Examples Sheet 4

1. A Lie algebra has simple roots $\alpha_{1}, \ldots, \alpha_{r}$ and a diagonal Killing form. The fundamental weights satisfy

$$
\frac{2\left(\omega_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}=\delta_{i j}
$$

(a) Show that $\alpha_{i}=\sum_{j} A_{i j} \omega_{j}$ where $\left[A_{i j}\right]$ is the Cartan matrix.
(b) A rank-2 Lie algebra has simple roots with coordinates $\alpha_{1}=(1,0)$ and $\alpha_{2}=$ $(-1,1)$. What is the Cartan matrix?
(c) Assuming any other positive roots are equal in length to either one of the simple roots, show that $\alpha_{3}=\alpha_{1}+\alpha_{2}$ and $\alpha_{4}=2 \alpha_{1}+\alpha_{2}$ are the other positive roots.
(d) Draw the root diagram, and show that the dimension of the Lie algebra is 10 .
(e) Construct the fundamental weights ω_{1}, ω_{2}.
(f) How is the highest weight of the representation whose weights coincide with the roots of the Lie algebra related to the fundamental weights?
2. Consider the Lie algebra with exactly 2 simple roots, $\alpha_{1}=(1,0)$ and $\alpha_{2}=\frac{1}{2}(-3, \sqrt{3})$ (and a diagonal Killing form).
(a) Determine the fundamental weights ω_{1} and ω_{2}. Let $\left|q_{1}, q_{2}\right\rangle$ be a state corresponding to the weight $q_{1} \omega_{1}+q_{2} \omega_{2}$.
(b) Assuming $E_{ \pm \alpha_{i}}, H_{\alpha_{i}}$ are the $S U(2)$ generators associated with the roots α_{i} construct a basis for the representation space starting from a highest weight vector $(i)|1,0\rangle$ and $(i i)|0,1\rangle$ by the successive action of $E_{-\alpha_{1}}$ and $E_{-\alpha_{2}}$ on the highest weight state.
(c) Show that the dimensions of the space are respectively 7 and 14 (in the second case there are two independent states with $q_{1}=q_{2}=0$).
(d) Construct the weight diagram and in the 14 -dimensional case show that it coincides with the root diagram.
3. A Lie algebra has a Cartan subalgebra $H=\left(H_{1}, \ldots, H_{r}\right)$ and the remaining generators are E_{α}, corresponding to roots α, where $\left[H, E_{\alpha}\right]=\alpha E_{\alpha}$. Assume $\left[E_{\alpha}, E_{-\alpha}\right]=$ $H_{\alpha}=2(\alpha, H) /(\alpha, \alpha)$. For a root β, E_{β} satisfies

$$
\left[E_{\alpha}, E_{\beta}\right]=0, \quad\left[H_{\alpha}, E_{\beta}\right]=n E_{\beta}, \quad \underbrace{\left[E_{-\alpha},\left[\ldots,\left[E_{-\alpha}\right.\right.\right.}_{r}, E_{\beta}] \ldots]]=E_{\beta-r \alpha}
$$

(a) Show that

$$
\left[E_{\alpha}, E_{\beta-r \alpha}\right]=r(n-r+1) E_{\beta-(r-1) \alpha}
$$

(b) Show that we may assume $E_{\beta-(n+1) \alpha}=0$ for some integer n.
4. Decompose the following tensor product representations of $A_{2}=\mathfrak{s u}(3)$ into irreducible components: (a) $\mathbf{3} \otimes \overline{\mathbf{3}}$ and (b) $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}$. Discuss the connections between these irreducible representations and the quark model of light mesons and baryons [c.f. Wikipedia. You might also think about the spin- $\frac{3}{2}$ baryons Δ^{++}and Ω^{-}, whose quark content is, respectively, $u u u$ and $s s s$, and what Pauli's exclusion principle implies about the quantum numbers of those quarks.
5. Find the smallest-dimension, irreducible representation of B_{2}. Decompose the tensor product of two copies of this representation into irreps of B_{2}, giving the dimension of each component.
6. Consider a gauge theory whose gauge group G is a matrix Lie group. The corresponding gauge field,

