Examples Sheet 2

N.b. The general linear group of a vector space $G L(V)$ is the group of all automorphisms of V, i.e. bijective, linear maps $V \rightarrow V$. If V is finite dimensional and a basis is chosen, then $G L(V)$ is isomorphic to the general linear group of matrices $G L(\operatorname{dim} V, \mathbb{F})$.

1. (Warm-up) Show that a representation of the dihedral group, $D: D_{4} \rightarrow G L(2, \mathbb{R})$, can be constructed using the matrices

$$
D(r)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad D(m)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

(a) Is this a faithful representation of D_{4} ? Is it a reducible representation of D_{4} ?
(b) Consider the subgroup $K_{4}=\left\{e, r^{2}, m, m r^{2}\right\}$ (Klein's Vierergruppe) and the corresponding matrices used above. Show that these four matrices constitute a reducible representation of K_{4}, and identify the invariant subspaces.
2. The adjoint representation of the Lie group $S U(2)$ is defined to be the map Ad : $S U(2) \rightarrow G L(\mathfrak{s u}(2))$ given by:

$$
\begin{equation*}
\operatorname{Ad}_{A}(X)=A X A^{\dagger} \tag{*}
\end{equation*}
$$

for all $A \in S U(2), X \in \mathfrak{s u}(2)$.
(a) Show that Ad is indeed a group representation. This will require checking: (i) for each $A \in S U(2)$, we have that Ad_{A} is an automorphism of $\mathfrak{s u}(2)$; (ii) given $A, B \in S U(2)$, we have $\operatorname{Ad}_{A B}=\operatorname{Ad}_{A} \circ \operatorname{Ad}_{B}$.
(b) By writing $A=I+Y+O\left(Y^{2}\right)$ in (*), construct the associated adjoint representation ad: $\mathfrak{s u}(2) \rightarrow \mathfrak{g l}(\mathfrak{s u}(2))$, where $\mathfrak{g l}(\mathfrak{s u}(2))$ is the space of linear maps $\mathfrak{s u}(2) \rightarrow \mathfrak{s u}(2)$ of the Lie algebra $\mathfrak{s u}(2)$. Verify that your proposed representation of $\mathfrak{s u}(2)$ indeed constitutes a Lie algebra representation.
3. (a) If d_{1} and d_{2} are representations of a Lie algebra $L(G)$, show that $d_{1} \oplus d_{2}$ is too. Via the exponential map, show that $\exp \left(d_{1} \oplus d_{2}\right)=\left(D_{1} \oplus D_{2}\right)(\exp)$ is a representation of G, where you may assume that D_{i}, where $D_{i}(\exp (X))=$ $\exp \left(d_{i}(X)\right)$ for all $X \in L(G)$, constitute well-defined representations of the Lie group G for $i \in\{1,2\}$.
(b) Prove that the tensor product $d_{1} \otimes d_{2}$ is a representation of $L(G)$. Exponentiate to show that $D_{1} \otimes D_{2}$ is a representation of G.
4. Let D be a finite-dimensional representation of G acting on V, and (,) a positive definite inner product on V invariant under G, i.e.

$$
(D(g) u, D(g) v)=(u, v): u, v \in V, g \in G .
$$

D is said to be unitary in this case.
(a) Let W be an invariant subspace of V. Show that W_{\perp}, the orthogonal complement of W in V, is also invariant.
(b) Deduce that D is completely reducible.
5. (Note that this question uses physics conventions for the generators t_{i}, such that they are Hermitian.) Three 3×3 matrices $\mathbf{t}:=\left(t_{1}, t_{2}, t_{3}\right)$ are defined by $\left(t_{i}\right)_{j k}=-i \epsilon_{i j k}$.
(a) Prove $\left[t_{i}, t_{j}\right]=i \epsilon_{i j k} t_{k}$.
(b) Prove $(\mathbf{n} \cdot \mathbf{t})^{3}=|\mathbf{n}|^{2} \mathbf{n} \cdot \mathbf{t}$.
(c) What are the possible eigenvalues of $\hat{\mathbf{n}} \cdot \mathbf{t}$ if $\hat{\mathbf{n}}$ is a unit vector?
(d) We may represent a rotation by an angle θ about an axis that points along the unit vector $\hat{\boldsymbol{n}}$ by the member of $S O(3) R_{i j}(\hat{\mathbf{n}}, \theta):=\exp (-i \theta \hat{\mathbf{n}} \cdot \mathbf{t})_{i j}$. By convention, $\hat{\mathbf{n}}$ points in any direction and $0 \leq \theta \leq \pi$. Evaluate $R_{i j}$ explicitly by summing the Taylor series of the exponential, and show that

$$
R_{i j}(\hat{\mathbf{n}}, \theta)=n_{i} n_{j}+\left(\delta_{i j}-n_{i} n_{j}\right) \cos \theta-\epsilon_{i j k} n_{k} \sin \theta .
$$

