# Mathematics IA Algebra and Geometry (Part I) Michaelmas Term 2002

lecturer: Professor Peter Haynes (phh@damtp.cam.ac.uk)

November 15, 2004

# 1 Complex Numbers

## 1.1 Introduction

**Real numbers**, (denoted by  $\mathbb{R}$ ), consist of:

integers (denoted by  $\mathbb{Z}$ )  $\cdots -3$ , -2, -1, 0, 1, 2,  $\cdots$ rationals (denoted by  $\mathbb{Q}$ ) p/q where p, q are integers irrationals  $\sqrt{2}$ ,  $\pi$ , e,  $\pi^2$  etc

It is often useful to visualise real numbers as lying on a line

**Complex numbers** (denoted by  $\mathbb{C}$ ): If  $a, b \in \mathbb{R}$ , then  $z = a + ib \in \mathbb{C}$  (' $\in$ 'means belongs to), where i is such that  $i^2 = -1$ . If z = a + ib, then write

$$a = Re(z)$$
 (real part of z)  
 $b = Im(z)$  (imaginary part of z)

Extending the number system from real  $(\mathbb{R})$  to complex  $(\mathbb{C})$  allows certain important generalisations. For example, in complex numbers the quadratic equation

$$lpha x^2 + eta x + \gamma = 0 \quad : \quad lpha, \ eta, \ \gamma \in \mathbb{R} \quad , lpha 
eq 0$$

always has two roots

$$x_1 = -\frac{\beta + \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha} \quad x_2 = -\frac{\beta - \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}$$

where

$$x_1, x_2 \in \mathbb{R}$$
 if  $\beta^2 \ge 4\alpha\gamma$   
 $x_1, x_2 \in \mathbb{C}$  if  $\beta^2 < 4\alpha\gamma$ , when

$$x_1 = -\frac{\beta}{2\alpha} + i\frac{\sqrt{4\alpha\gamma - \beta^2}}{2\alpha}, \quad x_2 = -\frac{\beta}{2\alpha} - i\frac{\sqrt{4\alpha\gamma - \beta^2}}{2\alpha}$$

Note:  $\mathbb{C}$  contains all real numbers, i.e. if  $a \in \mathbb{R}$  then  $a + i.0 \in \mathbb{C}$ .

A complex number 0 + i.b is said to be 'pure imaginary'

Algebraic manipulation for complex numbers: simply follow the rules for reals, adding the rule  $i^2 = -1$ .

Hence: addition/subtraction : 
$$(a + ib) \pm (c + id)$$
  
 $= (a \pm c) + i (b \pm d)$   
multiplication :  $(a + ib) (c + id) =$   
 $ac + ibc + ida + (ib) (id)$   
 $= (ac - bd) + i (bc + ad)$   
inverse :  $(a + ib)^{-1} = \frac{a}{a^2 + b^2} - \frac{ib}{a^2 + b^2}$ 

[Check from the above that  $z \cdot z^{-1} = 1 + i \cdot 0$ ]

All these operations on elements of  $\mathbb{C}$  result in new elements of  $\mathbb{C}$  (This is described as 'closure':  $\mathbb{C}$  is 'closed under addition' etc.)

We may extend the idea of functions to complex numbers. The complex-valued function f takes any complex number as 'input' and defines a new complex number f(z) as 'output'.

### New definitions

Complex conjugate of z = a + ib is defined as a - ib, written as  $\overline{z}$  (sometimes  $z^*$ ).

The complex conjugate has the properties  $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$ ,  $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$ ,  $\overline{(z^{-1})} = (\overline{z})^{-1}$ .

**Modulus** of z = a + ib defined as  $(a^2 + b^2)^{1/2}$  and written as |z|. Note that  $|z|^2 = z\overline{z}$  and  $z^{-1} = \overline{z}/(|z|^2)$ .

**Theorem 1.1**: The representation of a complex number z in terms of real and imaginary parts is unique.

**Proof**: Assume  $\exists a, b, c, d$  real such that

$$z = a + ib = c + id.$$

Then a - c = i (d - b), so  $(a - c)^2 = - (d - b)^2$ , so a = c and b = d.

It follows that if  $z_1 = z_2$  :  $z_1, z_2 \in \mathbb{C}$ , then  $Re(z_1) = Re(z_2)$  and  $Im(z_1) = Im(z_2)$ .

**Definition**: Given a complex-valued function f, the complex conjugate function  $\overline{f}$  is defined by

$$\overline{f}\left(\overline{z}\right) = \overline{f\left(z\right)}$$

For example, if  $f(z) = pz^2 + qz + r$  with  $p, q, r \in \mathbb{C}$  then  $\overline{f}(\overline{z}) \equiv \overline{f(z)} = \overline{p}\overline{z}^2 + \overline{q}\overline{z} + \overline{r}$ . Hence  $\overline{f}(z) = \overline{p}z^2 + \overline{q}z + \overline{r}$ .

This example generalises to any function defined by addition, subtraction, multiplication and inverse.

## 1.2 The Argand diagram

Consider the set of points in 2D referred to Cartesian axes.

We can represent each  $z = x + iy \in \mathbb{C}$  by the point (x, y).

Label the 2D vector  $\overrightarrow{OP}$  by the complex number z. This defines the Argand diagram (or the 'complex plane'). [Invented by Caspar Wessel (1797) and re-invented by Jean Robert Argand (1806)]

Call the x-axis, the 'real axis' and the y-axis, the 'imaginary axis'.

Modulus: the modulus of z corresponds to the magnitude of the vector  $\overrightarrow{OP}$ ,  $|z| = (x^2 + y^2)^{1/2}$ .

Complex conjugate: if  $\overrightarrow{OP}$  represents z, then  $\overrightarrow{OP'}$  represents  $\overline{z}$ , where P' is the point (x, -y) (i.e. P reflected in the x-axis).

