a}=f^{a}{ }_{b c} x^{b} y^{c}$ where $f^{a}{ }_{b c}=c^{a}{ }_{b c}-c^{a}{ }_{c b}$.
(d) Using an expansion to one higher order show that the associativity condition $\varphi(\varphi(x, y), z)=\varphi(x, \varphi(y, z))$ leads to the Jacobi identity.
(e) Assume the Lie group has generators T_{a} satisfying $\left[T_{a}, T_{b}\right]=f^{c}{ }_{a b} T_{c}$. For an element of the Lie algebra $a^{a} T_{a}$ there is an associated group element given by $g(a)=\exp \left(a^{a} T_{a}\right)$. Use the Baker-Campbell-Hausdorff formula $\exp t A \exp t B=$ $\exp \left(t(A+B)+t^{2}[A, B] / 2+\mathcal{O}\left(t^{3}\right)\right)$ to obtain $\varphi(x, y)$ for small x, y and verify that this is compatible with the general expansion of φ.
6. This question regards Pauli matrices. Verify the following properties of the Pauli matrices $\boldsymbol{\sigma}:=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$:
(a) $\sigma_{i} \sigma_{j}=I \delta_{i j}+i \epsilon_{i j k} \sigma_{k}$,
(b) $\sigma_{2} \boldsymbol{\sigma} \sigma_{2}=-\boldsymbol{\sigma}^{*}$,
(c) $\exp (-i \theta \mathbf{n} \cdot \boldsymbol{\sigma} / 2)=I \cos (\theta / 2)-i \mathbf{n} \cdot \boldsymbol{\sigma} \sin (\theta / 2)$.
7. Verify the Baker-Campbell-Hausdorff formula
$\exp t A \exp t B=\exp \left(t(A+B)+\frac{t^{2}}{2}[A, B]+\frac{t^{3}}{12}\{[A,[A, B]]+[B,[B, A]]\}+\ldots\right)$
up to and including order t^{2} (i.e. omitting the order t^{3} term).
8. Let $g(t)=\exp i t \sigma_{1}$. By evaluating $g(t)$ as a matrix, show that $\{g(t): 0 \leq t \leq 2 \pi\}$ is a 1-parameter subgroup of $S U(2)$. Describe geometrically how this subgroup sits inside the $S U(2)$ manifold.
9. Let $\exp i H=U$. Show that if H is Hermitian then U is unitary, and that if H is also traceless then $\operatorname{det} U=1$. How do these results relate to the theorem that the exponential map $X \mapsto \exp X$ sends $L(G)$, the Lie algebra of G, to G ?
10. A useful basis for the Lie algebra of $G L(n)$ consists of the n^{2} matrices $T^{i j}(1 \leq$ $i, j \leq n)$, where $\left(T^{i j}\right)_{\alpha \beta}=\delta_{i \alpha} \delta_{j \beta}$. Find the structure constants in this basis.
11. [This question is too difficult as written. Attempt only if you have extra time.] Using the same notation as in Question [5, where $z^{r}=\varphi^{r}(x, y)$, obtain

$$
\frac{\partial z^{r}}{\partial y^{s}}=\lambda_{s}{ }^{a}(y) \mu_{a}^{r}(z), \quad \mu_{a}^{r}(z)=\left.\frac{\partial}{\partial y^{a}} \varphi^{r}(z, y)\right|_{y=0}, \quad \mu_{a}^{r}(z) \lambda_{r}{ }^{b}(z)=\delta_{a}^{b}
$$

Show that the equation for the structure constants $f^{a}{ }_{b c}$ may also be expressed as

$$
\frac{\partial}{\partial y^{r}} \lambda_{s}{ }^{a}(y)-\frac{\partial}{\partial y^{s}} \lambda_{r}^{a}(y)=-f^{a}{ }_{b c} \lambda_{r}^{b}(y) \lambda_{s}{ }^{c}(y) .
$$

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.

