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General Relativity: Example Sheet 3

David Tong, November 2019

1*. Obtain the form of the general timelike geodesic in a 2d spacetime with metric

ds2 =
1

t2
(−dt2 + dx2)

Hint: You should use the symmetries of the Lagrangian. You will probably find the

following integrals useful:

∫

dt

t
√

1 + p2t2
=

1

2
ln

(

√

1 + p2t2 − 1
√

1 + p2t2 + 1

)

and

∫

dτ

sinh2 τ
= − coth τ,

2. The Brans-Dicke theory of gravity has an extra scalar field φ which acts like a dynamical

Newton constant. The action is given

S =
1

16πG

∫

d4x
√
−g
[

Rφ− ω

φ
gµν∂µφ∂νφ

]

+ SM

where ω is a constant and SM is the action for matter fields. Derive the resulting Einstein

equation and the equation of motion for φ.

3. M-theory is a quantum theory of gravity in d = 11 spacetime dimensions. It arises

from the strong coupling limit of string theory. At low-energies, it is described by d = 11

supergravity whose bosonic fields are the metric and a 4-form G = dC where C is a 3-form

potential. The action governing these fields is

S =
1

2
M9

pl

[
∫

d11x
√
−g

(

R− 1

48
GµνρσG

µνρσ

)

− 1

6

∫

C ∧G ∧G

]

i) Show that, up to surface terms, this action is gauge invariant under C → C + dΛ where

Λ is a 2-form.

ii) Vary the metric to determine the Einstein equation for this theory.

iii) Vary C to obtain the equation of motion for the 4-form,

d ⋆ G =
1

2
G ∧G
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4. i) Let X and Y be two vector fields. Show that

LX(LYQ)− LY (LXQ) = L[X,Y ]Q,

when Q is either a function or a vector field. Use the Leibniz property of the Lie derivative

to show that this also holds when Q is a one-form.

ii) Demonstrate that if a Riemannian or Lorentzian manifold has two “independent” isome-

tries then it has a third, and define what is meant by independent here.

iii) Consider the unit sphere with metric

ds2 = dθ2 + sin2 θ dφ2.

Show that

X =
∂

∂φ
and Y = sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

are Killing vectors. Find a third, and show that they obey the Lie algebra of so(3).

5. LetKµ be a Killing vector field and Tµν the energy momentum tensor. Let Jµ = T µ
νK

ν .

Show that Jµ is a conserved current, meaning ∇µJ
µ = 0.

6. Show that a Killing vector field Kµ satisfies the equation

∇µ∇νK
ρ = Rρ

νµσK
σ

[Hint: use the identity Rρ
[µνσ] = 0.]

Deduce that in Minkowski spacetime the components of Killing covectors are linear func-

tions of the coordinates.

7. Consider Minkowski spacetime in an inertial frame, so the metric is ηµν = diag(−1, 1, 1, 1).

Let Kµ be a Killing vector field. Write down Killing’s equation in the inertial frame coor-

dinates.

Using the result of Q6, show that the general solution can be written in terms of a constant

antisymmetric matrix aµν and a constant covector bµ.

Identify the isometries corresponding to Killing fields with

• aµν = 0

• a0i = 0, bµ = 0,

• aij = 0, bµ = 0

where i, j = 1, 2, 3. Identify the conserved quantities along a timelike geodesic correspond-

ing to each of these three cases.
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8*. The Einstein Static Universe has topology R× S3 and metric

ds2 = −dt2 + dχ2 + sin2 χdΩ2
2

where t ∈ (−∞,+∞) and χ ∈ [0, π] and dΩ2
2 is the round metric on S2. This can be

pictured as an infinite cylinder, with spatial cross-section S3. Show that Minkowski, de

Sitter and anti-de Sitter spacetimes are all conformally equivalent to submanifolds of the

Einstein static universe. Draw these submanifolds on a cylinder.

9. The Lagrangian for the electromagnetic field is

L = −1

4
gµρgνσFµνFρσ

where F = dA. Show that this Lagrangian reproduces the Maxwell equations when Aµ is

varied and reproduces the energy-momentum tensor when gµν is varied.

10. i) A scalar field obeying the Klein-Gordon equation ∇µ∇µφ − m2φ = 0 has energy-

momentum tensor

Tµν = ∇µφ∇νφ− 1

2
gµν
(

∇ρφ∇ρφ+m2φ2
)

Show that Tµν is covariantly conserved.

ii) The energy-momentum for a Maxwell field Fµν is

Tµν = gρσFµρFνσ −
1

4
gµνF

ρσFρσ

Show that Tµν is covariantly conserved when the Maxwell equations are obeyed.

iii) The energy-momentum tensor of a perfect fluid, with energy density ρ, pressure P and

4-velocity uµ with uµuµ = −1 is

T µν = (ρ+ P )uµuν + Pgµν

Show that conservation of the energy-momentum tensor implies

uµ∇µρ+ (ρ+ P )∇µu
µ = 0 and (ρ+ P )uν∇νuµ = −(gµν + uµuν)∇νP

3
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11. A test particle of rest mass m has a (timelike) worldline xµ(λ), 0 ≤ λ ≤ 1 and action

S = −m

∫

dτ ≡ −m

∫

dλ
√

−gµν(x(λ))ẋµẋν

where τ is proper time and a dot denotes a derivative with respect to λ.

i) Show that varying this action with respect to xµ(λ) leads to the non-affinely parame-

terised geodesic equation.

ẍµ + Γµ
ρσẋ

ρẋσ =
1

L

dL

dλ
ẋµ

Explain why we can choose a parameterisation so that dL/dσ = 0. [Hint: You may want

to look at chapter 1 of the lecture notes to refresh your geodesic knowledge.]

ii) Show that the energy-momentum tensor of the particle in any chart is

T µν(x) =
m

√

−g(x)

∫

dτ uµ(τ)uν(τ)δ4(x− x(τ))

where uµ is the 4-velocity of the particle.

iii) Conservation of the energy-momentum tensor is equivalent to the statement that
∫

R

d4x
√
−g vν∇µT

µν = 0

for any vector field vµ and region R. By choosing vµ to be compactly supported in a

region intersecting the particle worldline, show that conservation of T µν implies that test

particles move on geodesics. (This is an example of how the ”geodesic postulate” of GR is

a consequence of energy-momentum conservation.)

12. Physically reasonable matter with energy-momentum tensor T µν is expected to satisfy

the weak energy condition, i.e.

Tµνu
µuν ≥ 0

for all timelike uµ. Give a physical interpretation for this condition. You measure the

components of T µ
ν in some basis and determine its eigenvalues λ and eigenvectors vµ

satisfying

T µ
νv

ν = λvµ

You find that it has precisely one timelike eigenvector with eigenvalue −ρ and three space-

like eigenvectors with eigenvalues P(i). Under which necessary and sufficient condition on

these eigenvalues is the weak energy condition satisfied?
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