(e) Verify the formula $e^{-i \theta \hat{\mathbf{n}} \cdot \boldsymbol{\sigma} / 2} \sigma_{j} e^{i \theta \hat{\mathbf{n}} \cdot \boldsymbol{\sigma} / 2}=R_{i j}(\hat{\boldsymbol{n}}, \theta) \sigma_{i}$.
(f) Given an n-dimensional representation $D: G \rightarrow G L(n, \mathbb{C})$ of a group G, we can define its conjugate representation $\bar{D}: G \rightarrow G L(n, \mathbb{C})$ by complex conjugation: $\bar{D}(g)=D(g)^{*}$ for all $g \in G$. If D and \bar{D} are inequivalent, then we say D is a complex representation. If D and \bar{D} are equivalent, then there exists some invertible $n \times n$ matrix S such that $\bar{D}(g)=S D(g) S^{-1}$ for all $g \in G$. In this case, if $S^{\top}=S$, then D is said to be a real representation, otherwise $S^{\top}=-S$ and D is said to be pseudoreal. (These are the only two possibilities for equivalent, finite-dimensional representations.)
The set of matrices $\exp (-i \theta \hat{\mathbf{n}} \cdot \boldsymbol{\sigma} / 2)$ constitutes the defining representation of $G=S U(2)$. Show that this representation is pseudoreal and that the conjugate representation has the same weights as the original.
6. This question regards the explicit map of $S O(3) \cong S U(2) / \mathbb{Z}_{2}$.
(a) Show that $\operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}$. Why does this imply that any 2×2 matrix A can be expressed as

$$
A=\frac{1}{2} \operatorname{Tr}(A) I+\frac{1}{2} \operatorname{Tr}(\boldsymbol{\sigma} A) \cdot \boldsymbol{\sigma} ?
$$

(b) Define a one to one correspondence between real 3 -vectors and Hermitian, traceless 2×2 matrices: $\boldsymbol{x} \rightarrow \boldsymbol{x} \cdot \boldsymbol{\sigma}$. Show that $\operatorname{det}(\boldsymbol{x} \cdot \boldsymbol{\sigma})=-\boldsymbol{x}^{2}$.
(c) Next we define a transformation $\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}$ by $\boldsymbol{x}^{\prime} \cdot \sigma=A \boldsymbol{x} \cdot \boldsymbol{\sigma} A^{\dagger}$, for $A \in S U(2)$. Deduce that $\boldsymbol{x}^{\prime 2}=\boldsymbol{x}^{2}$ and so $x_{i}^{\prime}=R_{i j} x_{j}$ where $R \in S O(3)$. Finally, show

$$
R_{i j}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{i} A \sigma_{j} A^{\dagger}\right) .
$$

(d) Show that $\sigma_{j} \sigma_{i} \sigma_{j}=-\sigma_{i}$ implies $\sigma_{j} A^{\dagger} \sigma_{j}=2 \operatorname{Tr}\left(A^{\dagger}\right) I-A^{\dagger}$ to obtain the equations $\sigma_{i} R_{i j} \sigma_{j}=2 \operatorname{Tr}\left(A^{\dagger}\right) A-I$ and $R_{j j}=|\operatorname{Tr}(A)|^{2}-1$.
(e) Why must $\operatorname{Tr}(A) \in \mathbb{R}$? Solve for $\operatorname{Tr}(A)$ and then A to show