Addition: if  $z_1 = x_1 + iy_1$  associated with  $P_1$ ,  $z_2 = x_2 + iy_2$  associated with  $P_2$ , then  $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$ .

 $z_1 + z_2 = z_3$  is associated with the point  $P_3$ , obtained by completing the parallelogram  $P_1 O P_2 P_3$ ' i.e.' as vector addition  $\overrightarrow{OP_3} = \overrightarrow{OP_1} + \overrightarrow{OP_2}$  (sometimes called the 'triangle law').

**Theorem 1.2**: If  $z_1, z_2 \in \mathbb{C}$  then

(i)  $|z_1 + z_2| \le |z_1| + |z_2|$ (ii)  $|z_1 - z_2| \ge |(|z_1| - |z_2|)|$ 

(i) is the triangle inequality.

By the cosine rule

$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1| |z_2| \cos \psi$$
  
$$\leq |z_1|^2 + |z_2|^2 + 2|z_1| |z_2| = (|z_1| + |z_2|)^2$$

(ii) follows from (i), putting  $z_1 + z_2 = z'_1$ ,  $z_2 = z'_2$ , so  $z_1 = z'_1 - z'_2$ . Hence, by (i),  $|z'_1| \le |z'_1 - z'_2| + |z'_2|$  and  $|z'_1 - z'_2| \ge |z'_1| - |z'_2|$ . Now interchanging  $z'_1$  and  $z'_2$ , we have  $|z'_2| - |z'_1| \le |z'_2 - z'_1| = |z'_1 - z'_2|$ , hence result.

### Polar (modulus/argument) representation

Use plane polar co-ordinates to represent position in Argand diagram.  $x = r \cos \theta$  and  $y = r \sin \theta$ , hence

 $z = x + iy = r\cos\theta + i\sin\theta = r\left(\cos\theta + i\sin\theta\right)$ 

Note that  $|z| = (x^2 + y^2)^{1/2} = r$ , so r is the modulus of z ('mod (z)' for short).  $\theta$  is called the 'argument' of z ('arg (z)' for short). The expression for z in terms of r and  $\theta$  is called the 'modulus/argument form'.

The pair  $(r, \theta)$  specifies z uniquely, but z does not specify  $(r, \theta)$  uniquely, since adding  $2n\pi$  to  $\theta$  (*n* integer) does not change z. For each z there is a unique value of the argument  $\theta$  such that  $-\pi < \theta \leq \pi$ , sometimes called the principal value of the argument.

### Geometric interpretation of multiplication

Consider  $z_1, z_2$  written in modulus argument form

$$z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$$
  

$$z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$$
  

$$z_1 z_2 = r_1 r_2 (\cos \theta_1 \cdot \cos \theta_2 - \sin \theta_1 \cdot \sin \theta_2 + i \{\sin \theta_1 \cdot \cos \theta_2 + \sin \theta_2 \cdot \cos \theta_1\})$$
  

$$= r_1 r_2 \{\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)\}$$

4

Multiplication of  $z_2$  by  $z_1$ , rotates  $z_2$  by  $\theta_1$  and scales  $z_2$  by  $|z_1|$ 

 $|z_1 z_2| = |z_1| |z_2|$ arg  $(z_1 z_2) = \arg(z_1) + \arg(z_2) (+2k\pi, \text{with } k \text{ an arbitrary integer.})$ 

### **1.3** De Moivre's Theorem: complex exponentials

**Theorem 1.3 (De Moivre's Theorem)**:  $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ where  $\theta \in \mathbb{R}$  and  $n \in \mathbb{Z}$ 

For n > 0 prove by induction

Assume true for n = p :  $(\cos \theta + i \sin \theta)^p = \cos p\theta + i \sin p\theta$ 

Then  $(\cos \theta + i \sin \theta)^{p+1} = (\cos \theta + i \sin \theta) (\cos \theta + i \sin \theta)^p$ 

 $= (\cos \theta + i \sin \theta) (\cos p\theta + i \sin p\theta)$ 

 $= \cos\theta \cdot \cos p\theta - \sin\theta \cdot \sin p\theta + i\{\sin\theta \cdot \cos p\theta + \cos\theta \cdot \sin p\theta\}$ 

 $= \cos(p+1)\theta + i\sin(p+1)\theta$ , hence true for n = p+1

Trivially true for n = 0, hence true  $\forall n$  by induction

Now consider n < 0, say n = -p

$$(\cos\theta + i\sin\theta)^{-p} = \{(\cos\theta + i\sin\theta)^p\}^{-1} = \{\cos p\theta + i\sin p\theta\}^{-1} = 1/(\cos p\theta + i\sin p\theta) = \cos p\theta - i\sin p\theta = \cos n\theta + i\sin n\theta$$

Hence true  $\forall n \in \mathbb{Z}$ 

**Exponential function:** exp  $x = e^x$ define by power series exp  $x = 1 + x + x^2/2! \dots = \sum_{n=0}^{\infty} x^n/n!$ (This series converges for all  $x \in \mathbb{R}$  — see Analysis course.)

It follows from the series that  $(\exp x)(\exp y) = \exp(x+y)$  for  $x, y \in \mathbb{R}$  [exercise] This, plus  $\exp 1 = 1 + 1 + \frac{1}{2} \dots$ , may be used to justify the equivalence  $\exp x = e^x$  **Complex exponential** defined by  $\exp z = \sum_{n=0}^{\infty} z^n/n!$ ,  $z \in \mathbb{C}$ , series converges for all finite |z|For short, write  $\exp z = e^z$  as above.

