
Concepts in Theoretical Physics

Lecture 1: Equations in Physics, Simplicity, and Chaos

John D Barrow

‘If  people do not believe that mathematics is simple, it is

only because they do not realize how complicated life is’

John von Neumann, 1947
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 Lecture 1: Equations in Physics, Simplicity, and Chaos (25/4)
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 Lecture 3: Action Principles (2/5)
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Why is Maths so Helpful?

 Maths is infinite. It is the catalogue of all possible patterns. Some of these 
patterns are very useful descriptions of phenomena in the world. It is not 
therefore a mystery that maths 'works' or is 'unreasonably effective' as a 
description of the world because patterns must exist for there to be observers 
of them. 

 But the surprising fact is that relatively simple patterns and a small amount of 
fairly elementary maths can tell us so much about the universe. We can 
imagine scenarios that would be much more complicated or where very few 
mathematical operations would be computable. This imaginary world would 
still be describable by maths but we wouldn't find maths so useful for carrying 
out useful calculations or developing algorithms. 

 Sometimes Nature leads us to develop mathematics (generalised functions, 
fractals, chaotic dynamics, calculus, knots, non-Euclidean geometries) and 
sometimes pure mathematical patterns predict new physics (Riemannian 
geometry, complex numbers, Hilbert spaces, group theory, tensors, complex 
manifolds). 

 In physics you will study the powerful consequences of a small part of the 
whole (infinite) realm of mathematics.



But Sometimes.. Not So Effective

 The effectiveness of mathematics is particularly impressive in the physical 
sciences, like physics. Eugene Wigner called it the ‘unreasonable 
effectiveness of mathematics’

 However, maths is often unreasonably ineffective in the human sciences 
of behaviour, psychology, economics, and the study of life and 
consciousness. 

 These complex sciences are dominated by non-linear behaviour and only 
started to be explored effectively by many people (rather than only huge 
well-funded research groups) with the advent of small personal computers 
(since the late 1980s) and the availability of fast supercomputers.

 Some complex science contain unpredictabilities in principle: predicting 
the economy changes the economy whereas predicting the weather 
doesn’t change the weather

 The key to good mathematical modelling is using the right mathematics 
and realistic idealisations and approximations.

 The Theory of Sound vs Mathematical Modelling of Sonic Phenomena



Physics Problems often have symmetry 

or almost symmetry
 We can start with an idealised 

model of a star as spherical 

and of constant surface 

temperature and gradually add 

small variations, step by step. 

This is the essence of 

‘computability’ – the same idea 

used again and again to 

improve accuracy.
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The Ubiquitous Harmonic Oscillator



The Differential Equations of Physics

 You will encounter several ubiquitous types of partial 

differential equation (pde). For example,

 Wave equations: utt = c2uxx or utt = c2 2u  

 Diffusion equations: ut = k2uxx or ut = k2 2u 

 Poisson’s equation: 2 = 4G, for grav. potential 

 Schrödinger’s equation:

Are there any general lessons ?



Gravitational force F  1/rN-1

2  =0 = .F

in N-dimensional empty space

This is why we see so many 

inverse-square laws

d is the space+time dimension; 

A,b,c fns of  the d coordinates (time + space); 

Key are the eigenvalues of  the matrix Aij : 

Elliptic if  all + or all -, (Poisson eqn)

Hyperbolic one +,  rest - (or vice versa), (wave eqn)

Ultrahyperbolic at least two + and at least two  -

Elliptic eqns don't predict the future (just constrain)

Ultrahyperbolic are eqns ill-posed

(ie future is not uniquely, completely and stably predicted,

Hyperbolic eqns allow well-posed initial value problem

with one time (or 1 space coordinate)

Dimensions and pdes



Most equations cannot be solved exactly

 Most integrals and differential equations cannot be solved exactly

 Duffin’s ‘Universal Equation’ shows how complicated ordinary 

differential eqns can be:

2y'''y'2 - 5y'''y''y' +3y''3 = 0

has solutions which follow any pre-specified function f(t) arbitrarily 

closely for all t  (-, )

|y(t) – f(t)| < (t)

for any continuous function (t).



