General Relativity: Example Sheet 2

David Tong, October 2019

1. The metric of Minkowski spacetime in the coordinates of an inertial frame is

$$
d s^{2}=-d t^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} .
$$

(a) Show that if we replace (x, y, z) with spherical polar coordinates (r, θ, ϕ) defined by

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \cos \theta=z / r, \quad \tan \phi=y / x
$$

then the metric takes the form

$$
d s^{2}=-d t^{2}+\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) .
$$

(b) Find the components of the metric in "rotating coordinates" defined by

$$
t^{\prime}=t, \quad x^{\prime}=\sqrt{x^{2}+y^{2}} \cos (\phi-\omega t), \quad y^{\prime}=\sqrt{x^{2}+y^{2}} \sin (\phi-\omega t), \quad z^{\prime}=z
$$

where $\tan \phi=y / x$.
2. Consider a change of basis $\tilde{e}_{\mu}=\left(A^{-1}\right)^{\nu}{ }_{\mu} e_{\nu}$. Show that the components of a connection in the new basis are related to its components in the old basis by

$$
\tilde{\Gamma}_{\mu \nu}^{\rho}=A^{\rho}{ }_{\lambda}\left(A^{-1}\right)^{\sigma}{ }_{\mu}\left[\left(A^{-1}\right)^{\tau}{ }_{\nu} \Gamma_{\sigma \tau}^{\lambda}+e_{\sigma}\left(\left(A^{-1}\right)^{\lambda}{ }_{\nu}\right)\right]
$$

Show further that the difference of two connections, $\left(\Gamma_{1}\right)_{\mu \nu}^{\rho}-\left(\Gamma_{2}\right)_{\mu \nu}^{\rho}$, transforms as a tensor.
3. Let ∇ be a connection that is not torsion-free. Let $T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$ where X and Y are vector fields. Show that this defines a $(1,2)$ tensor field T. This is called the torsion tensor. Show that, for any function f,

$$
2 \nabla_{[\mu} \nabla_{\nu]} f=-T^{\rho}{ }_{\mu \nu} \nabla_{\rho} f
$$

4. Let ∇ be a torsion-free connection. Derive the analogue of the Ricci identity for a 1 -form ω,

$$
2 \nabla_{[\mu} \nabla_{\nu]} \omega_{\rho}=-R^{\sigma}{ }_{\rho \mu \nu} \omega_{\sigma}
$$

5. The Riemann tensor constructed from the Levi-Civita connection obeys the Bianchi identity $R^{\mu}{ }_{\nu[\rho \sigma ; \lambda]}=0$. Use this fact to derive the contracted Bianchi identity $G^{\mu}{ }_{\nu ; \mu}=0$ where $G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}$ is the Einstein tensor.

6*. The Reissner-Nordstrom solution of the Einstein-Maxwell equations has metric

$$
d s^{2}=-f(r)^{2} d t^{2}+f(r)^{-2} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

with

$$
f(r)^{2}=1-\frac{2 M}{r}+\frac{Q^{2}+P^{2}}{r^{2}}
$$

and a Maxwell field strength $F=d A$, with

$$
A=-\frac{Q}{r} d t-P \cos \theta d \phi
$$

where M, P, Q are constants. M can be interpreted as the total mass of this spacetime. Assume that (t, r, θ, ϕ) is a right handed coordinate chart. Show that

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\mathbf{S}_{\infty}^{2}} \star F=Q \quad \text { and } \quad \frac{1}{4 \pi} \int_{\mathbf{S}_{\infty}^{2}} F=P \tag{1}
\end{equation*}
$$

where \mathbf{S}_{∞}^{2} is a sphere at $r=\infty$ on a surface of constant t. What is the physical interpretation of Q and P ?
7. A vector field Y is parallely propagated (with respect to the Levi-Civita connection) along an affinely parameterized geodesic with tangent vector X in a Riemannian manifold. Show that the magnitudes of the vectors X, Y and the angle between them are constant along the geodesic.