#### Theorem 1.4

$$\exp\left(iw\right) = e^{iw} = \cos w + i\sin w , \ w \in \mathbb{C}$$

First consider w real,

$$\exp(iw) = \sum_{n=0}^{\infty} (iw)^n / n! = 1 + iw - w^2/2 - iw^3/3! \dots$$
$$= (1 - w^2/2! + w^4/4! \dots) + i(w - w^3/3! + w^5/5! \dots)$$
$$= \sum_{n=0}^{\infty} (-1)^n w^{2n} / (2n)! + i \sum_{n=0}^{\infty} (-1)^n w^{2n+1} / (2n+1)! = \cos w + i \sin w$$

Now define the complex functions

cos 
$$w = \sum_{n=0}^{\infty} (-1)^n w^{2n} / (2n)!$$
 and sin  $w = \sum_{n=0}^{\infty} (-1)^n w^{2n+1} / (2n+1)!$  for  $w \in \mathbb{C}$ .

Then  $\exp(iw) = e^{iw} = \cos w + i \sin w$ ,  $w \in \mathbb{C}$ . Similarly,  $\exp(-iw) = e^{-iw} = \cos w - i \sin w$ .

It follows that  $\cos w = \frac{1}{2} \left( e^{iw} + e^{-iw} \right)$  and  $\sin w = \frac{1}{2i} \left( e^{iw} - e^{-iw} \right)$ .

### Relation to modulus/argument form

Put  $w = \theta$ ,  $\theta \in \mathbb{R}$ , then  $e^{i\theta} = \cos \theta + i \sin \theta$ .

Hence,  $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$ , with (again)  $r = |z|, \theta = \arg z$ .

Note that de Moivre's theorem

$$\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n$$

may be argued to follow from  $e^{in\theta} = (e^{i\theta})^n$ .

Multiplication of two complex numbers:

$$z_1 z_2 = (r_1 e^{i \theta_1}) (r_2 e^{i \theta_2}) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

**Modulus/argument expression for 1**: consider solutions of  $e^{i\theta} = 1$ , hence  $\cos \theta + i \sin \theta = 1$ ,  $\cos \theta = 1$ ,  $\sin \theta = 0$ , hence  $\theta = 2k\pi$ , with  $k \in \mathbb{Z}$ , i.e.

$$e^{2k\pi i} = 1.$$

**Roots of Unity**: a root of unity is a solution of  $z^n = 1$ , with  $z \in \mathbb{C}$  and n a positive integer.

**Theorem 1.5** There are *n* solutions of  $z^n = 1$  (i.e. *n* '*n*th roots of unity')

One solution is z = 1.

Seek more general solutions of the form  $r e^{i\theta}$ ,  $(r e^{i\theta})^n = r^n e^{n i\theta} = 1$ , hence r = 1,  $e^{i\theta} = 1$ , hence  $n \theta = 2k\pi$ ,  $k \in \mathbb{Z}$  with  $0 \le \theta < 2\pi$ .

$$\begin{split} \theta &= 2k\pi/n \text{ gives } n \text{ distinct roots for } k = 0, 1, \dots, n-1, \text{ with } 0 \leq \theta < 2\pi. \\ \text{Write } \omega &= e^{2\pi i/n} \text{ , then the roots of } z^n = 1 \text{ are } 1, \omega, \omega^2, \dots, \omega^{n-1}. \\ \text{Note } \omega^n &= 1, \text{ also } \sum_{k=0}^{n-1} \omega^k = 1 + \omega + \dots + \omega^{n-1} = 0, \text{ because } \sum_{k=0}^{n-1} \omega^k = (\omega^n - 1)/(\omega - 1) = 0/(\omega - 1) = 0. \\ \text{Example: } z^5 = 1. \\ \text{Put } z = e^{i\theta}, \text{ hence } e^{5i\theta} = e^{2\pi ki}, \text{ hence } \theta = 2\pi k/5 \text{ , } k = 0, 1, 2, 3, 4 \text{ and } \omega = e^{2\pi i/5}. \end{split}$$

Roots are  $1, \omega, \omega^2, \omega^3, \omega^4$ , with  $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$  (each root corresponds to a side of a pentagon).

## 1.4 Logarithms and complex powers

If  $v \in \mathbb{R}$ , v > 0, the complex equation  $e^u = v$  has a unique real solution,  $u = \log v$ .

**Definition**:  $\log z$  for  $z \in \mathbb{C}$  is the solution w of  $e^w = z$ . Set w = u + iv,  $u, v \in \mathbb{R}$ , then  $e^{u+iv} = z = re^{i\theta}$ 

hence 
$$e^u = |z| = r$$
  
 $v = \arg z = \theta + 2k\pi$ , any  $k \in \mathbb{Z}$ 

Thus,  $w = \log z = \log |z| + i \arg z$ , with arg z, and hence  $\log z$  a multivalued function.

**Definition** The principal value of  $\log z$  is such that

$$-\pi < \arg z = Im(\log z) \le \pi.$$

**Example:** if z = -x,  $x \in \mathbb{R}$ , x > 0 then  $\log z = \log |-x| + i \arg(-x) = \log |x| + i\pi + 2ki\pi$   $k \in \mathbb{Z}$ . The principal value of  $\log(-x)$  is  $\log |x| + i\pi$ .

### Powers

Recall the definition of  $x^a$ , for  $x, a \in \mathbb{R}$ , x > 0

$$x^a = e^{a\log x} = \exp\left(a\log x\right)$$

**Definition**: For  $z \neq 0$ ,  $z, w \in \mathbb{C}$ , define  $z^w$  by  $z^w = e^{w \log z}$ .

Note that since log z is multivalued so is  $z^w$  (arbitary multiple of  $e^{2\pi i k w}$ ,  $k \in \mathbb{Z}$ )

#### Example:

 $(i)^{i} = e^{i\log i} = e^{i(\log|i| + i\arg i)} = e^{i(\log 1 + 2ki\pi + i\pi/2)} = e^{-\pi/2} \times e^{-2k\pi} \quad k \in \mathbb{Z}.$ 

# 1.5 Lines and circles in the complex plane

**Line**: For fixed  $z_0$  and  $c \in \mathbb{C}$ ,  $z = z_0 + \lambda c$ ,  $\lambda \in \mathbb{R}$  represents points on straight line through  $z_0$  and parallel to c.

