General Relativity: Example Sheet 3

David Tong, November 2019

1*. Obtain the form of the general timelike geodesic in a 2 d spacetime with metric

$$
d s^{2}=\frac{1}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} x^{2}\right)
$$

Hint: You should use the symmetries of the Lagrangian. You will probably find the following integrals useful:

$$
\int \frac{d t}{t \sqrt{1+p^{2} t^{2}}}=\frac{1}{2} \ln \left(\frac{\sqrt{1+p^{2} t^{2}}-1}{\sqrt{1+p^{2} t^{2}}+1}\right) \quad \text { and } \quad \int \frac{d \tau}{\sinh ^{2} \tau}=-\operatorname{coth} \tau
$$

2. The Brans-Dicke theory of gravity has an extra scalar field ϕ which acts like a dynamical Newton constant. The action is given

$$
S=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left[R \phi-\frac{\omega}{\phi} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]+S_{M}
$$

where ω is a constant and S_{M} is the action for matter fields. Derive the resulting Einstein equation and the equation of motion for ϕ.
3. M-theory is a quantum theory of gravity in $d=11$ spacetime dimensions. It arises from the strong coupling limit of string theory. At low-energies, it is described by $d=11$ supergravity whose bosonic fields are the metric and a 4 -form $G=d C$ where C is a 3 -form potential. The action governing these fields is

$$
S=\frac{1}{2} M_{\mathrm{pl}}^{9}\left[\int d^{11} x \sqrt{-g}\left(R-\frac{1}{48} G_{\mu \nu \rho \sigma} G^{\mu \nu \rho \sigma}\right)-\frac{1}{6} \int C \wedge G \wedge G\right]
$$

i) Show that, up to surface terms, this action is gauge invariant under $C \rightarrow C+d \Lambda$ where Λ is a 2 -form.
ii) Vary the metric to determine the Einstein equation for this theory.
iii) Vary C to obtain the equation of motion for the 4 -form,

$$
d \star G=\frac{1}{2} G \wedge G
$$

4. i) Let X and Y be two vector fields. Show that

$$
\mathcal{L}_{X}\left(\mathcal{L}_{Y} Q\right)-\mathcal{L}_{Y}\left(\mathcal{L}_{X} Q\right)=\mathcal{L}_{[X, Y]} Q,
$$

when Q is either a function or a vector field. Use the Leibniz property of the Lie derivative to show that this also holds when Q is a one-form.
ii) Demonstrate that if a Riemannian or Lorentzian manifold has two "independent" isometries then it has a third, and define what is meant by independent here.
iii) Consider the unit sphere with metric

$$
d s^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2} .
$$

Show that

$$
X=\frac{\partial}{\partial \phi} \quad \text { and } \quad Y=\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}
$$

are Killing vectors. Find a third, and show that they obey the Lie algebra of so(3).
5. Let K^{μ} be a Killing vector field and $T_{\mu \nu}$ the energy momentum tensor. Let $J^{\mu}=T^{\mu}{ }_{\nu} K^{\nu}$. Show that J^{μ} is a conserved current, meaning $\nabla_{\mu} J^{\mu}=0$.
6. Show that a Killing vector field K^{μ} satisfies the equation

$$
\nabla_{\mu} \nabla_{\nu} K^{\rho}=R_{\nu \mu \sigma}^{\rho} K^{\sigma}
$$

[Hint: use the identity $R_{[\mu \nu \sigma]}=0$.]
Deduce that in Minkowski spacetime the components of Killing covectors are linear functions of the coordinates.
7. Consider Minkowski spacetime in an inertial frame, so the metric is $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$. Let K^{μ} be a Killing vector field. Write down Killing's equation in the inertial frame coordinates.

Using the result of Q6, show that the general solution can be written in terms of a constant antisymmetric matrix $a_{\mu \nu}$ and a constant covector b_{μ}.

Identify the isometries corresponding to Killing fields with

- $a_{\mu \nu}=0$
- $a_{0 i}=0, b_{\mu}=0$,
- $a_{i j}=0, b_{\mu}=0$
where $i, j=1,2,3$. Identify the conserved quantities along a timelike geodesic corresponding to each of these three cases.

