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Problem Set 2

Inflation and Perturbation Theory

Warmup Questions

(a) What is the horizon problem? How does inflation solve it?

(b) What are the conditions for successful slow-roll inflation?

(c) What is the gauge problem?

(d) What are adiabatic fluctuations?

(e) Explain the relevance of the conservation of the constant density curvature perturbation ζ

and comoving curvature perturbation R on superhorizon scales.

1. Scalar Field Dynamics

The Lagrangian for a scalar field in a curved spacetime is

L =
√
−g

[

1

2
gµν∂µφ∂νφ− V (φ)

]

,

where g ≡ det(gµν) is the determinant of the metric tensor.

(a) Evaluate the scalar field Lagrangian for a homogeneous field φ = φ(t) in an FRW spacetime.

From the Euler-Lagrange equation determine the equation of motion for the scalar field.

(b) Near the minimum of the inflaton potential, we can write V (φ) = 1
2
m2φ2 + · · · . Making

the ansatz φ(t) = a−3/2(t)χ(t), show that the equation of motion becomes

χ̈+

(

m2 − 3

2
Ḣ − 9

4
H2

)

χ = 0 .

Assuming that m2 ≫ H2 ∼ Ḣ, find φ(t). What does this result imply for the evolution of

the energy density during the oscillating phase after inflation?
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2. Slow-Roll Inflation

The equations of motion of the homogeneous part of the inflaton are

φ̈+ 3Hφ̇+ V ′ = 0 , 3M2
plH

2 =
1

2
φ̇2 + V .

(a) For the potential V (φ) = 1
2
m2φ2, use the slow-roll approximation to obtain the inflationary

solutions

φ(t) = φI −
√

2

3
mMpl t , a(t) = aI exp

[

φ2
I − φ2(t)

4M2
pl

]

,

where φI > 0 is the field value at the start of inflation (tI ≡ 0).

(b) What is the value of φ when inflation ends? Find an expression for the number of e-folds.

If V (φI) ∼ M4
pl, estimate the total number of e-folds of inflation.

3. Curvature Perturbations

In class we showed that ζ is conserved on superhorizon scales. Explicitly show the same is

true for R

4. Cosmological Gravitational Waves

(a) The line element of a FRW metric with tensor (gravitational wave) perturbations is

ds2 = a2(τ)
[

−dτ2 + (δij + 2Êij)dx
idxj

]

,

where Êij is symmetric, trace-free and transverse. Working to linear order in Êij , show

that the non-zero connection coefficients are

Γ0
00 = H ,

Γ0
ij = Hδij + 2Hhij + Ê′

ij ,

Γi
j0 = Hδij + Êi

j
′ ,

Γi
jk = ∂jh

i
k + ∂kÊ

i
j − δil∂lÊjk .

(b)∗ Show that the perturbation to the Einstein tensor has non-zero components

δGij = Ê′′

ij −∇2Êij + 2Hh′ij − 2Êij(2H′ +H2) .

[Hint: Convince yourself that the Ricci scalar has no tensor perturbations at first order.]

(c) Show further that for tensor perturbations, the non-zero perturbations to the energy-

momentum tensor are

δT̂ij = 2a2P̄ Êij − a2Π̂ij ,

where Π̂ij is the anisotropic stress tensor.
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(d) Combine these results, and the zeroth-order Friedmann equation, to show that the per-

turbed Einstein equation reduces to

Ê′′

ij + 2HÊ′

ij −∇2Êij = −8πGa2Π̂ij .

(e) For the case where ∇2Êij = −k2Êij (i.e. a Fourier mode of the metric perturbation), and

assuming the anisotropic stress can be ignored, show that

Êij ∝
kτ cos(kτ)− sin(kτ)

(kτ)3

is a solution for a matter-dominated universe (a ∝ τ2).

(f) Show that the solution tends to a constant for kτ ≪ 1 and argue that such a constant

solution always exists for super-Hubble gravitational waves irrespective of the equation of

state of the matter. For the specifc solution above, show that well inside the Hubble radius

it oscillates at (comoving) frequency k and with an amplitude that falls as 1/a. (This

behaviour is also general and follows from a WKB solution of the Einstein equation.)
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