Note that  $\lambda = (z - z_0)/c \in \mathbb{R}$ , hence  $\lambda = \overline{\lambda}$ , so

$$\frac{z-z_0}{c} = \frac{\bar{z}-\bar{z}_0}{\bar{c}}$$

Hence

$$z\bar{c} - \bar{z}c = z_0\bar{c} - \bar{z}_0c$$

is an alternative representation of the line.

**Circle**: circle radius r, centre  $a \quad (r \in \mathbb{R}, a \in \mathbb{C})$  is given by

$$S = \{ z \in \mathbb{C} : | z - a | = r \},\$$

the set of complex numbers z such that |z - a| = r.

If a = p + iq, z = x + iy then  $|z - a|^2 = (x - p)^2 + (y - q)^2 = r^2$ , i.e. the expression for a circle with centre (p,q), radius r in Cartesian coordinates.

An alternative description of the circle comes from  $|z - a|^2 = (\bar{z} - \bar{a})(z - a)$ , so

$$z\bar{z} - \bar{a}z - a\bar{z} + |a|^2 - r^2 = 0.$$

### **1.6** Möbius transformations

Consider a 'map' of  $\mathbb{C} \to \mathbb{C}$  (' $\mathbb{C}$  into  $\mathbb{C}$ ')

$$z \mapsto z' = f(z) = \frac{az+b}{cz+d}$$

where  $a, b, c, d \in \mathbb{C}$  (all constant) and (i) c, d not both zero, (ii) a, c not both zero and (iii)  $ad \neq bc$ .

(i) ensures f(z) finite for some z. (ii) and (iii) ensure different z map into different points. Combine all these conditions into  $ad - bc \neq 0$ .

f(z) maps every point of the complex plane, except z = -d/c, into another.

**Inverse**: z = (-dz' + b)/(cz' - a), which represents another Möbius transformation.

For every z' except a/c there is a corresponding z, thus f maps  $\mathbb{C} \setminus \{-d/c\}$  to  $\mathbb{C} \setminus \{a/c\}$ .

**Composition**: consider a second Möbius transformation

$$z' \mapsto z'' = g(z') = \frac{\alpha z' + \beta}{\gamma z' + \delta} \quad \alpha, \beta, \gamma \delta \in \mathbb{C}, \alpha \delta - \beta \gamma \neq 0.$$

Then the combined map  $z \mapsto z''$  is also a Möbius transformation.

$$z'' = g(z') = g(f(z))$$
$$= \frac{\alpha z' + \beta}{\gamma z' + \delta} = \frac{\alpha (az + b) + \beta (cz + d)}{\gamma (az + b) + \gamma (cz + d)}$$
$$= \frac{(\alpha a + \beta c) z + \alpha b + \beta d}{(\gamma a + \delta c) z + \gamma b + \delta d}.$$

The set of all Möbius maps is therefore closed under composition.

### **Examples**:

(i) (a = 1, c = 0, d = 1), z' = z + b is translation. Lines map to parallel lines. Circles map to identical circles.

(ii)(b = 0, c = 0, d = 1), z' = az, scales z by |a| and rotates by arg a about O. Line  $z = z_0 + \lambda p$  ( $\lambda \in \mathbb{R}$ ) becomes  $z' = az_0 + \lambda ap = z'_0 + \lambda c'$  — another line. Circle |z - q| = r becomes |z'/a - q| = r, hence |z' - aq| = |a|r, equivalently |z' - q'| = r' — another circle.

(iii)  $(a = 0, b = 1, c = 1, d = 0), z' = \frac{1}{z}$ , described as 'inversion' with respect to O. Line  $z = z_0 + \lambda p$  or  $z\bar{p} - \bar{z}p = z_0\bar{p} - \bar{z}_0p$ , becomes

$$\frac{\bar{p}}{z'} - \frac{p}{\bar{z}'} = z_0 \bar{p} - \bar{z}_0 p$$

hence

$$\bar{z'}\bar{p} - z'p = (z_0\bar{p} - \bar{z}_0p) \, z'\bar{z'}$$
$$\bar{z'} - \frac{\bar{z'}\bar{p}}{z_0\bar{p} - \bar{z}_0p} - \frac{z'p}{\bar{z}_0p - z_0\bar{p}} =$$

0

 $z^{\prime}$ 

$$\left|z' - \frac{\bar{p}}{z_0 \bar{p} - \bar{z_0} p}\right|^2 = \left|\frac{p}{\bar{z_0} p - z_0 \bar{p}}\right|^2$$

This is a circle through origin, except when  $\bar{z}_0 p - z_0 \bar{p} = 0$  (which is the condition that straight line passes through origin — exercise for reader). Then  $\bar{z}'\bar{p} - z'p = 0$ , i.e. a straight line through the origin.

Circle |z - q| = r becomes  $|\frac{1}{z'} - q| = r$ , i.e. |1 - qz'| = r|z'|, hence  $(1 - qz')(1 - \bar{q}\bar{z'}) = r^2 \bar{z'}z'$ , hence  $z'\bar{z'}\{|q|^2 - r^2\} - qz' - \bar{q}\bar{z'} + 1 = 0$ , hence

$$\left|z' - \frac{\bar{q}}{|q|^2 - r^2}\right|^2 = \frac{|q|^2}{(|q|^2 - r^2)^2} - \frac{1}{|q|^2 - r^2}$$
$$= \frac{r^2}{(|q|^2 - r^2)^2}.$$

This is a circle centre  $\bar{q}/(|q|^2 - r^2)$ , radius  $r/(|q|^2 - r^2)$ , unless  $|q|^2 = r^2$  (implying the original circle passed through the origin), when  $qz' + \bar{q}z' = 1$ , i.e. a straight line.

