Concepts in Theoretical Physics

Lecture 3:  Action Principles

John D Barrow

Actions speak louder than words’

Gersham Bulkeley, 1692




Retlection of Light

mirror

Motion minimises the time to traverse A - C = B
Heron of Alexandria, 1% century BC
He thought the speed was infinite



The Least Time Path
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The Refraction of Light — Snell’s Law

incident ray narmal
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n = sin(0,)/sin(0,) = (speed in medium 1)/(speed in medium 2)
n 1s called the ‘refractive index’

- is the least time path for the light ray




‘ Retraction minimizes light-travel time

A
h, Light speed ¢/n,
X 0, L-x
0,
h,
Light speed ¢/n,
B

T(A—>B) = {(x*> + h>)V2+c/n,} + {([Lx]*> + h,2)/? +c/n,}
Min time: dT/dx =0 — n1X(X2 + h12 )-1/2 = HZ(L—X)([L—X]Z + h22 )—1/2

n,sin@, = n, sind,




Diamond cutting

= "Light travels through space, a vacuum, at 3.0 x 108 m/s
(186,282 miles/s) ie the base refractive index of 1.00,

= when that light hits diamond its speed falls to 1.24 x 103
m/'s (77,056 miles/s). So diamond has a refractive index
of 2.4175.

= Diamond’s high refractive index gives very high optical
dispersion (‘tire’) — the vanation of refractive index with

frequency (colour)
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Varying Crown and Pavilion Angles

Crown angle varies from 30 to 40.
Pavilion angle 40.7.

Crown angle 35.
Pavilion angle varies from 36 to
46.

Crown angle varies from 31.25 to 37.75.

Pavilion angle varies from 39.15 to 41.85.

Direct dependence.

Crown angle varies from 31.2 to 37.8.
Pavilion angle varies from 41.25 to
39.75.

Inverse dependence
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Pierre-Louis de Maupertius (1698-1759)

1741-6: minimum principles for the motion of masses and
the refraction of light

A principle of ‘economy’ in the construction of the universe
Fermat, Maupertuis, Euler, Lagrange, and Hamilton

Maupertuis wanted to counter critics of Leibniz’s ‘best of all
possible worlds’ philosophy by providing examples of other
‘possible worlds’ and a definition of what was meant by
‘best’. So he invented the Least Action Principle to silence
the critics.



The Farth 1s Oblate

In 1736 Maupertuis led an expedition, sent by Louis
XV, to Lapland to confirm the Earth was an oblate
spheroid as Newton’s theory of gravity implied — not
prolate as Jacques Cassini claimed from astronomical
measurements.

no

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=66482



Newtonian Mechanics — the old way

= Newton’s equation for a single particle with position 7, acted upon by
a force F'is

—

F=ma=mr

= The goal of classical mechanics is to solve this differential equation
for different forces: gravity, electromagnetism, friction, etc...

= Conservative forces are special. They can be expressed as in terms
of a potential V(1)

—

F=-VV

= The potential depends on 77, but not 7. This includes the forces of
gravity and electrostatics. But not friction forces.




A New Perspective on Motion

= Instead of specifying the initial position and momentum, let's instead
choose to specify the initial and final positions:

= Question: What path does the particle take?




Detining the ‘Action’

= To each path, we assign a number which we call the action

S|7(t)] /; dt (;W (ﬂ)

= This is the difference between the kinetic energy and the potential
energy, integrated over the path. We can now state the main resuli:

= Claim: The true path taken by the particle is an extremum of S.

0S =0




A Proof of this...

Proof: You know how to find the extremum of a function --- you
differentiate and set it equal to zero. But this is a functional: it is a
function of a function. And that makes it a slightly different problem.
You'll learn how to solve problems of this type in next year's
“methods” course. These problems go under the name of calculus of
variations.

