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Problem Set 4

Initial Conditions from Inflation

Warmup Problem

(a) Describe g⋆(T ) given the particle content of the Standard Model.

(b) Why does the neutrino temperature scale as Tν ∝ a−1 after decoupling?

(c) Why is today’s photon temperature larger than that of neutrinos?

(d) Why is the recombination temperature much lower than the ionization energy of hydrogen?

1. Chemical Potential for Electrons

(a) Show that the difference between the number densities of electrons and positrons in the

relativistic limit (me ≪ T ) is

ne − n̄e ≈
gT 3

6π2

[

π2
(µe

T

)

+
(µe

T

)3
]

,

where µe is the chemical potential.

Hint: You may use that
∫ ∞

0
dy

y

ey + 1
=

π2

12
.

(b) The electrical neutrality of the universe implies that the number of protons np is equal to

ne − n̄e. Use this to estimate µe/T .

2. Neutrinos

(a) Massive neutrinos:

Assume that one neutrino species has a non-zero mass mν which is much smaller than the

neutrino decoupling temperature Tdec ∼ 1 MeV, so that they are relativistic when they

decouple. Compute the temperature of the neutrinos relative to the cosmic microwave

photons and hence estimate their number density. From their assumed mass mν , show that

the density the neutrinos contribute in the universe corresponds to

Ωνh
2 ≈ mν

94 eV
.
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(b) Extra neutrino species:

Suppose that there was a fourth generation of active neutrinos in addition to νe, νµ, and ντ .

(This possibility is excluded by the Z lifetime, but you should still be able to do the

problem.) Compute g⋆ prior to e+e− annihilation, and g⋆ after e+e− annihilation. What

is the final neutron abundance in this case? What will this do to the final 4He abundance?

3. Relic Baryon Density

Consider massive particles and antiparticles with mass m and number densities n(m, t) and

n̄(m, t). If they interact with cross-section σ at velocity v, explain why the evolution of n(m, t)

is described by
∂n

∂t
= −3

ȧ

a
n− nn̄〈σv〉+ P (t) ,

and identify the physical significance of each of the terms appearing in this equation.

(a) By considering the evolution of the antiparticles, show that

(n− n̄)a3 = const.

(b) Assuming initial particle-antiparticle symmetry, show that

1

a3
d(na3)

dt
= −〈σv〉

[

n2 − n2
eq

]

,

where neq denotes the equilibrium number density.

(c) Define Y ≡ n/T 3 and x ≡ m/T , and show that

dY

dx
= − λ

x2

[

Y 2 − Y 2
eq

]

,

where λ ≡ m3〈σv〉/H(T =m). If λ is constant, show that at late times Y approaches a

value given by

Y∞ =
xf
λ

,

where xf is the freeze-out time. Explain the dependence of Y∞ on 〈σv〉 and sketch the

schematic evolution of Y versus x for both a strongly and a weakly interacting population

of annihilating particles and antiparticles. If there was a speed-up in the expansion rate of

the universe caused by the addition of extra low-mass neutrino species what would happen

to the abundance of surviving massive particles and why?

Now apply this to proton-antiproton annihilation. You may use that 〈σv〉 ≈ 100GeV−2.

(d) Show that Tf ≈ 20 MeV.

(e) Show that
n

nγ
=

n̄

nγ
= 10−19 .

How does this compare with observational data? What do you conclude about the abun-

dances of protons and antiprotons in the early universe?
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4. Primordial Nucleosynthesis

(a) Write down an expression which shows the explicit dependence of the nucleon decoupling

temperature Tdec (and so the neutron-proton ratio Xn/Xp) on the number of relativistic

species g⋆.

(b) Discuss the effect of the following suppositions on the production of 4He during primordial

nucleosynthesis:

1. The baryon density today is larger than we estimate.

2. The weak interaction constant GF is smaller at nucleosynthesis than it is today.

3. Newton’s constant G is larger than supposed.

4. The neutron-proton mass difference was slightly larger than supposed.

5. Mukhanov-Sasaki

In the lectures, we ignored metric fluctuations in deriving the dynamics of the inflaton fluctuations

f ≡ aδφ (in spatially flat gauge). If we had included the metric fluctuations, we would have found

that the Mukhanov-Sasaki equations takes the form

f ′′
k +

(

k2 − z ′′

z

)

fk = 0 , (⋆)

where z2 = 2a2ε.

(a) Show that at first order in the slow-roll parameters,

aH = −1

τ
(1 + ε) and

z ′′

z
=

ν2 − 1
4

τ2
,

where ν ≡ 3
2 + ε+ 1

2η.