**Summary**: under inversion in the origin circles/straight lines  $\rightarrow$  circles, except circles/straight lines through origin  $\rightarrow$  straight lines (to be explained later in course).

A general Möbius map can be generated by composition of translation, scaling and rotation, and inversion in origin.

Consider the sequence:

scaling and rotation  $z \mapsto z_1 = cz$   $(c \neq 0)$ 

translation  $z_1 \mapsto z_2 = z_1 + d$ 

inversion in origin  $z_2 \mapsto z_3 = 1/z_2$ 

scaling and rotation 
$$z_3 \mapsto z_4 = \left\{\frac{bc - ad}{c}\right\} z_3 \ (bc \neq ad)$$

translation  $z_4 \mapsto z_5 = z_4 + a/c$ 

 $\sim_4$   $\sim_5$   $\sim_4$   $\sim_7$   $\sim_7$ 

Then  $z_5 = (az + b)/(cz + d)$ . (Verify for yourself.)

This implies that a general Möbius map sends circles/straight lines to circles/straight lines (again see later in course for further discussion).

Copyright © 2004 University of Cambridge. Not to be quoted or reproduced without permission.

12

[This is a blank page]

# 2 Vectors

# 2.3 Vector Product

[The printed notes are not complete for this subsection – refer to notes taken in lectures for completeness.]

Geometrical argument for  $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$ .

Consider  $(|\mathbf{a}|^{-1}\mathbf{a}) \times \mathbf{b} = \mathbf{b}''$ . This vector is the projection of **b** onto the plane perpendicular to **a**, rotated by  $\pi/2$  clockwise about **a**. Consider this as two steps, first projection of **b** to give **b**', then rotation of **b**' to give **b**''.



Now note that if  $\mathbf{x}'$  is the projection of the vector  $\mathbf{x}$  onto the plane perpendicular to  $\mathbf{a}$ , then  $\mathbf{b}' + \mathbf{c}' = (\mathbf{b} + \mathbf{c})'$ . (See diagram below.)



 $(\mathbf{b}+\mathbf{c})$ ' is the projection of  $\mathbf{b}+\mathbf{c}$  on to the plane

# perpendicular to a

Rotating **b**', **c**' and  $(\mathbf{b} + \mathbf{c})'$  by  $\pi/2$  gives the required result.

# 2.7 Polar Coordinates

Plane polars  $(r, \theta)$  in  $\mathbb{R}^2$ :  $x = r \cos \theta$ ,  $y = r \sin \theta$ , with  $0 \le r < \infty$ ,  $0 \le \theta < 2\pi$ .



 $\mathbf{e}_r$  is the unit vector perpendicular to curves of constant r, in the direction of r increasing.  $\mathbf{e}_{\theta}$  is the unit vector perpendicular to curves of constant  $\theta$ , in the direction of  $\theta$  increasing.

 $\mathbf{e}_r = \mathbf{i}\cos\theta + \mathbf{j}\sin\theta.$  $\mathbf{e}_\theta = -\mathbf{i}\sin\theta + \mathbf{j}\cos\theta.$  $\mathbf{e}_r \cdot \mathbf{e}_\theta = 0.$ 

 $\mathbf{x} = \overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} = r\cos\theta\mathbf{i} + r\sin\theta\mathbf{j} = r\mathbf{e}_r.$ 

Cylindrical polars  $(\rho, \phi, z)$  in  $\mathbb{R}^3$ :  $x = \rho \cos \phi$ ,  $y = \rho \sin \phi$ , z = z with  $0 \le \rho < \infty$ ,  $0 \le \phi < 2\pi, -\infty < z < \infty$ .



 $\mathbf{e}_{\rho}$  is the unit vector perpendicular to surfaces of constant  $\rho$ , in the direction of  $\rho$  increasing.  $\mathbf{e}_{\phi}$  is the unit vector perpendicular to surfaces of constant  $\phi$ , in the direction of  $\phi$  increasing.

 $\mathbf{e}_z = \mathbf{k}$ 

 $\mathbf{e}_{\rho}, \, \mathbf{e}_{\phi}, \, \mathbf{e}_{z} = \mathbf{k}$  are a right-handed triad of mutually orthogonal unit vectors:

$$\mathbf{e}_{\rho} \cdot \mathbf{e}_{\phi} = 0, \qquad \mathbf{e}_{z} \cdot \mathbf{e}_{\rho} = 0, \qquad \mathbf{e}_{\phi} \cdot \mathbf{e}_{z} = 0.$$
$$\mathbf{e}_{\rho} \times \mathbf{e}_{\phi} = \mathbf{e}_{z}, \qquad \mathbf{e}_{z} \times \mathbf{e}_{\rho} = \mathbf{e}_{\phi}, \qquad \mathbf{e}_{\phi} \times \mathbf{e}_{z} = \mathbf{e}_{\rho}.$$
$$\mathbf{e}_{\rho} \cdot (\mathbf{e}_{\phi} \times \mathbf{e}_{z}) = 1.$$
$$\mathbf{x} = \overrightarrow{ON} + \overrightarrow{NP} = \rho \mathbf{e}_{\rho} + z \mathbf{e}_{z}.$$

Spherical polars  $(r, \theta, \phi)$  in  $\mathbb{R}^3$ :  $x = r \sin \theta \cos \phi$ ,  $y = r \sin \theta \sin \phi$ ,  $z = r \cos \theta$  with  $0 \le r < \infty$ ,  $0 \le \theta \le \pi$ ,  $0 \le \phi < 2\pi$ .



