Examples Sheet 2

N.b. The general linear group of a vector space GL(V) is the group of all automorphisms of V, i.e. bijective, linear maps $V \to V$. If V is finite dimensional and a basis is chosen, then GL(V) is isomorphic to the general linear group of matrices $GL(\dim V, \mathbb{F})$.

1. (Warm-up) Show that a representation of the dihedral group, $D: D_4 \to GL(2, \mathbb{R})$, can be constructed using the matrices

$$D(r) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $D(m) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

- (a) Is this a faithful representation of D_4 ? Is it a reducible representation of D_4 ?
- (b) Consider the subgroup $K_4 = \{e, r^2, m, mr^2\}$ (Klein's *Vierergruppe*) and the corresponding matrices used above. Show that these four matrices constitute a reducible representation of K_4 , and identify the invariant subspaces.
- 2. The adjoint representation of the Lie group SU(2) is defined to be the map Ad: $SU(2) \to GL(\mathfrak{su}(2))$ given by:

$$Ad_A(X) = AXA^{\dagger} \tag{*}$$

for all $A \in SU(2), X \in \mathfrak{su}(2)$.

- (a) Show that Ad is indeed a group representation. This will require checking: (i) for each $A \in SU(2)$, we have that Ad_A is an automorphism of $\mathfrak{su}(2)$; (ii) given $A, B \in SU(2)$, we have $Ad_{AB} = Ad_A \circ Ad_B$.
- (b) By writing $A = I + Y + O(Y^2)$ in (*), construct the associated adjoint representation ad : $\mathfrak{su}(2) \to \mathfrak{gl}(\mathfrak{su}(2))$, where $\mathfrak{gl}(\mathfrak{su}(2))$ is the space of linear maps $\mathfrak{su}(2) \to \mathfrak{su}(2)$ of the Lie algebra $\mathfrak{su}(2)$. Verify that your proposed representation of $\mathfrak{su}(2)$ indeed constitutes a Lie algebra representation.
- 3. (a) If d_1 and d_2 are representations of a Lie algebra L(G), show that $d_1 \oplus d_2$ is too. Via the exponential map, show that $\exp(d_1 \oplus d_2) = (D_1 \oplus D_2)(\exp)$ is a representation of G, where you may assume that D_i , where $D_i(\exp(X)) = \exp(d_i(X))$ for all $X \in L(G)$, constitute well-defined representations of the Lie group G for $i \in \{1, 2\}$.
 - (b) Prove that the tensor product $d_1 \otimes d_2$ is a representation of L(G). Exponentiate to show that $D_1 \otimes D_2$ is a representation of G.
- 4. Let D be a finite-dimensional representation of G acting on V, and (,) a positive definite inner product on V invariant under G, i.e.

$$(D(g)u,D(g)v)=(u,v)\ :\ u,v\in V\,,\,g\in G\,.$$

D is said to be unitary in this case.

- (a) Let W be an invariant subspace of V. Show that W_{\perp} , the orthogonal complement of W in V, is also invariant.
- (b) Deduce that D is completely reducible.
- 5. (Note that this question uses physics conventions for the generators t_i , such that they are Hermitian.) Three 3×3 matrices $\mathbf{t} := (t_1, t_2, t_3)$ are defined by $(t_i)_{jk} = -i\epsilon_{ijk}$.
 - (a) Prove $[t_i, t_j] = i\epsilon_{ijk}t_k$.
 - (b) Prove $(\mathbf{n} \cdot \mathbf{t})^3 = |\mathbf{n}|^2 \mathbf{n} \cdot \mathbf{t}$.
 - (c) What are the possible eigenvalues of $\hat{\mathbf{n}} \cdot \mathbf{t}$ if $\hat{\mathbf{n}}$ is a unit vector?
 - (d) We may represent a rotation by an angle θ about an axis that points along the unit vector $\hat{\mathbf{n}}$ by the member of SO(3) $R_{ij}(\hat{\mathbf{n}}, \theta) := \exp(-i\theta \hat{\mathbf{n}} \cdot \mathbf{t})_{ij}$. By convention, $\hat{\mathbf{n}}$ points in any direction and $0 \le \theta \le \pi$. Evaluate R_{ij} explicitly by summing the Taylor series of the exponential, and show that

$$R_{ij}(\hat{\mathbf{n}}, \theta) = n_i n_j + (\delta_{ij} - n_i n_j) \cos \theta - \epsilon_{ijk} n_k \sin \theta.$$

