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Mathematical Tripos Part III Lent Term 2025
Black Holes: Examples Sheet 3 J.E. Santos

1. Let Σ be a spacelike hypersurface with future directed timelike unit normal na, induced metric
hab = gab + nanb and extrinsic curvature Kab = hcah

d
b∇cnd. Let S be a compact orientable 2d

surface within Σ with unit normal ma. On S, let Ua
± = (na ± ma)/

√
2. (a) Show that Ua

± are
future-directed null vectors orthogonal to S and U+ · U− = −1. (b) Consider a null geodesic
congruence containing the geodesics orthogonal to S with tangent Ua

± there. On S we can choose
(in the notation of lectures) Ua = Ua

± and Na = Ua
∓. Show that the projection operator P a

b can
be written as P a

b = hab − mamb. (c) On S, the expansion of the geodesics orthogonal to S is
θ± = P ab∇aUb. Since P

ab is a projection onto directions tangential to S, this expression involves
only derivatives tangential to S so we can replace Ub by its value on S, i.e., U±b. Show that this
gives √

2θ± = (hab −mamb)Kab ± k

where k is the trace of the extrinsic curvature of S viewed as a surface in Σ. (d) Let Σ be
a time-symmetric hypersurface, i.e., Kab = 0. Can S be trapped? Show that S is marginally
trapped if, and only if, k = 0. (This is the condition for S to be a minimal surface in Σ.) (e) Let
Kab = J(aMb) where Ja and Ma are tangential to Σ and orthogonal to each other. Assume that
Ma is tangent to S. Show that the results in (d) extend to this case. (A surface of constant t in
the Kerr geometry has Kab of this form.)

2. Consider the Reissner-Nordstrom solution with M > e using advanced Eddington-Finkelstein
coordinates. (a) Determine the Finkelstein diagram (i.e. show ingoing and outgoing radial null
geodesics in a plot of t∗ = v − r against r). (b) Show that r decreases along any causal curve in
the region r− < r < r+.

3. (a) Prove that, if a vector field ξ preserves the Maxwell field (i.e. LξF = 0) then locally there
exists a scalar potential Φ such that iξF = dΦ. (Hint: Q2 of examples sheet 1.)

(b) The equation of motion of a particle of charge q and 4-velocity Ua is U b∇bU
a = (q/m)F a

bU
b.

Let ξ be a Killing vector field that preserves the Maxwell field. Show that ξ · U − (q/m)Φ is
conserved along the particle’s worldline.

(c) Deduce that, for a particle of mass m moving in the equatorial plane (θ = π/2) of a Reissner-
Nordstrom black hole (with Q > 0, P = 0), the quantities E = (∆/r2)dt/dτ + qQ/(mr), and
h = r2dφ/dτ are constant (τ is proper time). Hence show that the radial motion is determined
by the equation

(

dr

dτ

)2

+
∆(r)

r2

(

1 +
h2

r2

)

=

(

E − qQ

mr

)2

.

(d) What is the physical interpretation of the case q/m = Q/M = 1, E = 1, h = 0?

(e) The Penrose process. A particle P1 falls from r = ∞ towards the black hole. Just before
it crosses the event horizon, it decays into two other particles P2 and P3 where P2 has charge
q < 0. The decay happens such that P2 initially has dr/dτ ≈ 0. P2 subsequently falls into the
black hole and P3 escapes to r = ∞. Let Ei ≡ miEi denote the energy of Pi (which has mass
mi). Show that E1 > 0 and E2 < 0. Hence, by energy conservation, E3 > E1, i.e., the particle
returning to infinity has more energy than the initial particle! This is consistent because P2 has
carried negative energy into the black hole. Hence energy (and charge) are extracted from the
black hole in this process.
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4. Obtain the Kerr-Newman solution in Kerr coordinates. When is there a regular event horizon?
Show that the area of the event horizon of a Kerr-Newman black hole is A = 8π(M2 − e2/2 +√
M4 − e2M2 − J2).

5. Let E denote the maximum energy that can be extracted from a Kerr black hole in the Penrose
process. The efficiency of this process is η ≡ E/M where M is the initial mass of the black hole.
What is the largest possible value of η?