 $\mathbf{e}_r$  is the unit vector perpendicular to surfaces of constant r, in the direction of r increasing.  $\mathbf{e}_{\theta}$  is the unit vector perpendicular to surfaces of constant  $\theta$ , in the direction of  $\theta$  increasing.  $\mathbf{e}_{\phi}$  is the unit vector perpendicular to surfaces of constant  $\phi$ , in the direction of  $\phi$  increasing.

 $\mathbf{e}_r, \mathbf{e}_{\theta}, \mathbf{e}_{\phi}$  are a right-handed triad of mutually orthogonal unit vectors:

 $\mathbf{e}_r \cdot \mathbf{e}_\theta = 0, \qquad \mathbf{e}_\theta \cdot \mathbf{e}_\phi = 0, \qquad \mathbf{e}_\phi \cdot \mathbf{e}_r = 0.$ 

 $\mathbf{e}_r \times \mathbf{e}_{\theta} = \mathbf{e}_{\phi}, \qquad \mathbf{e}_{\theta} \times \mathbf{e}_{\phi} = \mathbf{e}_r, \qquad \mathbf{e}_{\phi} \times \mathbf{e}_r = \mathbf{e}_{\theta}.$ 

 $\mathbf{e}_r \cdot (\mathbf{e}_\theta \times \mathbf{e}_\phi) = 1.$ 

 $\mathbf{x} = \stackrel{\rightarrow}{OP} = r\mathbf{e}_r.$ 

# 4 Linear Maps and Matrices

# 4.7 Change of basis

Consider change from standard basis of  $\mathbb{R}^3$  to new basis  $\{\eta_1, \eta_2, \eta_3\}$ , linearly independent, but not necessarily orthonormal (or even orthogonal).

Let  $\mathbf{x}$  be any vector in  $\mathbb{R}^3$ , then

$$\mathbf{x} = \sum_{i=1}^{3} x_i \mathbf{e}_i = \sum_{k=1}^{3} \xi_k \boldsymbol{\eta}_k,$$

where  $\{\xi_k\}$  are the components of **x** with respect to the new basis. Consider **x**.**e**<sub>j</sub>:

$$\mathbf{x}.\mathbf{e}_j = x_j = \sum_{k=1}^3 \xi_k \boldsymbol{\eta}_k.\mathbf{e}_j = P_{jk}\xi_k$$

where  $P_{jk}$  is *j*th component of  $\eta_k$  (with respect to the standard basis).

We write  $\mathbf{x} = P\boldsymbol{\xi}$  (where  $\mathbf{x}$  and  $\boldsymbol{\xi}$  are to be interpreted as column vectors whose elements are the  $x_i$  and  $\xi_i$ ) where the matrix P is

 $P = (\boldsymbol{\eta}_1 \, \boldsymbol{\eta}_2 \, \boldsymbol{\eta}_3)$  matrix with columns components of new basis vectors  $\boldsymbol{\eta}_k$ 

Matrices are therefore a convenient way of expressing the changes in components due to a change of basis.

Since the  $\eta_k$  are a basis, there exist  $E_{ki} \in \mathbb{R}$  such that  $\mathbf{e}_i = \sum_{k=1}^3 E_{ki} \eta_k$ . Hence

$$\mathbf{x} = \sum_{i=1}^{3} x_i (\sum_{k=1}^{3} E_{ki} \boldsymbol{\eta}_k) = \sum_{k=1}^{3} (\sum_{i=1}^{3} x_i E_{ki}) \boldsymbol{\eta}_k = \sum_{k=1}^{3} \xi_k \boldsymbol{\eta}_k.$$

By uniqueness of components with respect to a given basis  $E_{ki}x_i = \xi_k$ .

Thus we have  $P\boldsymbol{\xi} = \mathbf{x}$  and  $E\mathbf{x} = \boldsymbol{\xi}$ , for all  $\mathbf{x} \in \mathbb{R}^3$ , so  $P\boldsymbol{\xi} = \mathbf{x} = PE\mathbf{x}$  for all  $\mathbf{x} \in \mathbb{R}^3$ , hence PE = I. Similarly EP = I, and hence  $E = P^{-1}$ , so P is invertible.

Now consider a linear map  $\mathcal{M} : \mathbb{R}^3 \to \mathbb{R}^3$  under which  $\mathbf{x} \mapsto \mathbf{x}' = \mathcal{M}(\mathbf{x})$  and (in terms of column vectors)  $\mathbf{x}' = M\mathbf{x}$  where  $\{x'_i\}$  and  $\{x_i\}$  are components with respect to the standard basis  $\{\mathbf{e}_i\}$ .  $\mathcal{M}$  is the matrix of  $\mathcal{M}$  with respect to the standard basis.

From above  $\mathbf{x}' = P\boldsymbol{\xi}'$  and  $\mathbf{x} = P\boldsymbol{\xi}$  where  $\{\xi'_j\}$  and  $\{\xi_j\}$  are components with respect to the new basis  $\{\boldsymbol{\eta}_j\}$ .

Thus  $P\boldsymbol{\xi}' = MP\boldsymbol{\xi}$ , hence  $\boldsymbol{\xi}' = (P^{-1}MP)\boldsymbol{\xi}$ .

 $P^{-1}MP$  is the matrix of  $\mathcal{M}$  with respect to the new basis  $\{\eta_j\}$ , where  $P = (\eta_1 \eta_2 \eta_3)$ , i.e. the columns of P are the components of new basis vectors with respect to old basis (and in this case the old basis is the standard basis).

A similar approach may be used to deduce the matrix of the map  $\mathcal{N} : \mathbb{R}^n \to \mathbb{R}^m$  (where  $m \neq n$ ) with respect to new bases of both  $\mathbb{R}^n$  and  $\mathbb{R}^m$ .

Suppose  $\{\mathbf{E}_i\}$  is standard basis of  $\mathbb{R}^n$  and  $\{\mathbf{F}_i\}$  is standard basis of  $\mathbb{R}^m$ , and N is matrix of  $\mathcal{N}$  with respect to these two bases, so  $\mathbf{X} \mapsto \mathbf{X}' = N\mathbf{X}$  (where  $\mathbf{X}$  and  $\mathbf{X}'$  are to be interpreted as column vectors of components).

