Part III Applications of Differential Geometry to Physics, Sheet Two

Maciej Dunajski, Lent Term 2020

1. Let $\phi: \mathbb{R}^{2,1} \rightarrow S^{2}$. Set

$$
\phi^{1}+i \phi^{2}=\frac{2 u}{1+|u|^{2}}, \quad \phi^{3}=\frac{1-|u|^{2}}{1+|u|^{2}},
$$

and deduce that the Bogomolny equations

$$
\partial_{i} \phi^{a}= \pm \varepsilon_{i j} \varepsilon^{a b c} \phi^{b} \partial_{j} \phi^{c}, \quad \phi_{t}=0
$$

imply that u is holomorphic or antiholomorphic in $z=x_{1}+i x_{2}$.
Find the expression for the total energy

$$
E[\phi]=\frac{1}{2} \int \partial_{j} \phi^{a} \partial_{j} \phi^{a} d^{2} x
$$

in terms of u.
By counting the pre-images or otherwise find the topological degree of ϕ corresponding to $u(z)=u_{0}+u_{1} z+\ldots+u_{k} z^{k}$, where u_{0}, \ldots, u_{k} are constants with $u_{k} \neq 0$.
2. Derive the $S U(2)$ Yang-Mills theory on \mathbb{R}^{4} form the action. Let $A_{a}(x)$ be a solution to these equations. Show that, for any nonzero constant c, the potential $\widetilde{A}_{a}(x)=c A_{a}(c x)$ is also a solution and that it has the same action.
3. Consider the map $g: S^{3} \rightarrow S U(2)$ defined by

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{4}+i\left(x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3}\right),
$$

where σ_{i} are Pauli matrices and $x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{4}^{2}=1$ and find its degree. By calculating $\operatorname{Tr}\left(\left(d g g^{-1}\right)^{3}\right)$ at the point on S^{3} where $x_{4}=1$, or otherwise deduce that the formula

$$
\operatorname{deg}(g)=\frac{1}{24 \pi^{2}} \int_{S^{3}} \operatorname{Tr}\left(\left(d g g^{-1}\right)^{3}\right)
$$

is correctly normalised.
4. Let T_{1}, T_{2}, T_{3} form a basis of $\mathfrak{s u}(2)$ such that

$$
\left[T_{\alpha}, T_{\beta}\right]=-\varepsilon_{\alpha \beta \gamma} T_{\gamma}, \quad \alpha, \beta, \gamma=1,2,3,
$$

and let the symbols $\sigma_{a b}=-\sigma_{b a}$ where $a, b=1, \ldots, 4$ be defined by

$$
\sigma_{\alpha \beta}=\varepsilon_{\alpha \beta \gamma} T_{\gamma}, \quad \sigma_{\alpha 4}=T_{\alpha} .
$$

Show that

$$
\sigma_{a b}=\frac{1}{2} \varepsilon_{a b}{ }^{c d} \sigma_{c d}, \quad \text { and } \quad \sigma_{a b} \sigma_{a c}=-\frac{3}{4} \mathbf{1} \delta_{b c}-\sigma_{b c} .
$$

Identify $\Lambda^{2}\left(\mathbb{R}^{4}\right)$ with the Lie algebra $\mathfrak{s o}(4)$ and deduce that $\mathfrak{s o}(4)=$ $\mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
5. Let $V=1+r^{-2}$, where $r^{2}:=\delta_{a b} x^{a} x^{b}$. Show that the one-form

$$
\begin{equation*}
A=\sigma_{a b} \frac{1}{V} \frac{\partial V}{\partial x^{b}} d x^{a} \tag{1}
\end{equation*}
$$

is a solution of the anti-self-dual Yang-Mills equations on \mathbb{R}^{4}.
The one-form A is singular at $r=0$. What can you say about the behaviour of the field strength F at $r=0$?
6. Find, by explicit integration, the Chern number of the solution (1).
7. Let F be a two-form on \mathbb{R}^{4}. Show, from the definition of the Hodge operator, that
(a) $* * F= \pm F$ depending on the signature.
(b) $* F \wedge * F=F \wedge F$.

Show that in the $U(1)$ theory $F \rightarrow * F$ interchanges the electric and magnetic fields with factors of ± 1 or $\pm i$ and determine the different cases in the corresponding signatures.
Let F be a non-zero real self-dual two-form on \mathbb{R}^{4} such that $F \wedge F=0$. What is the signature of the underlying metric?
8. Let A be a 1 -form gauge potential on \mathbb{R}^{n} with values in $\mathfrak{s u}(2)$, and let F be its curvature. Verify that $\operatorname{Tr}(A), \operatorname{Tr}(A \wedge A), \operatorname{Tr}(A \wedge A \wedge A \wedge A)$ and $\operatorname{Tr}(F)$ all vanish.
Verify that $C_{2}=d Y_{3}$, where C_{2} and Y_{3} are the second Chern form, and the Chern-Simons three-form respectively.
9. Let $A=A_{i} d x^{i}, i=1,2,3$ be a gauge potential on \mathbb{R}^{3} with values in the Lie algebra \mathfrak{g}. Find the Euler-Lagrange equations arising from varying the Chern-Simons functional

$$
W[A]=\int_{\mathbb{R}^{3}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

with respect to A.
Now consider a one parameter family of \mathfrak{g}-valued one-forms $A=A(t)$ on \mathbb{R}^{3}, and define a one-form on \mathbb{R}^{4} by $\mathcal{A}=A+\phi d t$, where the function $\phi=\phi\left(x^{i}, t\right)$ takes its values in $\mathfrak{s u}(2)$. Show that, in a gauge where $\phi=0$, the anti-self-dual Yang-Mills equations on \mathcal{A} take the gradient flow form

$$
\frac{d A_{i}(t)}{d t}=\frac{\delta W[A]}{\delta A_{i}} .
$$

10. Consider a connection $\omega=\gamma^{-1} A \gamma+\gamma^{-1} d \gamma$ on a principal G-bundle $P \rightarrow B$, where A is a one-form on B and $\gamma^{-1} d \gamma$ is the Maurer-Cartan form on G.
(a) Show that the transformation of the fibres $\gamma^{\prime}=g \gamma$, where $g \in G$ depends on the coordinates on B, does not change ω if A transforms like a gauge potential.
(b) Let $\Omega=d \omega+\omega \wedge \omega$. Show that $\Omega=\gamma^{-1} F \gamma$ for some F which should be found.
(c) Let $D_{a}, a=1, \ldots, \operatorname{dim}(B)$ be linearly independent vector fields on P such that

$$
\left.D_{a}\right\lrcorner \omega=0 .
$$

Show that $D_{a}=\partial_{a}-A_{a}^{\alpha} R_{\alpha}$, where $\partial_{a}=\partial / \partial x^{a}$ are vector fields on B and R_{α} are right-invariant vector fields on G. Demonstrate that

$$
\left[D_{a}, D_{b}\right]=-F_{a b}^{\alpha} R_{\alpha} .
$$

