1. Let Σ be a spacelike hypersurface with future directed timelike unit normal n^{a}, induced metric $h_{a b}=g_{a b}+n_{a} n_{b}$ and extrinsic curvature $K_{a b}=h_{a}^{c} h_{b}^{d} \nabla_{c} n_{d}$. Let S be a compact orientable 2d surface within Σ with unit normal m_{a}. On S, let $U_{ \pm}^{a}=\left(n^{a} \pm m^{a}\right) / \sqrt{2}$. (a) Show that $U_{ \pm}^{a}$ are future-directed null vectors orthogonal to S and $U_{+} \cdot U_{-}=-1$. (b) Consider a null geodesic congruence containing the geodesics orthogonal to S with tangent $U_{ \pm}^{a}$ there. On S we can choose (in the notation of lectures) $U^{a}=U_{ \pm}^{a}$ and $N^{a}=U_{\mp}^{a}$. Show that the projection operator P_{b}^{a} can be written as $P_{b}^{a}=h_{b}^{a}-m^{a} m_{b}$. (c) On S, the expansion of the geodesics orthogonal to S is $\theta_{ \pm}=P^{a b} \nabla_{a} U_{b}$. Since $P^{a b}$ is a projection onto directions tangential to S, this expression involves only derivatives tangential to S so we can replace U_{b} by its value on S, i.e., $U_{ \pm b}$. Show that this gives

$$
\theta_{ \pm}=\left(h^{a b}-m^{a} m^{b}\right) K_{a b} \pm k
$$

where k is the trace of the extrinsic curvature of S viewed as a surface in Σ. (d) Let Σ be a time-symmetric hypersurface, i.e., $K_{a b}=0$. Can S be trapped? Show that S is marginally trapped if, and only if, $k=0$. (This is the condition for S to be a minimal surface in Σ.) (e) Let $K_{a b}=J_{(a} M_{b)}$ where J^{a} and M^{a} are tangential to Σ and orthogonal to each other. Assume that M_{a} is tangent to S. Show that the results in (d) extend to this case. (A surface of constant t in the Kerr geometry has $K_{a b}$ of this form.)
2. Consider the Reissner-Nordstrom solution with $M>e$ using advanced Eddington-Finkelstein coordinates. (a) Determine the Finkelstein diagram (i.e. show ingoing and outgoing radial null geodesics in a plot of $t_{*}=v-r$ against r). (b) Show that r decreases along any causal curve in the region $r_{-}<r<r_{+}$.
3. (a) Prove that, if a vector field ξ preserves the Maxwell field (i.e. $\mathcal{L}_{\xi} F=0$) then locally there exists a scalar potential Φ such that $i_{\xi} F=d \Phi$. (Hint: Q2 of examples sheet 1.)
(b) The equation of motion of a particle of charge q and 4-velocity U^{a} is $U^{b} \nabla_{b} U^{a}=(q / m) F^{a}{ }_{b} U^{b}$. Let ξ be a Killing vector field that preserves the Maxwell field. Show that $\xi \cdot U-(q / m) \Phi$ is conserved along the particle's worldline.
(c) Deduce that, for a particle of mass m moving in the equatorial plane ($\theta=\pi / 2$) of a ReissnerNordstrom black hole (with $Q>0, P=0$), the quantities $\mathcal{E}=\left(\Delta / r^{2}\right) d t / d \tau+q Q /(m r)$, and $h=r^{2} d \phi / d \tau$ are constant (τ is proper time). Hence show that the radial motion is determined by the equation

$$
\left(\frac{d r}{d \tau}\right)^{2}+\frac{\Delta(r)}{r^{2}}\left(1+\frac{h^{2}}{r^{2}}\right)=\left(\mathcal{E}-\frac{q Q}{m r}\right)^{2}
$$

(d) What is the physical interpretation of the case $q / m=Q / M=1, \mathcal{E}=1, h=0$?
(e) The Penrose process. A particle P_{1} falls from $r=\infty$ towards the black hole. Just before it crosses the event horizon, it decays into two other particles P_{2} and P_{3} where P_{2} has charge $q<0$. The decay happens such that P_{2} initially has $d r / d \tau \approx 0 . P_{2}$ subsequently falls into the black hole and P_{3} escapes to $r=\infty$. Let $E_{i} \equiv m_{i} \mathcal{E}_{i}$ denote the energy of P_{i} (which has mass $\left.m_{i}\right)$. Show that $E_{1}>0$ and $E_{2}<0$. Hence, by energy conservation, $E_{3}>E_{1}$, i.e., the particle returning to infinity has more energy than the initial particle! This is consistent because P_{2} has carried negative energy into the black hole. Hence energy (and charge) are extracted from the black hole in this process.
4. Obtain the Kerr-Newman solution in Kerr coordinates. When is there a regular event horizon? Show that the area of the event horizon of a Kerr-Newman black hole is $A=8 \pi\left(M^{2}-e^{2} / 2+\right.$ $\left.\sqrt{M^{4}-e^{2} M^{2}-J^{2}}\right)$.
5. Let E denote the maximum energy that can be extracted from a Kerr black hole in the Penrose process. The efficiency of this process is $\eta \equiv E / M$ where M is the initial mass of the black hole. What is the largest possible value of η ?
6. In the Kerr geometry, consider two spacelike surfaces Σ, Σ^{\prime} which both extend from i^{0} to \mathcal{H}^{+} with Σ^{\prime} lying entirely to the future of Σ. Let H and H^{\prime} denote the intersections of Σ and Σ^{\prime} with \mathcal{H}^{+}. Let \mathcal{N} denote the portion of \mathcal{H}^{+}from H to H^{\prime}. Let $J_{a}=-T_{a b} k^{b}$ be the conserved energy-momentum 4 -vector.
(a) Show that

