General Relativity: Example Sheet 1

David Tong, October 2019

1. Draw the integral curves corresponding to a vector field in \mathbf{R}^{2} with components, in Cartesian coordinates, given by

- $X^{\mu}=(y,-x)$
- $X^{\mu}=(x-y, x+y)$
[Hint: you might find life easier in polar coordinates.]

2. Let $\hat{H}: T_{p}(M) \rightarrow T_{p}^{*}(M)$ be a linear map. Define

$$
H(X, Y)=[\hat{H}(Y)](X)
$$

Show that this map is linear in both arguments (e.g. $H(f X+g Y, Z)=f H(X, Z)+$ $g H(Y, Z)$ for $f, g \in \mathbf{C}$ and $\left.X, Y, Z \in T_{p}(M)\right)$ and hence defines a rank $(0,2)$ tensor.

Similarly, show that a linear map $T_{p}(M) \rightarrow T_{p}(M)$ defines a tensor of rank $(1,1)$. What tensor δ arises from the identity map?
3. Let $V^{\mu \nu}$ be the components an arbitrary rank $(2,0)$ tensor, and $S_{\mu \nu}$ and $A_{\mu \nu}$ be the components of symmetric and anti-symmetric rank $(0,2)$ tensors respectively (i.e. $S_{\mu \nu}=$ $S_{\nu \mu}$ and $A_{\mu \nu}=-A_{\nu \mu}$). Show that $V^{\mu \nu} S_{\mu \nu}=V^{(\mu \nu)} S_{\mu \nu}$ and $V^{\mu \nu} A_{\mu \nu}=V^{[\mu \nu]} A_{\mu \nu}$.
4. You are given a rank $(2,0)$ tensor K. Working first in some basis, devise a criterion to test whether it is the direct product of two vectors A, B, i.e., $K^{\mu \nu}=A^{\mu} B^{\nu}$.

Can you express the test in a manifestly basis-invariant manner? [Hint: one option is to use determinants, but it is not the only one.]

Show that the general rank $(2,0)$ tensor in n dimensions cannot be written as a direct product, but can be expressed as a sum of many direct products.
5^{*}. Let M be a manifold and $f: M \rightarrow R$ be a smooth function such that $\mathrm{d} f=0$ at some point $p \in M$. Let x^{μ} be a coordinate chart defined in a neighbourhood of p. Define

$$
F_{\mu \nu}=\frac{\partial^{2} f}{\partial x^{\mu} \partial x^{\nu}} .
$$

By considering the transformation law for components show that $F_{\mu \nu}$ defines a rank $(0,2)$ tensor. (This is called the Hessian of f at p.) Construct also a coordinate-free definition and demonstrate its tensorial properties.
6. Let $g_{\mu \nu}$ be a rank $(0,2)$ tensor. In a basis, one can regard the components $g_{\mu \nu}$ as elements of an $n \times n$ matrix, so that one may define the determinant $g=\operatorname{det}\left(g_{\mu \nu}\right)$. How does g transform under a change of basis?
7^{*}. Use the Leibniz rule to derive the formula for the Lie derivative of a 1-form ω, valid in any coordinate basis:

$$
\left(\mathcal{L}_{X} \omega\right)_{\mu}=X^{\nu} \partial_{\nu} \omega_{\mu}+\omega_{\nu} \partial_{\mu} X^{\nu}
$$

[Hint: consider $\left(\mathcal{L}_{X} \omega\right)(Y)$ for a vector field Y.] Show that the Lie derivative of a $(0,2)$ tensor g is

$$
\left(\mathcal{L}_{X} g\right)_{\mu \nu}=X^{\rho} \partial_{\rho} g_{\mu \nu}+g_{\mu \rho} \partial_{\nu} X^{\rho}+g_{\rho \nu} \partial_{\mu} X^{\rho}
$$

For a p-form η, define $\iota_{X} \eta$ to be the ($p-1$)-form that results from contracting a vector field X with the first index of η. Show that for a 1-form ω,

$$
\mathcal{L}_{X} \omega=i_{X}(d \omega)+d\left(i_{X} \omega\right)
$$

8. Let ω be a p-form and η a q-form. Show that the exterior derivative satisfies the properties

- $d(d \omega)=0$
- $d(\omega \wedge \eta)=(d \omega) \wedge \eta+(-1)^{p} \omega \wedge d \eta$
- $d\left(\varphi^{*} \omega\right)=\varphi^{*}(d \omega)$ where $\varphi: M \rightarrow N$ for some manifolds M and N