- (e) Verify the formula $e^{-i\theta\hat{\mathbf{n}}\cdot\boldsymbol{\sigma}/2}\,\sigma_j\,e^{i\theta\hat{\mathbf{n}}\cdot\boldsymbol{\sigma}/2}=R_{ij}(\hat{\boldsymbol{n}},\theta)\,\sigma_i$.
- (f) Given an n-dimensional representation $D: G \to GL(n, \mathbb{C})$ of a group G, we can define its **conjugate representation** $\bar{D}: G \to GL(n, \mathbb{C})$ by complex conjugation: $\bar{D}(g) = D(g)^*$ for all $g \in G$. If D and \bar{D} are inequivalent, then we say D is a **complex representation**. If D and \bar{D} are equivalent, then there exists some invertible $n \times n$ matrix S such that $\bar{D}(g) = SD(g)S^{-1}$ for all $g \in G$. In this case, if $S^{\mathsf{T}} = S$, then D is said to be a **real representation**, otherwise $S^{\mathsf{T}} = -S$ and D is said to be **pseudoreal**. (These are the only two possibilities for equivalent, finite-dimensional representations.)

The set of matrices $\exp(-i\theta\hat{\mathbf{n}}\cdot\boldsymbol{\sigma}/2)$ constitutes the defining representation of G=SU(2). Show that this representation is pseudoreal and that the conjugate representation has the same weights as the original.

- 6. This question regards the explicit map of $SO(3) \cong SU(2)/\mathbb{Z}_2$.
 - (a) Show that $\text{Tr}(\sigma_i \sigma_j) = 2\delta_{ij}$. Why does this imply that any 2×2 matrix A can be expressed as

$$A = \frac{1}{2} \text{Tr}(A) I + \frac{1}{2} \text{Tr}(\boldsymbol{\sigma} A) \cdot \boldsymbol{\sigma}?$$

- (b) Define a one to one correspondence between real 3-vectors and Hermitian, traceless 2×2 matrices: $\mathbf{x} \to \mathbf{x} \cdot \mathbf{\sigma}$. Show that $\det(\mathbf{x} \cdot \mathbf{\sigma}) = -\mathbf{x}^2$.
- (c) Next we define a transformation $\mathbf{x} \to \mathbf{x}'$ by $\mathbf{x}' \cdot \sigma = A \mathbf{x} \cdot \boldsymbol{\sigma} A^{\dagger}$, for $A \in SU(2)$. Deduce that $\mathbf{x}'^2 = \mathbf{x}^2$ and so $x'_i = R_{ij}x_j$ where $R \in SO(3)$. Finally, show

$$R_{ij} = \frac{1}{2} \text{Tr}(\sigma_i A \sigma_j A^{\dagger}).$$

(d) Show that $\sigma_j \sigma_i \sigma_j = -\sigma_i$ implies $\sigma_j A^{\dagger} \sigma_j = 2 \text{Tr}(A^{\dagger}) I - A^{\dagger}$ to obtain the equations $\sigma_i R_{ij} \sigma_j = 2 \text{Tr}(A^{\dagger}) A - I$ and $R_{jj} = |\text{Tr}(A)|^2 - 1$.