6. In the Kerr geometry, consider two spacelike surfaces Σ, Σ′ which both extend from i0 to H+

with Σ′ lying entirely to the future of Σ. Let H and H ′ denote the intersections of Σ and Σ′

with H+. Let N denote the portion of H+ from H to H ′. Let Ja = −Tabk
b be the conserved

energy-momentum 4-vector.

(a) Show that

E(Σ′)− E(Σ) =

∫

N
⋆J, (1)

where E(Σ) ≡ − ∫Σ ⋆J is the total energy of matter fields on Σ, and similarly for E(Σ′). What
is the physical interpretation of this formula?

(b) Explain why the orientation of N used in this formula is given by dv ∧ dθ ∧ dχ in Kerr
coordinates (the orientation of spacetime is given by dv ∧ dr ∧ dθ ∧ dχ).

(c) Show that (⋆J)vθχ = (r2+ + a2) sin θξaJa.

(d) Assume that matter obeys the dominant energy condition. Explain why E(Σ′) ≤ E(Σ) for a
Schwarzschild black hole (i.e. a = 0) but why this is not necessarily true for a Kerr black hole.

(e) Now take the matter to be a massless real scalar field, with energy-momentum tensor Tab =
∂aΦ∂bΦ− (1/2)gab(∂Φ)

2. Consider a mode of this field with frequency ω and azimuthal quantum
number ν, i.e., Φ = Re[Φ0(r, θ) exp(−iωv+ iνχ)]. Show that the RHS of equation (1) is positive
for 0 < ω < νΩH . (Note that ξ · k = 0 on H+ because H+ must be invariant under an isometry
hence any Killing field must be tangent to H+.)

This example shows that energy can be extracted from a black hole by scattering waves off it.
This is called superradiant scattering.

7. (a) Calculate the ADM mass of the Reissner-Nordstrom solution.

(b) Calculate the electric and magnetic charges, the Komar mass, and the Komar angular mo-
mentum of the Kerr-Newman solution.

8. (a) Let (M, g) be a stationary vacuum spacetime containing an hypersurface Σ such that the
initial data induced on Σ is geodesically complete and asymptotically flat with 1 end. Prove that
the Komar mass must vanish and hence, by the positive energy theorem, that the spacetime must
be flat. (This is a version of Lichnerowicz’s theorem which excludes the existence of gravitational
solitons, i.e., stationary configurations of the gravitational field that are not black holes.)

9. Four-dimensional anti-de Sitter space-time (AdS4) with radius of curvature ℓ has metric

ds2 = −U(r)dt2 +
dr2

U(r)
+ r2dΩ2,

where U(r) = 1 + r2/ℓ2.

(a) Show that, along a null geodesic with affine parameter λ, r → ∞ and t → constant as
λ → ±∞.
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(b) Construct the conformal compactification of AdS4 by defining a new radial coordinate χ by
r = ℓ tanχ.

(c) Is AdS4 globally hyperbolic?

(d) The Schwarzschild-AdS metric, given by setting U(r) = 1−2M/r+r2/ℓ2 above, is the unique
spherically symmetric solution of the vacuum Einstein equation with a negative cosmological
constant. Let M(r) and M̄(r) denote the Komar mass associated with a sphere of constant r
and t in the Schwarzschild-AdS and AdS metrics respectively. Show that M and M̄ both diverge
as r → ∞ but M(r)− M̄(r) has a finite limit. (Note that r is invariantly defined in a spherically
symmetric spacetime, so this prescription for calculating the mass is coordinate-independent.)

(e) Consider Schwarzschild-adS with M > 0. Show that there is a Killing horizon of ∂/∂t at
r = r+ > 0 where U(r+) = 0. Plot the surface gravity κ as a function of M . How does this differ
from the corresponding plot for a Schwarzschild black hole?

10. (⋆⋆) Show that the Kerr-Newman geometry has a curvature singularity at (r, θ) = (0, π/2).
Furthermore, show that this singularity has a ring like structure.


