Mathematical Tripos, Part III Lent Term 2022

Examples Sheet 4

1. Show that the QED correlation function $\langle j^{\mu}(x)j^{\nu}(y)\rangle$, when written in momentum space, is proportional to

 $\Pi^{\mu\nu}(k) + \Pi^{\mu\rho}(k) D_{\rho\sigma}(k) \Pi^{\sigma\nu}(k) + \cdots$

where $j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$, $\Pi^{\mu\nu}$ is the photon self-energy (the sum of 1PI diagrams with 2 amputated, external photons), and $D_{\rho\sigma}$ is the tree-level photon propagator. Hence show that $\Pi^{\mu\nu}$ is transverse, i.e. that $k_{\mu}\Pi^{\mu\nu} = 0$.

- 2. Complete the one-loop renormalization of nonabelian gauge theory with n_f flavours of fermions using dimensional regularization in $d = 4 - \epsilon$ dimensions. That is, show that the following counterterms must be added (assuming Feynman gauge, $\xi = 1$)
 - (a) Gauge boson propagator counterterm

$$\delta_3 = \frac{g^2}{(4\pi)^2} \frac{2}{\epsilon} \left(\frac{5}{3} C_A - \frac{4}{3} n_f T_F \right) ;$$

(b) Fermion propagator counterterm

$$\delta_2 = -\frac{g^2}{(4\pi)^2} \frac{2}{\epsilon} C_F;$$

(c) Vertex counterterm

$$\delta_1 = -\frac{g^2}{(4\pi)^2} \frac{2}{\epsilon} \left(C_A + C_F \right) \,.$$

Note $\operatorname{Tr} T^a T^b = T_F \delta^{ab}, \ T^a_{ij} T^a_{jk} = C_F \delta_{ik}, \ \text{and} \ f^{acd} f^{bcd} = C_A \delta^{ab}.$

[The full calculation is tedious, but you should do enough to be sure you are able to correctly evaluate contributions due to individual diagrams.]

3. Consider Yang-Mills theory with a complex scalar field $\phi(x)$ which transforms under representation r of the gauge group. Show that the Feynman rules involving ϕ are a straightforward modification of those from scalar QED (Sheet 3). Compute the β -function for the coupling g. [You should reuse results from Sheet 3 and from earlier this sheet.] 4. Consider a gauge-fixed action for a free Abelian gauge field A^{μ} of the form

$$S = \int d^{d}x \left[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + B \,\partial_{\mu} A^{\mu} - \frac{\xi}{2} B^{2} - \bar{c} \,\partial^{2}c \right]$$

where B is an auxiliary boson field and (c, \bar{c}) are anticommuting ghost and antighost fields.

- (a) Verify that this action is invariant under the BRST transformation: $\delta A^{\mu} = \theta \partial^{\mu} c$, $\delta \bar{c} = \theta B$, and $\delta c = \delta B = 0$. Also verify that the transformation is nilpotent.
- (b) Show that the action can be written in the form

$$S = \int d^d x \left[\frac{1}{2} \Phi^T \Delta \Phi - \bar{c} \,\partial^2 c \right]$$

where

$$\Phi = \begin{pmatrix} A^{\nu} \\ B \end{pmatrix}, \quad \Delta = \begin{pmatrix} -\partial^2 \delta_{\mu\nu} + \partial_{\mu} \partial_{\nu} & -\partial_{\nu} \\ \partial_{\mu} & -\xi \end{pmatrix}$$

and Φ^T is the transpose of Φ .

(c) Obtain equations or the normalized correlation functions $\langle \Phi(x)\Phi^T(0)\rangle$ and $\langle c(x)\bar{c}(0)\rangle$ and show that

$$\int d^d x \, e^{-ip \cdot x} \langle \Phi(x) \Phi^T(0) \rangle = \frac{1}{p^2} \begin{pmatrix} \delta_{\mu\nu} - (1-\xi) \frac{p_\mu p_\nu}{p^2} & -ip_\mu \\ ip_\nu & 0 \end{pmatrix}$$
$$\int d^d x \, e^{-ip \cdot x} \langle c(x) \bar{c}(0) \rangle = \frac{1}{p^2} \,.$$

(d) Assuming that $\langle \delta Y \rangle = 0$ for any Y, consider $\langle \delta(\Phi(x)\bar{c}(0)) \rangle$ and show that we must have $\langle B(x)B(0) \rangle = 0$. Obtain a relation between $\langle c(x)\bar{c}(0) \rangle$ and $\langle A^{\mu}(x)B(0) \rangle$ which should be verified.

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.