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Advanced Quantum Field Theory Mathematical Tripos, Part III
Prof M B Wingate Lent Term 2022

Examples Sheet 1

1. (Warm-up) Writing the amplitude for a quantum mechanical particle, mass m, to
freely propagate in 1-dimension as

〈x|e−iH(t−t0)|x0〉 ≡ K(x, t; x0, t0) =

√

m

2πi(t− t0)
exp

(

im(x− x0)
2

2(t− t0)

)

with t > t0 (and in natural units ~ = 1), show that
∫

dx′K(x, t; x′, t′)K(x′, t′; x0, t0) = K(x, t; x0, t0)

with t > t′ > t0. Verify, given an initial condition of (x0, t0) = (0, 0), that
limt→0K(x, t; 0, 0) = δ(x) and that

i
∂

∂t
K(x, t; 0, 0) = − 1

2m

∂2

∂x2
K(x, t; 0, 0) .

Use these facts to express the solution of the Schrödinger equation for a free particle,
Ψ(x, t) in terms of an initial wavefunction Ψ(x0, 0) and K(x, t; x0, 0). Check this
result for Ψ(x0, 0) = eikx0 , with k constant.

2. Consider the quantum mechanics of a particle moving in 1-dimension with Hilbert
space H. Obtain path integral expressions, in imaginary time T , for the following,

(a) TrH(Pe
−TH), where P is the parity operator P : x 7→ −x, and the trace of an

operator O, TrH(O), is the sum or integral over the expectation values of O in
a complete basis of states.

(b) 〈ψf |e−TH |ψi〉, where ψi,f (x) = 〈x|ψi,f〉 are arbitrary states in the Hilbert space.

For a particle in a 1-dimensional harmonic potential V (x) = 1
2
mω2x2, the amplitude

for particle propagation in real time t is

K(x, t; x0, 0) =

√

mω

2πi sinωt
exp

(

imω
(x2 + x20) cosωt− 2xx0

2 sinωt

)

(e.g. see Osborn’s notes §1.2.1). Using this amplitude for t = −iT , evaluate your
expressions for (a) and (b) explicitly in the case that |ψi,f〉 are the ground state of
the harmonic oscillator. Check that they agree with what you expect from quantum
mechanics, working directly in the energy basis.

3. Consider the partition function

Z(λ) =
1√
2π

∫

R

dx exp

(

−1

2
x2 − λ

4!
x4
)

(1)

for a zero-dimensional QFT, given λ > 0.
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(a) By expanding the integral in λ, obtain the n-th order perturbative expression

Zn(λ) =
n

∑

ℓ=0

(

− λ

4!

)ℓ
(4ℓ)!

4ℓ(2ℓ)!ℓ!

and show that, for ℓ ≤ 3, the coefficients aℓ of λℓ in this expression are the
sums of symmetry factors of the relevant loop Feynman graphs. [At 2-loop

order there is only 1 graph, at 3-loops there are 2, and at 4-loops there are 4.]

(b) (Optional but instructive.) Using any computer package, plot Zn(λ = 0.1)
against n to see that there is a region in n where Zn appears to converge
before blowing up as n is increased.

(c) (* Slightly beyond the scope of the course.) Show that the minimum value of
aℓλ

ℓ occurs when ℓ ≈ 3
2λ
. Hence show that the Borel transform

BZ(λ) =
∞
∑

ℓ=0

1

ℓ!
aℓλ

ℓ

converges provided |λ| < 3
2
and that in this case

Z(λ) =

∫ ∞

0

dz e−z BZ(zλ)

so that Z(λ) may be recovered from its Borel transform.

(d) By expanding e−x2/2 in the integral in (1) obtain the strong coupling expansion

Z(λ) =
1

2
√
π

∞
∑

L=0

(−1)L

L!
Γ

(

L

2
+

1

4

)(

6

λ

)L

2
+ 1

4

for Z(λ) as a series in 1/
√
λ. For λ = 1

10
how many terms does one need in

order to obtain the value at which the weak coupling expansion appeared to
converge?

4. Let e−W (J)/~ =
∫

dnφ e−(S(φ)−Jcφc)/~, and let Γ(Φ) be the Legendre transform of
W (J). Show directly that

−~
2 ∂3W

∂Ja∂Jb∂Jc

∣

∣

∣

∣

J=0

= 〈φaφbφc〉conn

and show how this can be related to the third derivative of Γ(Φ)

∂3Γ

∂Φa∂Φb∂Φc

∣

∣

∣

∣

J=0

.

Comment on why the notation 〈φaφbφc〉conn1PI = −1
~

∂3Γ
∂Φa∂Φb∂Φc

∣

∣

∣

J=0
is sometimes used.
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5. In lectures we showed that
∫

d2kθ e
1
2
Aabθaθb = Pf(A)

where A is a real, invertible antisymmetric matrix and θa are 2k Grassmann vari-
ables. By writing θa = Nabθ

′
b for some real matrix N , show that Pf(NTAN) =

det(N)Pf(A). Show that N may be chosen so as to put A into the form

NTAN =























0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0























,

and demonstrate that consequently Pf(A) = ±
√
detA.

6. Consider a theory of 4 Grassmann variables θa, a = 1 . . . 4, governed by the action

S(θ) =
1

2
Aabθaθb +

1

4!
λabcdθaθbθcθd .

Compute the partition function of this theory (a) by directly expanding e−S/~ in the
path integral and (b) by writing down the Feynman rules and drawing all possible
vacuum diagrams.

7. Let M be an N ×N Hermitian matrix, g be a constant, and

V (M) =
1

2
TrM2 +

g

4
TrM4 .

(a) Show that V (M) is invariant underM 7→ U †MU , where U is a unitary matrix.
Explain why this implies that V (M) only depends on the eigenvalues {λi} of
M .

(b) Viewing V (M) as the action for a zero-dimensional QFT, obtain an expression
for the propagator 〈MijMkℓ〉 correct to lowest nontrivial order in g. [Hint: The
tree-level propagator may be represented using a double line, with arrows on
each of the lines pointing in opposite directions. Beyond tree-level, consider
only “connected” contributions.]

(c) [Do this part only if you want an extra challenge. The underlying theory behind
it will not come until the end of the course.] Now let B, C, and H be further
N ×N matrices, each of which have zeros all along the leading diagonal. Let
the elements of B and C be fermionic variables, while the entries of H are
bosonic. Consider the matrix integral

Z(g) =

∫

[dM dB dC dH]

(2πi)N(N−1)
exp [−NV (M) + iTr(HM) + Tr(B[M,C])]
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where the measure [dM dB dC dH] indicates an integral over each entry of M
and the off-diagonal entries of B, C, and H. Obtain the effective action for
the eigenvalues {λi} of M . [Do not attempt to perform the path integral over
these eigenvalues.]

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any
errors.
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