(b) Show that the Bunch-Davies solution of (⋆) is

fk(τ) =

√
π

2
(−τ)1/2H(1)

ν (−kτ) ,

where H
(1)
ν is a Hankel function of the first kind. You may use that

lim
kτ→−∞

H(1,2)
ν (−kτ) =

√

2

π

1√
−kτ

e∓ikτe∓iπ
2
(ν+ 1

2
) .

(c) Derive the power spectrum of curvature perturbations on superhorizon scales

∆2
R =

1

z2
∆2

f .

You may use that

lim
kτ→0

H(1)
ν (−kτ) =

i

π
Γ(ν)

(−kτ

2

)−ν

.
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(d) Show that the scale-dependence of the scalar spectrum is

ns − 1 ≡ d ln∆2
R

d ln k
= −2ε− η .

Write the answer in terms of the potential slow-roll parameters ǫv and ηv.

4
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6. The Higgs as an Inflaton?

The LHC has recently discovered a Higgs-like scalar particle. It is tempting to ask if the Higgs

field could have been the scalar field that drove inflation.

(a) Let the potential of the Higgs boson be

V (φ) = λ
(

φ2 − v2
)2

,

where v = 246 GeV. Sketch the potential and indicate the regions where slow-roll inflation

might occur. Compute the slow-roll parameters ǫv ≡ 1
2M

2
pl (V

′/V )2 and ηv ≡ M2
plV

′′/V .

(b) First, consider the region 0 < φ < v.

Sketch ǫv(φ) and ηv(φ) between φ = 0 and φ = v. Is there a region in which both slow-roll

conditions can be satisfied simultaneously?

(c) Now, look at the regime φ ≫ v.

Show that ǫv(φ) and ηv(φ) become independent of v. For what field values does inflation oc-

cur? Determine the field values at the end of inflation (φE) and N⋆ ∼ 60 e-folds before (φ⋆).

[You may assume that φ⋆ ≫ φE .]

Compute the amplitude of the power spectrum of scalar fluctuations at φ⋆. Express your

answer in terms of N⋆ and the Higgs boson mass mH .

Estimate the value of mH required to match the observed scalar amplitude ∆2
s = 2× 10−9.

Compare this to the announced mass of the Higgs boson, mH = 125 GeV.

(d)∗ Recently, a new version of Higgs inflation has been proposed. Its key ingredient is a non-

minimal coupling of the Higgs to gravity. The starting point is the following action

S =

∫

d4x
√−g

[

M2
pl

2
f(φ)R+

1

2
(∂φ)2 − λ

4
φ4

]

, where f(φ) ≡ 1 + ξ
φ2

M2
pl

.

For ξ = 0, this corresponds to the analysis in part (c). Now we want to study ξ ≫ 1. It is

convenient to define g̃µν ≡ f(φ)gµν , so that the action becomes that of a standard slow-roll

model

S =

∫

d4x
√

−g̃

[

M2
pl

2
R̃+

1

2
(∂Φ)2 − V (Φ)

]

,

with potential

V (Φ) ≈
λM4

pl

4ξ2

(

1− 2 exp

[

−
√

2

3

Φ

Mpl

])

, where
Φ

Mpl
=

√

3

2
ln(f(φ)) .

Perform a slow-roll analysis of this potential in the limit Φ ≫ Mpl:

• Show that the slow-roll parameters are

ηv = −4

3
e−

√
2/3Φ/Mpl , ǫv =

3

4
η2v .
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• Show that the scalar spectral index is

ns = 1− 2

N⋆
,

and the tensor-to-scalar ratio is

r =
12

N2
⋆

.

How do these predictions compare to the Planck data?

• By considering the amplitude of scalar fluctuations, determine the required value of

the non-minimal coupling ξ for λ = O(1).

7. Tensors and the Lyth Bound

(a) Show that the tensor-to-scalar ratio predicted by slow-roll inflation is

r ≡ ∆2
t

∆2
s

=
8 φ̇2

M2
plH

2
.

(b) Show that the inflaton field travels a “distance” ∆φ ≡ |φE−φ⋆| during (observable) inflation

∆φ

Mpl
=

N⋆

60

√

r

0.002
,

where N⋆ is the total number of e-folds between the time when the CMB scales exited

the horizon and the end of inflation. [You may assume that ε ≈ const. during inflation]

Comment on the implication of this result for observable gravitational waves. [Realistically,

we require r > 0.001 to have a fighting chance of detecting gravitational waves via CMB

polarisation.]

(c) Derive the following relationship between the energy scale of inflation, V 1/4, and the tensor-

to-scalar ratio,

V 1/4 =

(

3π2

2
r∆2

s

)1/4

Mpl .

Use ∆2
s = 2.5× 10−9 to determine V 1/4 for r = 0.01. How does that compare to the energy

scales probed by the LHC?
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