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3P7d Lent 2015

Supersymmetry and Extra Dimensions:

Example Sheet 4

Corrections and suggestions should be emailed to f.quevedo@damtp.cam.ac.uk

Exercise 4.1: Consider the Schrödinger equation for a particle moving in two dimensions x and y.

The second dimension is a circle or radius r. The potential corresponds to a square well (V (x) = 0 for

x ∈ (0, a) and V = ∞ otherwise). Derive the energy levels for the two-dimensional Schrödinger equation

and compare the result with the standard one-dimensional situation in the limit r ≪ a.

Exercise 4.2: Consider the following Lagrangian

S =

∫

d4x

(

1

g2
Hµνρ H

µνρ + a ǫµνρσ ∂µHνρσ

)

.

Solve the equation of motion for the Lagrange multiplier a to obtain an action for a propagating massless

Kalb-Ramond field Bµν . Alternatively, solve the equation of motion for the field Hνρσ, to obtain an action

for the propagating axion field a. What happens to the coupling g under this transformation? Generalise

your result for arbitrary dimensions and ranks of the tensors.

Exercise 4.3: Consider a massive antisymmetric tensor of rank q in D dimensions. Write up its

Lagrangian up-to second derivatives. Describe a general Lagrangian that can reproduce the original

Lagrangian and its dual. Determine the degrees of freedom of the original and dual tensors. Interpret

this dualisation in terms of a functional Fourier transform. Can this also be used in the massless case?

Exercise 4.4 On spacetimes with Lorentzian signature show that only in dimensions D = 4k+2 there

can be self-dual antisymmetric tensors. How many degrees of freedom do they have? What kind of

p-branes they couple to? Explain the difference, if any, with Euclidean spaces.

Exercise 4.5: Show that the Kaluza-Klein dimensional reduction from D = 5 to D = 4 follows from

a pure gravitational theory in five-dimensions, using (5)R = (4)R − 2e−σ∇2eσ − 1
4e

2σFµνF
µν where

G55 = e2σ. Relate the gauge transformation to the U(1) isometry of the compact space.

Exercise 4.6 Demonstrate that the volume of a N − 1 sphere of radius r is

VN−1 =
2πN/2

Γ(N/2)
rN−1 (1)

Hint: It may help to consider the integral IN =
∫

dNxe−ρ2

with ρ2 =
∑N

i=1 x
2
i . Use this result to derive

an expression for the electric (and gravitational) potential in D dimensions. Show that the potential due

to a point particle in five dimensions reduces to the 4-dimensional potential at distances much larger than

the size of the fifth dimension.
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Exercise 4.7: Consider a five dimensional gravity theory with a negative cosmological constant Λ < 0,

compactified on an interval (0, π). Each end of the interval corresponds to a ’3-brane’ which we choose

to have tension ±Λ/k respectively. Here k is a common scale to be determined later in terms of the

fundamental scale in 5D M∗ and Λ. Verify that the warped metric

ds2 = e−2A(θ) ηµν dx
µ dxν − r2 dθ2

satisfies Einstein’s equations. Here W = e−2A(θ) is the warp factor and r is a constant measuring the

size of the interval. You can use that Einstein’s equations reduce to

6A′2

r2
= −

Λ

2M3
∗

,
3A′′

r2
=

Λ

2M3
∗
kr

[

δ(θ − π) − δ(θ)
]

.

Solve for A(θ) and use the warp factor to show that the effective 4D Planck scale is now

M2
pl = M3

∗
r

∫ π

−π

dθ e−2A =
M3

∗

k

(

1 − e−2kr
)

.

Find the value of the constant k. Consider the Higgs Lagrangian on the brane at θ = π, bring it into

canonical form and show that the mass is proportional to the factor e−kπr. How large can r be in order

to reproduce the electroweak scale from the Planck scale? Does this solve the hierarchy problem? How

does the Planck scale differ from the 5D scale M∗?

Exercise 4.8: Imagine that it were possible to have particles with all possible spins up to j = 3. What

would the maximum dimensionality of spacetime be consistent with supersymmetry?

Exercise 4.9: Starting with the field contents of IIA and IIB supergravities in D = 10 perform the

dimensional reduction to D = 9 and count the number of degrees of freedom for each multiplet. Is

the spectrum chiral? Perform directly the reduction from D = 11 to D = 9 and compare. Perform

dimensional reduction of IIB supergravity in D = 10 all the way to D = 4 and compare the number of

degrees of freedom.

Exercise 4.10: Consider N = 1 supergravity with three chiral superfields S, T, and C. In Planck units,

the Kähler potential and superpotential are given by

K = − log (S + S∗) − 3 log (T + T ∗ − CC∗)

W = C3 + a e−αS + b ,

where a, b are arbitrary complex numbers and α > 0. Compute the scalar potential. Find the auxiliary

field for S, T, C and verify that supersymmetry is broken. Assuming that C denotes a matter field with

vanishing vev, find a minimum of the potential. Are there flat directions? A typical Kähler potential

derived from string compactifications takes the form

K = −3 log Γ(τi) (2)

where Γ is a homogeneous function of degree one of moduli fields τi. Using the homogeneity equations

τiΓi = Γ and τiΓij = 0 (where Γi = ∂Γ/∂τi, etc. ) show that

τiKij = 3Γj/Γ , ΓiK
−1
ij Γj/Γ

2 = 1/3

and deduce from this that if the superpotential does not depend on the τi fields then the corresponding

contribution to the N = 1 supergravity scalar potential V vanishes.