$$
\begin{equation*}
E\left(\Sigma^{\prime}\right)-E(\Sigma)=\int_{\mathcal{N}} \star J, \tag{1}
\end{equation*}
$$

where $E(\Sigma) \equiv-\int_{\Sigma} \star J$ is the total energy of matter fields on Σ, and similarly for $E\left(\Sigma^{\prime}\right)$. What is the physical interpretation of this formula?
(b) Explain why the orientation of \mathcal{N} used in this formula is given by $d v \wedge d \theta \wedge d \chi$ in Kerr coordinates (the orientation of spacetime is given by $d v \wedge d r \wedge d \theta \wedge d \chi$).
(c) Show that $(\star J)_{v \theta \chi}=\left(r_{+}^{2}+a^{2}\right) \sin \theta \xi^{a} J_{a}$.
(d) Assume that matter obeys the dominant energy condition. Explain why $E\left(\Sigma^{\prime}\right) \leq E(\Sigma)$ for a Schwarzschild black hole (i.e. $a=0$) but why this is not necessarily true for a Kerr black hole.
(e) Now take the matter to be a massless real scalar field, with energy-momentum tensor $T_{a b}=$ $\partial_{a} \Phi \partial_{b} \Phi-(1 / 2) g_{a b}(\partial \Phi)^{2}$. Consider a mode of this field with frequency ω and azimuthal quantum number ν, i.e., $\Phi=\operatorname{Re}\left[\Phi_{0}(r, \theta) \exp (-i \omega v+i \nu \chi)\right]$. Show that the RHS of equation (1) is positive for $0<\omega<\nu \Omega_{H}$. (Note that $\xi \cdot k=0$ on \mathcal{H}^{+}because \mathcal{H}^{+}must be invariant under an isometry hence any Killing field must be tangent to \mathcal{H}^{+}.)
This example shows that energy can be extracted from a black hole by scattering waves off it. This is called superradiant scattering.
7. (a) Calculate the ADM mass of the Reissner-Nordstrom solution.
(b) Calculate the electric and magnetic charges, the Komar mass, and the Komar angular momentum of the Kerr-Newman solution.
8. (a) Let (M, g) be a stationary vacuum spacetime containing an hypersurface Σ such that the initial data induced on Σ is geodesically complete and asymptotically flat with 1 end. Prove that the Komar mass must vanish and hence, by the positive energy theorem, that the spacetime must be flat. (This is a version of Lichnerowicz's theorem which excludes the existence of gravitational solitons, i.e., stationary configurations of the gravitational field that are not black holes.)
9. Four-dimensional anti-de Sitter space-time $\left(\mathrm{AdS}_{4}\right)$ with radius of curvature ℓ has metric

$$
d s^{2}=-U(r) d t^{2}+\frac{d r^{2}}{U(r)}+r^{2} d \Omega^{2}
$$

where $U(r)=1+r^{2} / \ell^{2}$.
(a) Show that, along a null geodesic with affine parameter $\lambda, r \rightarrow \infty$ and $t \rightarrow$ constant as $\lambda \rightarrow \pm \infty$.
(b) Construct the conformal compactification of AdS_{4} by defining a new radial coordinate χ by $r=\ell \tan \chi$.
(c) Is AdS_{4} globally hyperbolic?
(d) The Schwarzschild-AdS metric, given by setting $U(r)=1-2 M / r+r^{2} / \ell^{2}$ above, is the unique spherically symmetric solution of the vacuum Einstein equation with a negative cosmological constant. Let $M(r)$ and $\bar{M}(r)$ denote the Komar mass associated with a sphere of constant r and t in the Schwarzschild-AdS and AdS metrics respectively. Show that M and \bar{M} both diverge as $r \rightarrow \infty$ but $M(r)-\bar{M}(r)$ has a finite limit. (Note that r is invariantly defined in a spherically symmetric spacetime, so this prescription for calculating the mass is coordinate-independent.)
(e) Consider Schwarzschild-adS with $M>0$. Show that there is a Killing horizon of $\partial / \partial t$ at $r=r_{+}>0$ where $U\left(r_{+}\right)=0$. Plot the surface gravity κ as a function of M. How does this differ from the corresponding plot for a Schwarzschild black hole?
10. ($\star \star$) Show that the Kerr-Newman geometry has a curvature singularity at $(r, \theta)=(0, \pi / 2)$. Furthermore, show that this singularity has a ring like structure.