Simplicity and Complexity

 Physical problems also often have symmetry and stable 
equilibrium states so there are lots of computable problems 
whose solutions can be built up step by step by successive 
approximations, using the same principle over and over 
again. 

 An uncomputable function needs a new idea at each stage 
of the approximation process. 

 Many complex systems -- like economies, societies -- don't 
have obvious symmetrical approximations. They are often, 
so called, 'emergent' systems in which the whole is more 
than the sum of its parts because of the importance of the 
connectivities between parts.



The Story of Physics – unifications of laws



Laws (equations) vs Outcomes (solutions)

Outcomes are more complicated and less symmetrical than 

the laws (equations) that govern them

Solutions of  equations need not possess the same 

symmetries as those equations

Symmetry breaking makes the world interesting



Simplicity vs Complexity



Chaos

 Chaos is exponential 

sensitivity to ignorance

x(t) ~ x(0)exp[t], >0

 James Clerk Maxwell first 

noticed this in1873 when 

in Cambridge

Cambridge

Oxford

“the existence of  unstable conditions 

renders impossible the prediction of  

future events, if  our knowledge of  the 

present state is only approximate, and not 

accurate.” Maxwell, 1873



Deterministic in principle

A clock-face ‘universe’ governed by one law: 

n+1 = 2 n



But not deterministic in practice…



Snooker balls and molecules

 Collision between two snooker balls (radius r, 
inter-collision distance d) creates

n+1 = (d/r) n

So for snooker with 0 as small as Heisenberg’s 
Uncertainty Principle allows  > 360 deg

when n > 13

 For gas molecules in the room d/r ~ 200 leads 
rapidly to chaos

 But we have well-behaved averages with 
Boyle’s Gas Law:

PV/T = constant

There is an equilibrium (‘Maxwell-Boltzmann’) 
probability distribution of velocities: 

p(v) = 4[m/2kT] v2 exp{-mv2/2kT}

k is Boltzmann’s constant.  

Chaos doesn’t mean we can’t predict anything!

a2  kT/m

v

p(v)

“Ideal gas

approx”

d >> r



How Big For Chaos to Occur?

 Differential equations need to be at least 3rd order to be 

chaotic (d3y/dx3 +…. = 0): for example 

 d3y/dx3 + a d2y/dx2 – (dy/dx)2 + y = 0, for 2.0168 < a <2.0577

But occurs in 1st order differential delay eqns: 

dy/dx = sin{y(x – T)}, T const.

 Difference equations can be chaotic in one dimension:

xn+1 = T(xn) with

|dT/dx| > 1

 Sensitive dependence on initial conditions

 This occurs in number theory in the continued fraction 

expansion digits of almost every irrational number 



Continued fractions

 = [3;7,15,1,292,1,1,3,1,14,2…..] 

e = 2.718…. = [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,….] 

 = [1;1,1,1,1,1,1,1,……..] 



Continued fractions as chaotic dynamics

 xn+1 = 1/xn – [1/xn]

 For 0 < xn < 1

 dT/dx = 1/x2 > 1

 As n  t he probabilit y f 

of out come x t ends t o 

 p(x) = 1/[(1+x)ln2]  : 

 0
1 p(x)dx = 1

 h = 0
1 dT/dx p(x)dx 

T(x) = 1/x – k

(1-k)-1 <x <k-1

n steps = initial  exp(ht): h = 2/[6(ln2)2]  3.45

T(x)

x

Integer part



Organised complexity



Oxbow lakes: the sandpile in disguise?

Kanuti River, Alaska



Why the general idea is so common

Many equilibrium states plus the application of  a force

Richard Solé
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