$$
A_{\mu}: \mathbb{R}^{1,3} \rightarrow L(G)
$$

transforms as

$$
A_{\mu} \mapsto A_{\mu}^{\prime}=g A_{\mu} g^{-1}-\left(\partial_{\mu} g\right) g^{-1}
$$

under a gauge transformation

$$
g: \mathbb{R}^{1,3} \rightarrow G
$$

For the case $G=S U(N)$, check that $A_{\mu}^{\prime}(x)$ takes values in the Lie algebra $L(G)$. Explain why this is true for any matrix Lie group G. Writing $g=\exp \varepsilon X$, with $\varepsilon \ll 1$, show that the corresponding infinitesimal gauge transformation coincides with the one defined in the lectures.
7. For a group with a Lie algebra with a basis $\left\{T_{a}\right\}$ such that $\left[T_{a}, T_{b}\right]=f_{a b}^{c} T_{c}$ let $\kappa_{a b}=$ $\left(T_{a}, T_{b}\right)$ where $($,$) is an invariant symmetric bilinear form so that ([X, Y], Z)=$ $-(Y,[X, Z])$.
(a) If D_{μ} is an appropriate covariant derivative involving a gauge field A_{μ}^{a}, verify

$$
\partial_{\mu}(X(x), Y(x))=\left(D_{\mu} X(x), Y(x)\right)+\left(X(x), D_{\mu} Y(x)\right)
$$

(b) Let $T^{\mu}{ }_{\nu}=\left(F^{\mu \sigma}, F_{\nu \sigma}\right)-\frac{1}{4} \delta^{\mu}{ }_{\nu}\left(F^{\sigma \rho}, F_{\sigma \rho}\right)$. Using the Bianchi identity, show that

$$
\partial_{\mu} T^{\mu}{ }_{\nu}=\left(D_{\mu} F^{\mu \sigma}, F_{\nu \sigma}\right)
$$

(c) For a variation δA_{μ}^{a} obtain also $\delta \frac{1}{4} \epsilon^{\mu \nu \sigma \rho}\left(F_{\mu \nu}, F_{\sigma \rho}\right)=\partial_{\mu} \epsilon^{\mu \nu \sigma \rho}\left(\delta A_{\nu}, F_{\sigma \rho}\right)$.
(d) By letting $A_{\mu} \rightarrow t A_{\mu}$, differentiating with respect to t, then integrating, show that

$$
\frac{1}{4} \epsilon^{\mu \nu \sigma \rho}\left(F_{\mu \nu}, F_{\sigma \rho}\right)=\partial_{\mu} \epsilon^{\mu \nu \sigma \rho}\left(A_{\nu}, \partial_{\sigma} A_{\rho}+\frac{1}{3}\left[A_{\sigma}, A_{\rho}\right]\right)
$$

8. With notation as in the previous question define a 3-dimensional Lagrangian

$$
\mathcal{L}=\epsilon^{\mu \nu \rho}\left(\kappa_{a b} A_{\mu}^{a} \partial_{\nu} A_{\rho}^{b}+\frac{1}{3} f_{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}\right) .
$$

For a gauge transformation $\delta A_{\mu}^{a}=-\partial_{\mu} \lambda^{a}-f^{a}{ }_{b c} A_{\mu}^{b} \lambda^{c}$ show that $\delta \mathcal{L}=-\partial_{\mu}\left(\epsilon^{\mu \nu \rho} \kappa_{a b} \lambda^{a} \partial_{\nu} A_{\rho}^{b}\right)$ so that $\int \mathrm{d}^{3} x \mathcal{L}$ is invariant.

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.

