1. A general static, spherically symmetric metric can be written

$$
d s^{2}=-A(r) d t^{2}+\frac{d r^{2}}{B(r)}+r^{2} d \Omega^{2}
$$

where $d \Omega^{2}$ is the metric on a unit 2-sphere. Assume that $A(r)$ and $B(r)$ are analytic functions of r such that both have a simple zero at $r=r_{+}>0$ and are positive for $r>r_{+}$.
(a) Show that radial null geodesics are given by $t \pm r^{*}=$ constant, where

$$
r^{*} \equiv \int_{r_{0}}^{r} \frac{d x}{\sqrt{A(x) B(x)}}
$$

with $r_{0}>r_{+}$an arbitrary constant. Show that $r^{*} \rightarrow-\infty$ as $r \rightarrow r_{+}$.
(b) Obtain the metric in ingoing Eddington-Finkelstein coordinates. Explain why this metric can be analytically continued through $r=r_{+}$.
2. Consider a particle with 4 -velocity U in a stationary, asymptotically flat, space-time with timelike Killing vector field $k . E=-k \cdot U$ has the interpretation of "energy per unit mass measured at infinity" if the particle moves on a geodesic. For non-geodesic motion, this equation is used to define "energy per unit mass measured at infinity."
(a) Consider a unit mass particle P following an orbit of k at radius $r=r_{P}>2 M$ in the Schwarzschild spacetime. Assume that the force making this particle accelerate comes from a radial massless inelastic string, whose other end is held by an observer Q at infinity. If Q pulls the string through proper distance δS then what is the change δr_{P} in r_{P} ?
(b) What is the change δE in the energy of P measured by Q ? This must equal the work $F \delta S$ done by Q where F is the force that the string exerts on Q, i.e., the tension at Q. Calculate F. Show that $F \rightarrow 1 /(4 M)$ as $r_{P} \rightarrow 2 M$. What is the force measured by P as $r_{P} \rightarrow 2 M$?
3. Use isotropic coordinates to prove that a surface of constant t in the Schwarzschild spacetime is an asymptotically flat end with $K_{a b}=0$.
4. (a) Let (M, g) be the 2 d Einstein static Universe with metric $d s^{2}=-d t^{2}+d \phi^{2}$ where $\phi \sim \phi+2 \pi$. Let S be the surface $t=0$. Determine $D^{+}(S)$ and $J^{+}(S)$. (b) Do the same where (M, g) is now the spacetime obtained by deleting the point $t=\phi=0$ from the Einstein static Universe. (c) Do the same for the Kruskal spacetime where S is the surface $t=0$ in region I.
5. A perfect fluid has stress tensor $T_{a b}=(\rho+p) u_{a} u_{b}+p g_{a b}$, where ρ is the energy density, p the pressure, and u^{a} the 4 -velocity of the fluid. Show that
(a) the dominant energy condition is obeyed if, and only if, $\rho \geq|p|$;
(b) the weak energy condition is obeyed if, and only if, $\rho \geq 0$ and $\rho+p \geq 0$;
(c) the null energy condition is obeyed if, and only if, $\rho+p \geq 0$;
(d) the strong energy condition is obeyed if, and only if, $\rho+3 p \geq 0$ and $\rho+p \geq 0$.

A cosmological constant has $p=-\rho$. Which energy conditions does it violate? (Consider both signs for ρ.)
6. Consider two Lorentzian metrics on a manifold M related by a conformal transformation $\bar{g}=\Omega^{2} g$ where Ω is a positive function on M.
(a) Show that g and \bar{g} have the same null geodesics.
(b) Show that the Ricci tensor of g is related to the Ricci tensor of \bar{g} by

$$
R_{a b}=\bar{R}_{a b}+2 \Omega^{-1} \bar{\nabla}_{a} \bar{\nabla}_{b} \Omega+\bar{g}_{a b} \bar{g}^{c d}\left(\Omega^{-1} \bar{\nabla}_{c} \bar{\nabla}_{d} \Omega-3 \Omega^{-2} \partial_{c} \Omega \partial_{d} \Omega\right)
$$

where $\bar{\nabla}$ is the Levi-Civita connection associated with \bar{g}.
(c) Let ψ be a solution of the equation

$$
g^{a b} \nabla_{a} \nabla_{b} \psi+\xi R \psi=0
$$

We say that the equation is conformally covariant if there exists a constant p such that $\bar{\psi} \equiv \Omega^{p} \psi$ is a solution of the equation in a spacetime with metric $\bar{g}=\Omega^{2} g$ whenever ψ solves the equation in a spacetime with metric g. Determine the value of ξ for which this equation is conformally covariant.
7. The Robinson-Bertotti metric is

$$
d s^{2}=-\lambda^{2} d t^{2}+M^{2}\left(\frac{d \lambda}{\lambda}\right)^{2}+M^{2} d \Omega^{2}
$$

This is the product $A d S_{2} \times S^{2}$ where $A d S_{2}$ denotes 2 d anti-de Sitter spacetime. By replacing the time coordinate t by one of the radial null coordinates $u=t+M / \lambda, v=t-M / \lambda$ show that the singularity at $\lambda=0$ is merely a coordinate singularity. By introducing the new coordinates (U, V), defined by $u=\tan (U / 2), v=-\cot (V / 2)$, obtain the maximal analytic extension of the RB metric and deduce its Penrose diagram (more precisely: deduce the Penrose diagram of the $A d S_{2}$ part of the RB metric). Is this spacetime globally hyperbolic?
8. Determine the Penrose diagram of de Sitter spacetime with metric

$$
d s^{2}=-d t^{2}+H^{-2} \cosh ^{2}(H t)\left(d \chi^{2}+\sin ^{2} \chi d \Omega^{2}\right)
$$

where $H>0$ is a constant and $0 \leq \chi \leq \pi((\chi, \theta, \phi)$ parameterize a round 3 -sphere). (Hint. Use a coordinate transformation $t=t(\eta)$ to bring the metric to a form where it is manifestly conformal to the Einstein static Universe.)
9. Consider a vacuum spacetime that is asymptotically flat at null infinity. In lectures we introduced coordinates $(u, \Omega, \theta, \phi)$ such that \mathcal{I}^{+}is $\Omega=0$ and the "unphysical" metric satisfies

$$
\left.\bar{g}\right|_{\Omega=0}=2 d u d \Omega+d \theta^{2}+\sin ^{2} d \phi^{2}
$$

and, for small non-zero Ω, the corrections to this are $\mathcal{O}(\Omega)$ except for the $u u, u \theta$ and $u \phi$ components which are $\mathcal{O}\left(\Omega^{2}\right)$, and the $\Omega \Omega$ component which vanishes everywhere. The physical metric is $g=\Omega^{-2} \bar{g}$. Introduce a new coordinate $r=1 / \Omega$ and determine the form of the physical metric for large r, keeping track of the size of the subleading corrections. You should find that the $u u$ component is $\mathcal{O}(1)$. Show that this component can be set to $-1+\mathcal{O}(1 / r)$ by a shift $r \rightarrow r+f(u, \theta, \phi)$. Finally define "asymptotically inertial" coordinates (t, x, y, z) by $t=u+r$ and (x, y, z) related to (r, θ, ϕ) as for spherical polars. Show that the spacetime metric becomes $-d t^{2}+d x^{2}+d y^{2}+d z^{2}$ with corrections that are $\mathcal{O}(1 / r)$ at large r.