(e) Why must $Tr(A) \in \mathbb{R}$? Solve for Tr(A) and then A to show

$$A = \pm \frac{I + \sigma_i R_{ij} \sigma_j}{2\sqrt{1 + R_{jj}}} \,.$$

- 7. Finding the explicit map of $SO(1,3)^{\uparrow} \cong SL(2,\mathbb{C})/\mathbb{Z}_2$ follows a similar calculation to the one finding the map of $SO(3) \cong SU(2)/\mathbb{Z}_2$ in Q6.
 - (a) Defining $\sigma_{\mu} = (I, \boldsymbol{\sigma}), \ \bar{\sigma}_{\mu} = (I, -\boldsymbol{\sigma}),$ argue that any 2 by 2 matrix A may be written $A = \frac{1}{2} \text{Tr}(\bar{\sigma}^{\mu} A) \sigma_{\mu}.$
 - (b) Now define a one-to-one correspondence between real 4-vectors x_{μ} and hermitian 2×2 matrices x, where $x_{\mu} \to x = \sigma_{\mu} x^{\mu}$. Find det x in terms of x_{μ} .
 - (c) For any $A \in SL(2,\mathbb{C})$, we define a linear transformation $\mathbf{x} \to_A \mathbf{x}' = A\mathbf{x}A^{\dagger} = \mathbf{x}'^{\dagger}$. Show that $x^2 = x'^2$ and hence this must be a Lorentz transformation, so we can write $(x')^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$, where $\Lambda \in SO(1,3)^{\uparrow}$. Thus, show $\Lambda^{\mu}{}_{\nu} = \text{Tr}(\bar{\sigma}^{\mu}A\sigma_{\nu}A^{\dagger})/2$.
 - (d) To find the converse, show $\sigma_{\nu}A^{\dagger}\bar{\sigma}^{\nu} = 2\text{Tr}(A^{\dagger})I \Rightarrow \Lambda^{\mu}{}_{\mu} = |\text{Tr}(A)|^2$ and $\sigma_{\mu}\Lambda^{\mu}{}_{\nu}\bar{\sigma}^{\nu} = 2\text{Tr}(A^{\dagger})A$ and hence, for $\text{Tr}(A) = e^{i\alpha}|\text{Tr}(A)|$, $A = e^{i\alpha}\sigma_{\mu}\Lambda^{\mu}{}_{\nu}\bar{\sigma}^{\nu}/(2\sqrt{\Lambda^{\mu}{}_{\mu}})$.
 - (e) Show that $\det A = 1$ determines $e^{i\alpha}$ up to a factor of ± 1 . Thus $\pm A \leftrightarrow \Lambda$ $(\Lambda \in SO(1,3)^{\uparrow}$ because $SL(2,\mathbb{C})$ is continuously connected to the identity).
- 8. For a matrix Lie group G, consider the action of G on itself by conjugation, defined by $g' \to gg'g^{-1}$. Show that the eigenvalues of g' and $gg'g^{-1}$ are the same for all g, so the eigenvalues are invariants of an orbit.

Find the eigenvalues of the SU(2) matrix $\cos \alpha/2 I - i \sin \alpha/2 \hat{\alpha} \cdot \boldsymbol{\sigma}$ where $\boldsymbol{\alpha} = \alpha \hat{\boldsymbol{\alpha}}$. Deduce the orbit structure of SU(2) under the action of SU(2) on itself by conjugation.

9. (Optional & nonexaminable) Let V be the fundamental representation of SO(3). Recall that a rank r SO(3)-tensor is an element of the tensor product representation

$$V^{\otimes r} := \underbrace{V \otimes V \otimes \ldots \otimes V}_{r \text{ times}}.$$

We define $V^{\otimes 0} := \mathbb{C}$ to be the trivial representation of SO(3). If we pick a basis $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ of V, then there is a natural basis $\{\vec{e}_{i_1} \otimes ... \otimes \vec{e}_{i_r} : i_1, ..., i_r = 1, 2, 3\}$ for the space $V^{\otimes r}$. In particular, given $T \in V^{\otimes r}$, we may write:

$$T = T_{i_1 i_2 \dots i_r} \vec{e}_{i_1} \otimes \dots \otimes \vec{e}_{i_r},$$

where $T_{i_1i_2...i_r}$ are the *components* of the tensor with respect to this basis.

