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Problem Set 2

Inflation and Perturbation Theory

Warmup Questions

(a) What is the horizon problem? How does inflation solve it?
(b) What are the conditions for successful slow-roll inflation?
(¢) What is the gauge problem?

(d) What are adiabatic fluctuations?

(e) Explain the relevance of the conservation of the constant density curvature perturbation ¢
and comoving curvature perturbation R on superhorizon scales.

1. Scalar Field Dynamics

The Lagrangian for a scalar field in a curved spacetime is
1
L=V-g|59"0u¢dve¢ -V(9)| ,
where g = det(g,,) is the determinant of the metric tensor.

(a) Evaluate the scalar field Lagrangian for a homogeneous field ¢ = ¢(¢) in an FRW spacetime.
From the Euler-Lagrange equation determine the equation of motion for the scalar field.

(b) Near the minimum of the inflaton potential, we can write V(¢) = im2¢? + ---. Making
the ansatz ¢(t) = a=%/2(t)x(t), show that the equation of motion becomes
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Assuming that m2 > H? ~ H, find ¢(t). What does this result imply for the evolution of

the energy density during the oscillating phase after inflation?
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2. Slow-Roll Inflation

The equations of motion of the homogeneous part of the inflaton are
. . 1.
d+3Hp+V' =0, 3M§1H2:§¢2+V.

(a) For the potential V(¢) = %m2¢2, use the slow-roll approximation to obtain the inflationary

solutions
2 2
o) =61\ amitat. o) =arex [W] |

where ¢; > 0 is the field value at the start of inflation (¢; = 0).

(b) What is the value of ¢ when inflation ends? Find an expression for the number of e-folds.
If V(pr) ~ Mél, estimate the total number of e-folds of inflation.

3. Curvature Perturbations
In class we showed that ( is conserved on superhorizon scales. Explicitly show the same is
true for R

4. Cosmological Gravitational Waves
(a) The line element of a FRW metric with tensor (gravitational wave) perturbations is
ds® = a2(7') —dr? + (035 + 2E¢j)dwidxj] ,

where E;; is symmetric, trace-free and transverse. Working to linear order in E;;, show
that the non-zero connection coefficients are

Fgo - H 5
F?j = Hoi; + 2Hh;j + EZ/] ,
Ly ="M+ EY
F;’k = 8jhik + 8kEZ] — 5”81Ejk
(b)* Show that the perturbation to the Einstein tensor has non-zero components
6Gyj = B — V2 Eyj + 2Mhi; — 2E;;2H + H?) .
[Hint: Convince yourself that the Ricci scalar has no tensor perturbations at first order.]

(¢c) Show further that for tensor perturbations, the non-zero perturbations to the energy-
momentum tensor are
5Tz’j == QaQPEij — a2Hz~j y

where II;; is the anisotropic stress tensor.
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(d)

Combine these results, and the zeroth-order Friedmann equation, to show that the per-
turbed Einstein equation reduces to

EJs + 2HE]; — V?Ej; = —8nGa’ll;; .

For the case where VQEM = —kQE'ij (i.e. a Fourier mode of the metric perturbation), and
assuming the anisotropic stress can be ignored, show that

., krcos(kT) —sin(kT)
v (k7)3

is a solution for a matter-dominated universe (a o< 72).

Show that the solution tends to a constant for k7 < 1 and argue that such a constant
solution always exists for super-Hubble gravitational waves irrespective of the equation of
state of the matter. For the specifc solution above, show that well inside the Hubble radius
it oscillates at (comoving) frequency k and with an amplitude that falls as 1/a. (This
behaviour is also general and follows from a WKB solution of the Einstein equation.)



