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Mathematical Tripos Part III

String Theory 2018: Example Sheet 4

1 Let |±〉 be two states such that b|+〉 = |−〉 and c|−〉 = |+〉. Given that b2 = c2 = 0, show that
b|−〉 = c|+〉 = 0, and deduce that {b, c} = 1. Show that both b and c are hermitian with respect to the inner
product defined (over the reals) by

〈+|+〉 = 〈−|−〉 = 0 , 〈+|−〉 = 〈−|+〉 = 1 .

Show also that the norm-squared implied by this inner product is

||(α|−〉+ β|+〉)||2 = 2αβ , (∗)

where α and β are arbitrary real numbers.
In the realization of the anti-commutation relation {b, c} = 1 for which b = ∂/∂c, show that the state

α|−〉+ β|+〉 is realized by the wavefunction ψ(c) = α+ cβ. Show that the norm defined by (∗) is equivalent
to

||ψ(c)||2 =
∂

∂c

[

ψ2
]

.

2 Let n−1 be the (complex) dimension of the space of globally defined analytic vector fields ξ(z)∂z on a
given Riemann surface (without boundary) of genus g (number of “holes”), and let n2 be the dimension of
the space of analytic quadratic differentials h(z)dz2. For the Riemann sphere (g = 0) show that n−1 = 3
and that n2 = 0. By choosing a suitable basis for the analytic vector fields, verify that their commutation
relations are those of sl(2;C). Now find n−1 and n2 for the flat torus (g = 1) defined by the identifications
z ∼ z + n+ im for any integers (n,m).

For both the sphere and the torus, verify that n2 − n−1 = 3(g − 1). This is true for any Riemann
surface of genus g as a consequence of the Riemann-Roch theorem. Given that there are no conformal
Killing vector fields on a Riemann surface with g ≥ 2, how many independent analytic quadratic differentials
are there? [These give gauge-invariant deformations of a given conformally flat metric, so that the general

metric depends on n2 complex “moduli” over which we must integrate in the path-integral representation of

amplitudes.]

3 The Virasoro amplitude is

A(s, t) =
Γ(−1− t)Γ(−1− s)Γ(3 + s+ t)

Γ(t+ 2)Γ(s+ 2)Γ(−2− s− t)

Stirling’s approximation to Γ(z + 1), valid for large |z| away from the negative real axis, is Γ(z + 1) =
exp[z ln z − z − 1

2 ln z +O(1)]. Assuming that corrections to this formula from the poles of Γ(z + 1) on the
negative real axis can be ignored (they produce oscillations that do not contribute “on average”), show that

A(s, t) ≈ f(t)s2(t+1) as s→ ∞ for fixed t ,

for some function f(t). This is the Regge limit of the amplitude. Show that for large s,

2t ≈ −s(1− cos θs) (∗)

where θs is the scattering angle. Hence deduce that θs → 0 in the Regge limit.
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4 The Veneziano amplitude, for the scattering of two open string tachyons, with p2 = 2πT , is

A(s, t) =
Γ(−1− s)Γ(−1− t)

Γ(−2− s− t)
,

where

s = − (p1 + p2)
2

2πT
, t = − (p1 + p3)

2

2πT
.

The incoming tachyons have D-momenta p1 and p2 and the outgoing ones have D-momenta −p3 and −p4.
Find the positions of the poles of A(s, t) as a function of s for fixed t. What is their interpretation? Find the
residues at the poles. What does the result tell you about the spectrum of the open string? Does it agree
with what is found by light-cone gauge quantization of the open NG string with free ends?

The hard scattering limit is the large s limit in which θs is kept fixed. Using (∗) and Stirling’s approxi-
mation to Γ(z+1), show that the Veneziano amplitude in the hard scattering limit is given by the asymptotic
formula

A ∼ [F (θs)]
−s

, F =
[

sin2(θs/2)
]

− sin2(θs/2) [
cos2(θs/2)

]

− cos2(θs/2)
.

Conclude that the hard scattering amplitude falls exponentially fast to zero with increasing s. [This disagrees
with experimental results for hadron scattering, which are explained by QCD. This disagreement ended the

hope that perturbative string theory might be a theory of the strong interactions.]

5 The Fourier space action for the NS sector of the open spinning string is

S =

∫

dt







ẋmpm +

∞
∑

k=1

i

k
α−k · α̇k + i

∞
∑

r=1/2

b−r · ḃr −
∑

n

λ−nLn −
∑

s

χ−sGs







,

where

Ln =
1

2

∑

k

αk · αn−k +
1

2

∑

r

rbn−r · br , Gr =
∑

k

αk · br−k ,
(

α0 = p/
√
πT

)

.

Write down the non-zero Poisson bracket relations for the canonical variables and verify that

{Lm, Ln} = −i(m− n)Lm+n {Lm, Gr}PB = −i(m
2

− r)Gr+m , {Gr, Gs}PB = −2iLr+s .

Now show that the gauge transformations of the canonical variables generated by the linear combination of
constraint functions

∑

n ξ−nLn + i
∑

r ǫ−rGr, where the parameters ǫr are anticommuting, is

δαk = −ik
∑

n

ξnαk−n + k
∑

r

ǫrbk−r , δbr = −i
∑

m

(

r − m

2

)

ξmbr−m −
∑

s

αr−sǫs .

Given that p− 6= 0, verify that all gauge transformations are fixed, excepting the transformation with
parameter ξ0, by the gauge-fixing conditions α+

n = 0,for n 6= 0 and b+r . Verify that this choice allows
the constraints to be solved for α−

n for n 6= 0 and b−r . Write down the gauge-fixed action, and show that
the remaining mass-shell constraint is p2 +M2 = 0 with M2 = 2πT (Nbose +Nfermi − a), where Nbose and
Nfermi are, respectively, the level numbers for the Bose and Fermi oscillators, and a is a constant to allow
for operator ordering ambiguities. Why does Lorentz invariance of the quantum theory require a = 1/2?
Show that the sum of zero point energies of the Bose and Fermi oscillators is, formally, ζ(−1, 0)−ζ(−1, 1/2),
where ζ(s, q) =

∑

∞

n=0(n+ q)−s. Using the fact that ζ(−1, q) = −(6q2 − 6q + 1)/12, and assuming −a to be
the sum of zero point energies, “deduce” that D = 10.