8*. The Einstein Static Universe has topology $\mathbf{R} \times \mathbf{S}^{3}$ and metric

$$
d s^{2}=-d t^{2}+d \chi^{2}+\sin ^{2} \chi d \Omega_{2}^{2}
$$

where $t \in(-\infty,+\infty)$ and $\chi \in[0, \pi]$ and $d \Omega_{2}^{2}$ is the round metric on \mathbf{S}^{2}. This can be pictured as an infinite cylinder, with spatial cross-section \mathbf{S}^{3}. Show that Minkowski, de Sitter and anti-de Sitter spacetimes are all conformally equivalent to submanifolds of the Einstein static universe. Draw these submanifolds on a cylinder.
9. The Lagrangian for the electromagnetic field is

$$
\mathcal{L}=-\frac{1}{4} g^{\mu \rho} g^{\nu \sigma} F_{\mu \nu} F_{\rho \sigma}
$$

where $F=d A$. Show that this Lagrangian reproduces the Maxwell equations when A_{μ} is varied and reproduces the energy-momentum tensor when $g_{\mu \nu}$ is varied.
10. i) A scalar field obeying the Klein-Gordon equation $\nabla^{\mu} \nabla_{\mu} \phi-m^{2} \phi=0$ has energymomentum tensor

$$
T_{\mu \nu}=\nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} g_{\mu \nu}\left(\nabla^{\rho} \phi \nabla_{\rho} \phi+m^{2} \phi^{2}\right)
$$

Show that $T_{\mu \nu}$ is covariantly conserved.
ii) The energy-momentum for a Maxwell field $F_{\mu \nu}$ is

$$
T_{\mu \nu}=g^{\rho \sigma} F_{\mu \rho} F_{\nu \sigma}-\frac{1}{4} g_{\mu \nu} F^{\rho \sigma} F_{\rho \sigma}
$$

Show that $T_{\mu \nu}$ is covariantly conserved when the Maxwell equations are obeyed.
iii) The energy-momentum tensor of a perfect fluid, with energy density ρ, pressure P and 4 -velocity u^{μ} with $u^{\mu} u_{\mu}=-1$ is

$$
T^{\mu \nu}=(\rho+P) u^{\mu} u^{\nu}+P g^{\mu \nu}
$$

Show that conservation of the energy-momentum tensor implies

$$
u^{\mu} \nabla_{\mu} \rho+(\rho+P) \nabla_{\mu} u^{\mu}=0 \quad \text { and } \quad(\rho+P) u^{\nu} \nabla_{\nu} u_{\mu}=-\left(g_{\mu \nu}+u_{\mu} u_{\nu}\right) \nabla^{\nu} P
$$

11. A test particle of rest mass m has a (timelike) worldline $x^{\mu}(\lambda), 0 \leq \lambda \leq 1$ and action

$$
S=-m \int d \tau \equiv-m \int d \lambda \sqrt{-g_{\mu \nu}(x(\lambda)) \dot{x}^{\mu} \dot{x}^{\nu}}
$$

where τ is proper time and a dot denotes a derivative with respect to λ.
i) Show that varying this action with respect to $x^{\mu}(\lambda)$ leads to the non-affinely parameterised geodesic equation.

$$
\ddot{x}^{\mu}+\Gamma_{\rho \sigma}^{\mu} \dot{x}^{\rho} \dot{x}^{\sigma}=\frac{1}{L} \frac{d L}{d \lambda} \dot{x}^{\mu}
$$

Explain why we can choose a parameterisation so that $d L / d \sigma=0$. [Hint: You may want to look at chapter 1 of the lecture notes to refresh your geodesic knowledge.]
ii) Show that the energy-momentum tensor of the particle in any chart is

$$
T^{\mu \nu}(x)=\frac{m}{\sqrt{-g(x)}} \int d \tau u^{\mu}(\tau) u^{\nu}(\tau) \delta^{4}(x-x(\tau))
$$

where u^{μ} is the 4 -velocity of the particle.
iii) Conservation of the energy-momentum tensor is equivalent to the statement that

$$
\int_{R} d^{4} x \sqrt{-g} v_{\nu} \nabla_{\mu} T^{\mu \nu}=0
$$

for any vector field v^{μ} and region R. By choosing v^{μ} to be compactly supported in a region intersecting the particle worldline, show that conservation of $T^{\mu \nu}$ implies that test particles move on geodesics. (This is an example of how the "geodesic postulate" of GR is a consequence of energy-momentum conservation.)
12. Physically reasonable matter with energy-momentum tensor $T^{\mu \nu}$ is expected to satisfy the weak energy condition, i.e.

$$
T_{\mu \nu} u^{\mu} u^{\nu} \geq 0
$$

for all timelike u^{μ}. Give a physical interpretation for this condition. You measure the components of $T^{\mu}{ }_{\nu}$ in some basis and determine its eigenvalues λ and eigenvectors v^{μ} satisfying

$$
T^{\mu}{ }_{\nu} v^{\nu}=\lambda v^{\mu}
$$

You find that it has precisely one timelike eigenvector with eigenvalue $-\rho$ and three spacelike eigenvectors with eigenvalues $P_{(i)}$. Under which necessary and sufficient condition on these eigenvalues is the weak energy condition satisfied?