9. The exterior derivative of $\omega \in \Lambda^{p}(M)$ can be defined as

$$
\begin{aligned}
d \omega\left(X_{1}, \ldots, X_{p+1}\right)= & \sum_{j=1}^{p+1}(-1)^{j-1} X_{j}\left(\omega\left(X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{p+1}\right)\right) \\
& +\sum_{j<k}(-1)^{j+k} \omega\left(\left[X_{j}, X_{k}\right], X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{k-1}, X_{k+1}, \ldots X_{p+1}\right)
\end{aligned}
$$

In a coordinate basis $\omega=\frac{1}{p!} \omega_{\mu_{1} \ldots \mu_{p}} d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{p}}$, use this definition to determine the components of $d \omega$ in the cases $p=1$ and $p=2$.
10. A three-sphere can be parameterized by Euler angles (θ, ϕ, ψ) where $0<\theta<\pi$, $0<\phi<2 \pi, 0<\psi<4 \pi$. Define the following 1-forms

$$
\sigma_{1}=-\sin \psi d \theta+\cos \psi \sin \theta d \phi, \quad \sigma_{2}=\cos \psi d \theta+\sin \psi \sin \theta d \phi, \quad \sigma_{3}=d \psi+\cos \theta d \phi
$$

Show that $d \sigma_{1}=\sigma_{2} \wedge \sigma_{3}$ with analogous results for $d \sigma_{2}$ and $d \sigma_{3}$.
11. Let $\left\{e_{\mu}\right\}$ be a basis of vectors fields, with

$$
\left[e_{\mu}, e_{\nu}\right]=\gamma^{\rho}{ }_{\mu \nu} e_{\rho}
$$

The functions $\gamma^{\rho}{ }_{\mu \nu}$ are known as commutator components. For a choice of coordinates $\left\{x^{\mu}\right\}$, we often work with the coordinate induced basis $e_{\mu}=\left\{\partial_{\mu}\right\}$. Show that, in this case, $\left[e_{\mu}, e_{\nu}\right]=0$.

The purpose of this question is to show the converse: that $\left[e_{\mu}, e_{\nu}\right]=0$ only for a coordinate induced basis. Consider a general basis $\left\{e_{\mu}\right\}$ and the dual basis $\left\{f^{\mu}\right\}$ of one-forms. In general, these can be expanded as

$$
e_{\mu}=e_{\mu}{ }^{\rho} \frac{\partial}{\partial x^{\rho}} \quad \text { and } \quad f^{\mu}=f_{\rho}^{\mu} d x^{\rho}
$$

where $e_{\mu}{ }^{\rho} f^{\nu}{ }_{\rho}=\delta_{\mu}{ }^{\nu}$. Show that

$$
e_{\mu}{ }^{\sigma} \frac{\partial e_{\nu}^{\lambda}}{\partial x^{\sigma}}-e_{\nu}{ }^{\sigma} \frac{\partial e_{\mu}{ }^{\lambda}}{\partial x^{\sigma}}=\gamma^{\rho}{ }_{\mu \nu} e_{\rho}{ }^{\lambda}
$$

Hence deduce that

$$
e_{\mu}{ }^{\sigma} e_{\nu}{ }^{\lambda} \frac{\partial f^{\rho}{ }_{\lambda}}{\partial x^{\sigma}}-e_{\nu}{ }^{\sigma} e_{\mu}{ }^{\lambda} \frac{\partial f^{\rho}{ }_{\lambda}}{\partial x^{\sigma}}=-\gamma^{\rho}{ }_{\mu \nu}
$$

and finally that

$$
\frac{\partial f^{\rho}{ }_{\sigma}}{\partial x^{\lambda}}-\frac{\partial f^{\rho}{ }_{\lambda}}{\partial x^{\sigma}}=-\gamma^{\rho}{ }_{\mu \nu} f^{\mu}{ }_{\lambda} f^{\nu}{ }_{\sigma}
$$

Use this result, together with the Poincaré lemma, to show that if $\left[e_{\mu}, e_{\nu}\right]=0 \forall \mu, \nu$ then the basis is coordinate induced.