Now consider new bases  $\{\boldsymbol{\eta}_i\}$  of  $\mathbb{R}^n$  and  $\{\boldsymbol{\phi}_i\}$  of  $\mathbb{R}^m$ , with  $P = (\boldsymbol{\eta}_1 \dots \boldsymbol{\eta}_n)$   $[n \times n \text{ matrix}]$ and  $Q = (\boldsymbol{\phi}_1 \dots \boldsymbol{\phi}_m)$   $[m \times m \text{ matrix}]$ .

Then  $\mathbf{X} = P\boldsymbol{\xi}$ ,  $\mathbf{X}' = Q\boldsymbol{\xi}'$ , where  $\boldsymbol{\xi}$  and  $\boldsymbol{\xi}'$  are column vectors of components with respect to bases  $\{\boldsymbol{\eta}_i\}$  and  $\{\boldsymbol{\phi}_i\}$  respectively.

Hence  $Q\boldsymbol{\xi}' = NP\boldsymbol{\xi}$ , implying  $\boldsymbol{\xi}' = Q^{-1}NP\boldsymbol{\xi}$ . So  $Q^{-1}NP$  is matrix of transformation with respect to new bases (of  $\mathbb{R}^n$  and  $\mathbb{R}^m$ ).

**Example**: Consider simple shear in  $x_1$  direction within  $(x_1, x_2)$  plane, with magnitude  $\gamma$ .

Matrix with respect to standard basis  $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$  is:

$$\left(\begin{array}{rrr} 1 & \gamma & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right) = M$$

Now consider matrix of this transformation with respect to basis  $\{\eta_1, \eta_2, \eta_3\}$ , where

$$\begin{aligned} \boldsymbol{\eta}_1 &= \cos \psi \, \mathbf{e}_1 + \sin \psi \, \mathbf{e}_2 \\ \boldsymbol{\eta}_2 &= -\sin \psi \, \mathbf{e}_1 + \cos \psi \, \mathbf{e}_2 \\ \boldsymbol{\eta}_3 &= \mathbf{e}_3 \end{aligned}$$

$$P = \begin{pmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \text{which is orthogonal, so} \quad P^{-1} = \begin{pmatrix} \cos\psi & \sin\psi & 0\\ -\sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Matrix with respect to new basis is  $P^{-1}MP =$ 

$$= \begin{pmatrix} \cos\psi & \sin\psi & 0\\ -\sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\psi + \gamma\sin\psi & -\sin\psi + \gamma\cos\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1+\gamma\sin\psi\cos\psi & \gamma\cos^2\psi & 0\\ -\gamma\sin^2\psi & 1-\gamma\sin\psi\cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Copyright © 2004 University of Cambridge. Not to be quoted or reproduced without permission.

20

[This is a blank page]

# 5 Determinants, Matrix Inverses and Linear Equations

# 5.1 Introduction

Consider linear equations in two unknowns:

$$a_{11}x_1 + a_{12}x_2 = d_1$$
$$a_{21}x_1 + a_{22}x_2 = d_2$$

or equivalently,  $A\mathbf{x} = \mathbf{d}$ , where,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
,  $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$  and  $A = \{a_{ij}\}$  (2 × 2 matrix).

Now solve by forming suitable linear combinations of the two equations:

$$(a_{11}a_{22} - a_{21}a_{12})x_1 = a_{22}d_1 - a_{12}d_2,$$
  
 $(a_{21}a_{12} - a_{22}a_{11})x_2 = a_{21}d_1 - a_{11}d_2.$ 

We identify  $a_{11}a_{22} - a_{21}a_{12}$  as det A (defined earlier). Thus, if det  $A \neq 0$ , the equations have a unique solution

$$x_1 = (a_{22}d_1 - a_{12}d_2)/\det A,$$
  

$$x_2 = (-a_{21}d_1 + a_{11}d_2)/\det A.$$

Returning to matrix form,  $A\mathbf{x} = \mathbf{d}$  implies  $\mathbf{x} = A^{-1}\mathbf{d}$  (if  $A^{-1}$  exists). Thus we have that

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Check that  $AA^{-1} = A^{-1}A = I$ .

# **5.2** Determinants for $3 \times 3$ and larger

For a  $3 \times 3$  matrix we write

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{21}(a_{12}a_{33} - a_{13}a_{32}) + a_{31}(a_{12}a_{23} - a_{22}a_{13})$$
(previous definition as a triple vector product)

 $= \qquad a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$ 

(expansion of  $\det A$  in terms of elements of first column and determinants of submatrices)

We may use this as a way of defining (and evaluating) determinants of larger  $(n \times n)$  matrices.

### **Properties of determinants**

(i) det  $A = \det A^T$  (follows from definition). Note that expansion of  $3 \times 3$  (or larger) determinants therefore works using rows as well as columns.

(ii) We noted earlier that

$$\det \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix} = \epsilon_{ijk} \alpha_i \beta_j \gamma_k = \boldsymbol{\alpha}.(\boldsymbol{\beta} \times \boldsymbol{\gamma}).$$

Now write  $\alpha_i = a_{i1}$ ,  $\beta_j = a_{j2}$ ,  $\gamma_k = a_{k3}$ . Then if  $A = \{a_{ij}\}, \det A = \epsilon_{ijk}a_{i1}a_{j2}a_{k3}$ .

(iii) (Following triple product analogy)  $\boldsymbol{\alpha}.(\boldsymbol{\beta} \times \boldsymbol{\gamma}) = 0$  if and only if  $\boldsymbol{\alpha}, \boldsymbol{\beta}$  and  $\boldsymbol{\gamma}$  are coplanar, i.e.  $\boldsymbol{\alpha}, \boldsymbol{\beta}$  and  $\boldsymbol{\gamma}$  are linearly dependent. Similarly det A = 0 if and only if there is linear dependence between the columns of A (or, from (i), the rows of A).