To solve our problem, consider a given path '?T(t). We ask how the
action changes when we change the path slightly

7(t) — 7(t) + 07 (t)
such that we keep the end points of the path fixed
57 (t,) = 07 (ty) = 0



The Proof continues...

t2 1 . L :
SlFr+or] = / dt lim.(ff"’? + 2767+ 677) = V(7 + 5?)]
t1

/

V(7 +07) = V(7) + VV - 67 + O(672)

to .
5S = S[i+ 67 — S[i] = / dt [mi- 67~ 9V 67| + .
t1 -
t2 r - . to
::/1¢ —mi = V| - 67+ |7 67
t - 1

e

Vanishes because we fix the end points




The Proof concludes

to y
5S — / dt | —mi— VV] 7
J

= The condition that the path we started with is an extremum of the
action is

0S =0

= Which should hold for all changes 07°(¢) that we make to the path.
The only way this can happen is if the expression in [...] is zero. This
means

mi = —-VV

= We recognize this as Newton’s equations. Requiring that the action
is extremized is equivalent to requiring that the path obeys Newton’s
equations. []




The Lagrangian

The integrand of the action is called the Lagrangian

L o o
L=-mr* - V(7

The “principle of least action” is something of a misnomer. The
action doesn’t have to be minimal. It is often a saddle point.

This idea is also called “Hamilton’s Principle”, after Hamilton who
gave the general statement some 50 years after Lagrange.



‘ Example 1: free particle motion

L = %fn’ﬁ 2
=  We want to minimize the kinetic energy ?T(t )
over a fixed time.....so the particle must 2

take the most direct route. This is a
straight line. ??(1?1)
= But do we slow down to begin with, then
speed up? Or do we go at a uniform
speed?
= To minimize the kinetic energy, we should
go at a uniform speed.




‘ Example 2: Motion in uniform gravity

L = %mi‘ 24 %mz' 2 —mygz

= Now we don't want to go in a straight line.
We can minimize the difference between
K.E. and P.E. if we go up, where the P.E.

is bigger.
= But we don't want to go too high either.

= To strike the right balance, the particle
takes a parabola.




‘Lagrange’s equations in general
q
A

3

q;

S] S2

S

Imagine we are interested in one curve that minimizes the quantity
5o
Sla()] = [ Lla.d.5)ds
51
3S = S[g + dq] — S[g]
Since ¢(s) is the minimum though 4S5 = 0 to lowest order in dq.

Let’s calculate S|q + d¢ to order dq

Slg+4dq] = [;2 L(q+ dq, g+ dq.s)ds




Like our calculation of the special case

Let’s calculate S|g + dq] to order dq

Slg+dq] = [3? L(q+ dq,q+ 04, s)ds
~ [ (L(q q,s) + r‘fq ;T 5(; ) ds

~ Slgl+ [.* (f}r,rdq — (Sqﬁr ) ds + O(dq?)

Integrating the second term by parts (u = dL/3q, dv/ds = dq etc)

[ o ()

The first term vanishes since dg vanishes at the ends of the path.

Thus

! : s2  fd (0L JL
Slg + dq] — S[q] = —L dq (E (a_q) dq) ds + ..

This is only zero (at order dq) if

d (L) _ oL _
ds \ dq dg




'Example 3: Double Pendulum

L= %E%E‘ﬁ ﬂ;{f E'g -|-£ 0, -|—3‘I [ ﬁlgﬂlggms(ﬂl—E?g})-l-m]gflcﬂsf?]-I-mggfgcﬂsf?g-l—mggflmsﬂ]
POLEEITEEELH %
d  OL L
at'of,) " o8
t 091 d |
d oL, 0L
dt o, 06

Makes analysis much easier!




‘ Noether’s Theorem (1915)

Invariance of the Lagrangian <> conservation laws

No explicit dependence of L on t

Time translation invariant <> energy conserved
No dependence of L on direction 0 <> angular momentum conserved
L is position invariant <> momentum is conserved

No preferred time, place or direction means
Conservation of energy, momentum and angular momentum

If a system has a continuous symmetry then there must be conserved quantities




Paths on Curved Surfaces

ds> = gabd:t:adxb

d*z* . dab daf

a2 s ds
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Crucial for finding equations of motion
in general relativity where space and time
are curved by the presence of mass-energy




Why use an Action approach?