$$
A= \pm \frac{I+\sigma_{i} R_{i j} \sigma_{j}}{2 \sqrt{1+R_{j j}}}
$$

7. Finding the explicit map of $S O(1,3)^{\uparrow} \cong S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ follows a similar calculation to the one finding the map of $S O(3) \cong S U(2) / \mathbb{Z}_{2}$ in Q6
(a) Defining $\sigma_{\mu}=(I, \boldsymbol{\sigma}), \bar{\sigma}_{\mu}=(I,-\boldsymbol{\sigma})$, argue that any 2 by 2 matrix A may be written $A=\frac{1}{2} \operatorname{Tr}\left(\bar{\sigma}^{\mu} A\right) \sigma_{\mu}$.
(b) Now define a one-to-one correspondence between real 4 -vectors x_{μ} and hermitian 2×2 matrices x , where $x_{\mu} \rightarrow \mathrm{x}=\sigma_{\mu} x^{\mu}$. Find det x in terms of x_{μ}.
(c) For any $A \in S L(2, \mathbb{C})$, we define a linear transformation $\mathrm{x} \rightarrow_{A} \mathrm{x}^{\prime}=A \mathrm{x} A^{\dagger}=x^{\prime \dagger}$. Show that $x^{2}=x^{\prime 2}$ and hence this must be a Lorentz transformation, so we can write $\left(x^{\prime}\right)^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$, where $\Lambda \in S O(1,3)^{\uparrow}$. Thus, show $\Lambda^{\mu}{ }_{\nu}=\operatorname{Tr}\left(\bar{\sigma}^{\mu} A \sigma_{\nu} A^{\dagger}\right) / 2$.
(d) To find the converse, show $\sigma_{\nu} A^{\dagger} \bar{\sigma}^{\nu}=2 \operatorname{Tr}\left(A^{\dagger}\right) I \Rightarrow \Lambda^{\mu}{ }_{\mu}=|\operatorname{Tr}(A)|^{2}$ and $\sigma_{\mu} \Lambda^{\mu}{ }_{\nu} \bar{\sigma}^{\nu}=$ $2 \operatorname{Tr}\left(A^{\dagger}\right) A$ and hence, for $\operatorname{Tr}(A)=e^{i \alpha}|\operatorname{Tr}(A)|, A=e^{i \alpha} \sigma_{\mu} \Lambda^{\mu}{ }_{\nu} \bar{\sigma}^{\nu} /\left(2 \sqrt{\Lambda^{\mu}}{ }_{\mu}\right)$.
(e) Show that $\operatorname{det} A=1$ determines $e^{i \alpha}$ up to a factor of ± 1. Thus $\pm A \leftrightarrow \Lambda$ $\left(\Lambda \in S O(1,3)^{\uparrow}\right.$ because $S L(2, \mathbb{C})$ is continuously connected to the identity).
8. For a matrix Lie group G, consider the action of G on itself by conjugation, defined by $g^{\prime} \rightarrow g g^{\prime} g^{-1}$. Show that the eigenvalues of g^{\prime} and $g g^{\prime} g^{-1}$ are the same for all g, so the eigenvalues are invariants of an orbit.
Find the eigenvalues of the $S U(2)$ matrix $\cos \alpha / 2 I-i \sin \alpha / 2 \hat{\boldsymbol{\alpha}} \cdot \boldsymbol{\sigma}$ where $\boldsymbol{\alpha}=$ $\alpha \hat{\boldsymbol{\alpha}}$. Deduce the orbit structure of $S U(2)$ under the action of $S U(2)$ on itself by conjugation.
9. (Optional \mathcal{E} nonexaminable) Let V be the fundamental representation of $S O(3)$. Recall that a rank $r S O(3)$-tensor is an element of the tensor product representation

$$
V^{\otimes r}:=\underbrace{V \otimes V \otimes \ldots \otimes V}_{r \text { times }} .
$$

We define $V^{\otimes 0}:=\mathbb{C}$ to be the trivial representation of $S O(3)$. If we pick a basis $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ of V, then there is a natural basis $\left\{\vec{e}_{i_{1}} \otimes \ldots \otimes \vec{e}_{i_{r}}: i_{1}, \ldots, i_{r}=1,2,3\right\}$ for the space $V^{\otimes r}$. In particular, given $T \in V^{\otimes r}$, we may write:

$$
T=T_{i_{1} i_{2} \ldots i_{r}} \vec{e}_{i_{1}} \otimes \ldots \otimes \vec{e}_{i_{r}},
$$

where $T_{i_{1} i_{2} \ldots i_{r}}$ are the components of the tensor with respect to this basis.
(a) Define a transposition $P_{(i, j)}: V^{\otimes r} \rightarrow V^{\otimes r}$ (with $1 \leqslant i<j \leqslant r$) of the space of rank- $S O(3)$-tensors by:

$$
P_{(i, j)}\left(\vec{v}_{1} \otimes \ldots \otimes \vec{v}_{i} \otimes \ldots \otimes \vec{v}_{j} \otimes \ldots \otimes \vec{v}_{r}\right)=\vec{v}_{1} \otimes \ldots \otimes \vec{v}_{j} \otimes \ldots \otimes \vec{v}_{i} \otimes \ldots \otimes \vec{v}_{r}
$$

and the appropriate extension by linearity. Define a trace $T_{(i, j)}: V^{\otimes r} \rightarrow V^{\otimes(r-2)}$ (with $1 \leqslant i<j \leqslant r$) of the space of rank- $r S O(3)$-tensors by:

$$
T_{(i, j)}\left(\vec{v}_{1} \otimes \ldots \otimes \vec{v}_{i} \otimes \ldots \otimes \vec{v}_{j} \otimes \ldots \otimes \vec{v}_{r}\right)=\left(\vec{v}_{i} \cdot \vec{v}_{j}\right) \vec{v}_{1} \otimes \ldots \otimes \vec{v}_{i-1} \otimes \vec{v}_{i+1} \otimes \ldots \otimes \vec{v}_{j-1} \otimes \vec{v}_{j+1} \otimes \ldots \otimes \vec{v}_{r},
$$

and the appropriate extension by linearity. We say that a tensor $T \in V^{\otimes r}$ is totally symmetric if $P_{(i, j)}(T)=T$ for all $1 \leqslant i<j \leqslant r$, and we say that a tensor $T \in V^{\otimes r}$ is totally traceless if $T_{(i, j)}(T)=0$ for all $1 \leqslant i<j \leqslant r$.

Show that a tensor $T \in V^{\otimes r}$ is totally symmetric and totally traceless if and only if its components with respect to some basis satisfy:

$$
T_{\left(i_{1} \ldots i_{r}\right)}=T_{i_{1} \ldots i_{r}}, \quad T_{k k i_{3} \ldots i_{r}}=0 .
$$

(b) Let $W_{r} \subseteq V^{\otimes r}$ be the subset of totally symmetric, totally traceless tensors in $V^{\otimes r}$. Show that W_{r} is isomorphic to the $(2 r+1)$-dimensional irreducible representation of $S O(3)$.
[Hint: First, show that W_{r} is an invariant subspace of $V^{\otimes r}$; therefore, it constitutes a valid representation of $S O(3)$. Next, apply the quadratic Casimir of the Lie algebra $\mathfrak{s o}(3)$ to W_{r} and note its value. Finally, check dimensions to conclude.]
(c) Since $S O(3)$ is compact, $V^{\otimes r}$ is completely reducible. Let:

$$
V^{\otimes r}=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m}
$$

be a decomposition of $V^{\otimes r}$ into irreducibles (note that the decomposition may not be unique). By part (a), we know that for each $b=1, \ldots, m$, there exists some a such that $V_{b} \cong W_{a}$. Let $\alpha: W_{a} \rightarrow V_{b}$ be an isomorphism of these two representations. Show that the components of the image $\alpha(S)$ are given by:

$$
\alpha(S)_{j_{1} \ldots j_{r}}=\alpha_{i_{1} \ldots i_{a} j_{1} \ldots j_{r}} S_{i_{1} \ldots i_{a}},
$$

where $\alpha_{i_{1} \ldots i_{a} j_{1} \ldots j_{r}}$ are the components of an $S O(3)$-invariant tensor.
(d) Hence, explain why the components $T_{i j}$ of a general rank-2 $S O(3)$-tensor T may be decomposed as:

$$
\begin{equation*}
T_{i j}=\delta_{i j} S+\epsilon_{i j k} V_{k}+B_{i j} \tag{*}
\end{equation*}
$$

where $\delta_{i j} S, \epsilon_{i j k} V_{k}, B_{i j}$ are the components of the projections of T onto irreducible subspaces of $V^{\otimes r}$, and $B_{i j}$ is totally symmetric and totally traceless. By contracting (*) with $S O(3)$ invariants, determine S, V_{k} and $B_{i j}$ explicitly in terms of $T_{i j}$.
(e) Perform an analogous decomposition for the components of a rank-3 $S O(3)$ tensor, $T_{i j k}$ (you should note in your construction that the decomposition is not in fact unique).

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.

