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General Relativity: Example Sheet 3

David Tong, November 2019

1*. Obtain the form of the general timelike geodesic in a 2d spacetime with metric
o _ 1 2 2
ds® = t_Q(_dt + dz?)

Hint: You should use the symmetries of the Lagrangian. You will probably find the
following integrals useful:

1 \/1 2t2 — 1
/ d_t — Zln tp and /—dTQ = —cothT,
ty/1+p2t2 2 V1+pi2+1

sinh” 7

2. The Brans-Dicke theory of gravity has an extra scalar field ¢ which acts like a dynamical
Newton constant. The action is given

1
5= 167G

[ dev=a[Ro - £98,00,6] + Su

where w is a constant and Sy, is the action for matter fields. Derive the resulting Einstein
equation and the equation of motion for ¢.

3. M-theory is a quantum theory of gravity in d = 11 spacetime dimensions. It arises
from the strong coupling limit of string theory. At low-energies, it is described by d = 11
supergravity whose bosonic fields are the metric and a 4-form G = dC' where C'is a 3-form
potential. The action governing these fields is

1 1 1
S = 5 31 |:/dlll‘\/_g (R— @GuupaGlmﬂU) —E/CAG/\G:|

i) Show that, up to surface terms, this action is gauge invariant under C' — C' + dA where
A is a 2-form.

ii) Vary the metric to determine the Einstein equation for this theory.

iii) Vary C' to obtain the equation of motion for the 4-form,

d*G:%G/\G
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4. i) Let X and Y be two vector fields. Show that
Lx(LyQ) — Ly(LxQ) = Lixv@Q,

when () is either a function or a vector field. Use the Leibniz property of the Lie derivative
to show that this also holds when @ is a one-form.

ii) Demonstrate that if a Riemannian or Lorentzian manifold has two “independent” isome-
tries then it has a third, and define what is meant by independent here.

iii) Consider the unit sphere with metric
ds* = d6? + sin? 6 d¢>.

Show that

0 . 0 0
X—% and Y—smqb%—kcotﬁcosgba—gb

are Killing vectors. Find a third, and show that they obey the Lie algebra of so(3).

5. Let K* be a Killing vector field and 7}, the energy momentum tensor. Let J# = T*# K.
Show that J# is a conserved current, meaning V,J" = 0.

6. Show that a Killing vector field K* satisfies the equation
V.V,K? =R, , K
[Hint: use the identity R, = 0.]

Deduce that in Minkowski spacetime the components of Killing covectors are linear func-
tions of the coordinates.

7. Consider Minkowski spacetime in an inertial frame, so the metric is n,,, = diag(—1,1,1,1).
Let K* be a Killing vector field. Write down Killing’s equation in the inertial frame coor-
dinates.

Using the result of Q6, show that the general solution can be written in terms of a constant
antisymmetric matrix a,, and a constant covector b,.

Identify the isometries corresponding to Killing fields with
®a, =0
e ap =0,0,=0,
® a;=0,b,=0

where 7,7 = 1,2, 3. Identify the conserved quantities along a timelike geodesic correspond-
ing to each of these three cases.
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8*. The Einstein Static Universe has topology R x S? and metric
ds* = —dt* + dx® + sin® y d€)3

where ¢ € (—o0,+00) and x € [0,7] and d©2% is the round metric on S?. This can be
pictured as an infinite cylinder, with spatial cross-section S®. Show that Minkowski, de
Sitter and anti-de Sitter spacetimes are all conformally equivalent to submanifolds of the
Einstein static universe. Draw these submanifolds on a cylinder.

9. The Lagrangian for the electromagnetic field is
L= Lo YF.F
- _Zg g pvd’ po

where F' = dA. Show that this Lagrangian reproduces the Maxwell equations when A, is
varied and reproduces the energy-momentum tensor when g, is varied.

10. i) A scalar field obeying the Klein-Gordon equation V#V,¢ — m?$ = 0 has energy-
momentum tensor

1
T,uu = vu¢vu¢ - 59;11/ (Vp¢vp¢ + m2¢2)

Show that T, is covariantly conserved.

ii) The energy-momentum for a Maxwell field F},, is

1
Tw=9"F,F,,— ZgMVFpJFPU

Show that 7}, is covariantly conserved when the Maxwell equations are obeyed.

iii) The energy-momentum tensor of a perfect fluid, with energy density p, pressure P and
4-velocity u# with v, = —1is

™ = (p+ P)u*u” + Pg"”
Show that conservation of the energy-momentum tensor implies

uWVup+(p+P)V,u' =0 and (p+ P)u"V,yu, = —(9u + uuw,)V'P
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11. A test particle of rest mass m has a (timelike) worldline 2#(A), 0 < A < 1 and action

S = —m/dT = —m/d)\ \/—gu,,(x()\))y'c“y'c”

where 7 is proper time and a dot denotes a derivative with respect to A.

i) Show that varying this action with respect to z#()\) leads to the non-affinely parame-
terised geodesic equation.

1dL
i T i0i =

Explain why we can choose a parameterisation so that dL/do = 0. [Hint: You may want
to look at chapter 1 of the lecture notes to refresh your geodesic knowledge. |

ii) Show that the energy-momentum tensor of the particle in any chart is

T (z) dr u*(r)u” (1)0" (x — x(7))

where u* is the 4-velocity of the particle.

iii) Conservation of the energy-momentum tensor is equivalent to the statement that
/ d'z \/=gv,V,T" =0
R

for any vector field v* and region R. By choosing v* to be compactly supported in a
region intersecting the particle worldline, show that conservation of T"” implies that test
particles move on geodesics. (This is an example of how the ”geodesic postulate” of GR is
a consequence of energy-momentum conservation.)

12. Physically reasonable matter with energy-momentum tensor T"" is expected to satisfy
the weak energy condition, i.e.

T, u'u” >0

for all timelike u*. Give a physical interpretation for this condition. You measure the
components of T*, in some basis and determine its eigenvalues A\ and eigenvectors v*
satisfying

T v = Aot

You find that it has precisely one timelike eigenvector with eigenvalue —p and three space-
like eigenvectors with eigenvalues F;). Under which necessary and sufficient condition on
these eigenvalues is the weak energy condition satisfied?