= There are several reasons to use this approach.

o Itis independent of the coordinates we choose to work in. The idea of
minimizing the action holds in Cartesian coordinates, polar coordinates,
rotating frames, or any other system of coordinates you choose to work
in. This can often be very useful.

o Itis easy to implement constraints in this set-up

= This means that we can solve rather tricky problems, such as the
strange motion of spinning tops, with ease.

o All of this will be covered in the third year “Classical Dynamics™ course.




An Action to unity all of physics?!

All fundamental laws of physics can be expressed in terms of a least
action principle. This is true for electromagnetism, special and
general relativity, particle physics, and even more speculative
pursuits that go beyond known laws of physics such as string theory.

For example, (nearly) every experiment ever performed can be
explained by the Lagrangian of the standard model

1 - , .
L= /9(R— ;Fﬁ_,,F”'“ + U7,D"* 4+ |Dh|? — V(|h|) + ¥h)

e / I . 1

Einstein Maxwell Dirac Higgs Yukawa
Yang-Mills




Seeking out the paths?

The principle of least action gives a very different way of looking at things:

In the Newtonian framework, you start to develop an intuition for how
particles move, which goes something like this: at each moment in time, the
particle thinks “where do | go now?”. It looks around, sees the potential,
differentiates it and says “ah-ha....I go this way”. Then, an infinitesimal
moment later, it does it all again.

But the Lagrangian framework suggests a rather different viewpoint. Now
the particle is taking the path which is minimizing the action. How does it
know this is the minimal path? Is it sniffing around, checking out all paths,
before it decides: “I think I'll go this way".

On some level, this philosophical pondering is meaningless. After all, we
just proved that the two ways of doing things are completely equivalent.
However, the astonishing answer is: yes, the particle does sniff out every
possible path! This is the way guantum mechanics works.




Feynman’s Path Integral

= Nature is probabilistic. At the deepest level, things happen by
random chance. This is the key insight of quantum mechanics.

’F\.\ F(ts)
-

/ |

= The probability that a particle starting at 77(¢1 ) will end up at 7(¢2)
is expressed in terms of an Amplitude A, which is a complex number
that can be thought of as the square root of the probability

Prob = |A|?




Evaluating the Path Integral

To compute the amplitude, you must sum over all paths that the
particle takes, weighted with by phase

A= Z exp(iS/h)

paths

Here S is the action, while /7 is Planck’s constant (divided by 27T ).
It's a fundamental constant of Nature.

The way to think about this is that when a particle moves, it really
does take all possible paths. Away from the classical path, the action
varies wildly, and the sum of different phases averages to zero. Only
near the classical path do the phases reinforce each other.

You will learn more about this in various courses on quantum
mechanics over the next few years.



Feynman’s sum over histories

“Thirty-one years ago [in 1949], Dick Feynman told me about his
"sum over histories" version of quantum mechanics. "The
electron does anything it likes," he said. "It just goes in any
direction at any speed, forward or backward in time, however it

likes, and then you add up the amplitudes and it gives you the
wave function." I said to him, "You're crazy." But he wasn't.’

--Freeman J. Dyson, 1980.



‘ A path-integral formulation of your litel
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‘ Further reading

= R. Feynman, Feynman Lectures in Physics, Addison-Wesley 1970, chapter 19, (free online at
http://www.feynmanlectures.caltech.edu/II 19.html)

w L. Susskind and G. Hrabovsky, Classical Mechanics, Penguin, 2014

w  C. Lanczos, The Variational Principles of Mechanics, Dover (reprint of 1970 edn)



http://www.feynmanlectures.caltech.edu/II_19.html