(a) Define a transposition $P_{(i,j)}: V^{\otimes r} \to V^{\otimes r}$ (with $1 \leq i < j \leq r$) of the space of rank-r SO(3)-tensors by:

$$P_{(i,j)}(\vec{v}_1 \otimes \ldots \otimes \vec{v}_i \otimes \ldots \otimes \vec{v}_j \otimes \ldots \otimes \vec{v}_r) = \vec{v}_1 \otimes \ldots \otimes \vec{v}_j \otimes \ldots \otimes \vec{v}_i \otimes \ldots \otimes \vec{v}_r,$$

and the appropriate extension by linearity. Define a trace $T_{(i,j)}: V^{\otimes r} \to V^{\otimes (r-2)}$ (with $1 \leq i < j \leq r$) of the space of rank-r SO(3)-tensors by:

$$T_{(i,j)}(\vec{v}_1 \otimes \ldots \otimes \vec{v}_i \otimes \ldots \otimes \vec{v}_j \otimes \ldots \otimes \vec{v}_r) = (\vec{v}_i \cdot \vec{v}_j) \ \vec{v}_1 \otimes \ldots \otimes \vec{v}_{i-1} \otimes \vec{v}_{i+1} \otimes \ldots \otimes \vec{v}_{j-1} \otimes \vec{v}_{j+1} \otimes \ldots \otimes \vec{v}_r,$$

and the appropriate extension by linearity. We say that a tensor $T \in V^{\otimes r}$ is totally symmetric if $P_{(i,j)}(T) = T$ for all $1 \leq i < j \leq r$, and we say that a tensor $T \in V^{\otimes r}$ is totally traceless if $T_{(i,j)}(T) = 0$ for all $1 \leq i < j \leq r$.

Show that a tensor $T \in V^{\otimes r}$ is totally symmetric and totally traceless if and only if its components with respect to some basis satisfy:

$$T_{(i_1...i_r)} = T_{i_1...i_r}, T_{kki_3...i_r} = 0.$$

(b) Let $W_r \subseteq V^{\otimes r}$ be the subset of totally symmetric, totally traceless tensors in $V^{\otimes r}$. Show that W_r is isomorphic to the (2r+1)-dimensional irreducible representation of SO(3).

[Hint: First, show that W_r is an invariant subspace of $V^{\otimes r}$; therefore, it constitutes a valid representation of SO(3). Next, apply the quadratic Casimir of the Lie algebra $\mathfrak{so}(3)$ to W_r and note its value. Finally, check dimensions to conclude.]

(c) Since SO(3) is compact, $V^{\otimes r}$ is completely reducible. Let:

$$V^{\otimes r} = V_1 \oplus V_2 \oplus \ldots \oplus V_m$$

be a decomposition of $V^{\otimes r}$ into irreducibles (note that the decomposition may not be unique). By part (a), we know that for each b=1,...,m, there exists some a such that $V_b \cong W_a$. Let $\alpha: W_a \to V_b$ be an isomorphism of these two representations. Show that the components of the image $\alpha(S)$ are given by:

$$\alpha(S)_{j_1\dots j_r} = \alpha_{i_1\dots i_a j_1\dots j_r} S_{i_1\dots i_a},$$

where $\alpha_{i_1...i_aj_1...j_r}$ are the components of an SO(3)-invariant tensor.

(d) Hence, explain why the components T_{ij} of a general rank-2 SO(3)-tensor T may be decomposed as:

$$T_{ij} = \delta_{ij}S + \epsilon_{ijk}V_k + B_{ij} \tag{*}$$

where $\delta_{ij}S$, $\epsilon_{ijk}V_k$, B_{ij} are the components of the projections of T onto irreducible subspaces of $V^{\otimes r}$, and B_{ij} is totally symmetric and totally traceless. By contracting (*) with SO(3) invariants, determine S, V_k and B_{ij} explicitly in terms of T_{ij} .

(e) Perform an analogous decomposition for the components of a rank-3 SO(3)tensor, T_{ijk} (you should note in your construction that the decomposition is
not in fact unique).

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.