On the unit sphere a unit vector Y is initially tangent to the line $\phi=0$ at a point on the equator. It is then moved by parallel propagation first along the equator to the point $\phi=\phi_{0}$, from there along the line $\phi=\phi_{0}$ to the North pole, and then back along the line $\phi=0$ to its original position. By how much has it changed, and why?
8. In Q7 of examples sheet 1, we showed that

$$
\begin{aligned}
\left(\mathcal{L}_{X} \omega\right)_{\mu} & =X^{\nu} \partial_{\nu} \omega_{\mu}+\omega_{\nu} \partial_{\mu} X^{\nu} \\
\left(\mathcal{L}_{X} g\right)_{\mu \nu} & =X^{\rho} \partial_{\rho} g_{\mu \nu}+g_{\mu \rho} \partial_{\nu} X^{\rho}+g_{\rho \nu} \partial_{\mu} X^{\rho}
\end{aligned}
$$

Use normal coordinates to argue that one can replace partial derivatives with covariant derivatives to obtain the basis-independent results

$$
\begin{aligned}
\left(\mathcal{L}_{X} \omega\right)_{\mu} & =X^{\nu} \nabla_{\nu} \omega_{\mu}+\omega_{\nu} \nabla_{\mu} X^{\nu} \\
\left(\mathcal{L}_{X} g\right)_{\mu \nu} & =\nabla_{\mu} X_{\nu}+\nabla_{\nu} X_{\mu}
\end{aligned}
$$

with ∇ is the Levi-Civita connection.
9. How many independent components does the Riemann tensor (of the Levi-Civita connection) have in two, three and four dimensions? Show that in two dimensions

$$
R_{\mu \nu \rho \sigma}=\frac{1}{2} R\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) .
$$

Discuss the implications for general relativity in two spacetime dimensions.
10. In a d-dimensional spacetime, define a tensor

$$
C_{\mu \nu \rho \sigma}=R_{\mu \nu \rho \sigma}+\alpha\left(R_{\mu \rho} g_{\nu \sigma}+R_{\nu \sigma} g_{\mu \rho}-R_{\mu \sigma} g_{\nu \rho}-R_{\nu \rho} g_{\mu \sigma}\right)+\beta R\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right)
$$

where α and β are constants. Show that $C_{\mu \nu \rho \sigma}$ has the same symmetries as $R_{\mu \nu \rho \sigma}$.
What values of α and β give $C^{\mu}{ }_{\nu \mu \sigma}=0$? Determine them. With this extra condition $C_{\mu \nu \rho \sigma}$ is called the Weyl tensor. Show that it vanishes if $d=2,3$.

Setting $d=4$, how many independent components do $R_{\mu \nu}$ and $C_{\mu \nu \rho \sigma}$ have? Show that in vacuum

$$
\nabla^{\mu} C_{\mu \nu \rho \sigma}=0 .
$$

What does the Weyl tensor represent physically?
11. [Optional] Use the Bianchi identity to derive the Penrose equation for a vacuum spacetime

$$
\nabla^{\lambda} \nabla_{\lambda} R_{\mu \nu \rho \sigma}=2 R^{\kappa}{ }_{\mu \lambda \sigma} R^{\lambda}{ }_{\rho \kappa \nu}-2 R_{\nu \lambda \sigma}^{\kappa} R^{\lambda}{ }_{\rho \kappa \mu}-R_{\lambda \sigma \rho}^{\kappa} R^{\lambda}{ }_{\kappa \mu \nu}
$$

12*. Consider metrics of the form

$$
d s^{2}=-f(r)^{2} d t^{2}+f(r)^{-2} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Use the action for a test particle to write down the geodesic equations in this metric, and hence extract the Christoffel symbols in coordinates (t, r, θ, ϕ).

Use a basis of vierbeins to determine the curvature 2-form, and hence the components of the Riemann tensor in coordinates (t, r, θ, ϕ).