(iv) If we interchange any two of  $\boldsymbol{\alpha}$ ,  $\boldsymbol{\beta}$  and  $\boldsymbol{\gamma}$  we change the sign of  $\boldsymbol{\alpha}.(\boldsymbol{\beta} \times \boldsymbol{\gamma})$ . Hence if we interchange any two columns of A we change the sign of det A. (Similarly, from (i), if we interchange rows.)

(v) Add to any column of A linear combinations of other columns, to give  $\tilde{A}$ . Then det  $\tilde{A} = \det A$ . [Consider  $(\boldsymbol{\alpha} + \lambda \boldsymbol{\beta} + \mu \boldsymbol{\gamma}).(\boldsymbol{\beta} \times \boldsymbol{\gamma}).]$  A similar result applies to rows.

(vi) Multiply any single row or column of A by  $\lambda$ , to give  $\hat{A}$ . Then det  $\hat{A} = \lambda \det A$ .

(vii)  $\det(\lambda A) = \lambda^3 \det A$  [or  $\det(\lambda A) = \lambda^n \det A$  for  $n \times n$ ].

**Theorem 5.1**: If  $A = \{a_{ij}\}$  is  $3 \times 3$ , then  $\epsilon_{pqr} \det A = \epsilon_{ijk} a_{pi} a_{qj} a_{rk}$ .

**Proof**: (ii) above if p = 1, q = 2, r = 3.

If p and q are swapped then sign of left-hand side reverses and

$$\epsilon_{ijk}a_{qi}a_{pj}a_{rk} = \epsilon_{jik}a_{qj}a_{pi}a_{rk} = -\epsilon_{ijk}a_{pi}a_{qj}a_{rk},$$

so sign of right-hand side also reverses. Similarly for swaps of p and r or q and r. Hence result holds for  $\{pqr\}$  any permutation of  $\{123\}$ .

If p = q = 1, say, then left-hand side is zero and

$$\epsilon_{ijk}a_{1i}a_{1j}a_{rk} = \epsilon_{jik}a_{1j}a_{1i}a_{rk} = -\epsilon_{ijk}a_{1i}a_{1j}a_{rk},$$

hence right-hand side is zero. Similarly for any case where any pair of p, q and r are equal. Hence result.

**Theorem 5.2** det  $AB = (\det A)(\det B)$  (with A and B both  $3 \times 3$  matrices).

### Proof

$$\det AB = \epsilon_{ijk} (AB)_{i1} (AB)_{j2} (AB)_{k3}$$
$$= \epsilon_{ijk} a_{ip} b_{p1} a_{jq} b_{q2} a_{kr} b_{r3}$$
$$= \epsilon_{pqr} \det A b_{p1} b_{q2} b_{r3} \text{ (by Theorem 5.1)}$$
$$= \det A \det B$$

**Theorem 5.3** If A is orthogonal then det  $A = \pm 1$ .

**Proof:**  $AA^T = I$  implies  $det(AA^T) = det I = 1$ , which implies  $det A det A^T = (det A)^2 = 1$ , hence  $det A = \pm 1$ . (Recall earlier remarks on reflections and rotations.)

# **5.3** Inverse of a $3 \times 3$ matrix

Define the cofactor  $\Delta_{ij}$  of the *ij*th element of square matrix A as

$$\Delta_{ij} = (-1)^{i+j} \det M_{ij}$$

where  $M_{ij}$  is the (square) matrix obtained by eliminating the *i*th row and the *j*th column of A.

We have

$$\det A = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$
$$= a_{11}\Delta_{11} + a_{12}\Delta_{12} + a_{13}\Delta_{13} = a_{1j}\Delta_{1j}.$$

Similarly, noting that

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{11} & a_{12} & a_{13} \end{vmatrix},$$

24

we have

$$\det A = a_{21} \begin{vmatrix} a_{32} & a_{33} \\ a_{12} & a_{13} \end{vmatrix} - a_{22} \begin{vmatrix} a_{31} & a_{33} \\ a_{11} & a_{13} \end{vmatrix} + a_{23} \begin{vmatrix} a_{31} & a_{32} \\ a_{11} & a_{12} \end{vmatrix}$$
$$= a_{21}\Delta_{21} + a_{22}\Delta_{22} + a_{23}\Delta_{23} = a_{2j}\Delta_{2j}.$$
$$= a_{31}\Delta_{31} + a_{32}\Delta_{32} + a_{33}\Delta_{33} = a_{3j}\Delta_{3j} \text{ (check)}.$$

Similarly det  $A = a_{j1}\Delta_{j1} = a_{j2}\Delta_{j2} = a_{j3}\Delta_{j3}$ , but

$$a_{2j}\Delta_{1j} = \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

(since rows are linearly independent).

**Theorem 5.4**  $a_{ji}\Delta_{ki} = \det A \,\delta_{jk}$  (by above).

**Theorem 5.5** Given  $3 \times 3$  matrix A with det  $A \neq 0$ , define B by

$$(B)_{ki} = (\det A)^{-1} \Delta_{ik},$$

then AB = BA = I.

### **Proof**:

$$(AB)_{ij} = a_{ik}(B)_{kj} = (\det A)^{-1} a_{ik} \Delta_{jk} = (\det A)^{-1} \det A \,\delta_{ij} = \delta_{ij}.$$

Hence AB = I. Similarly BA = I (check). It follows that  $B = A^{-1}$  and A is invertible. (Above is formula for inverse. A similar result holds for  $n \times n$  matrices, including  $2 \times 2$ . **Example**: consider

$$S = \begin{pmatrix} 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 representing simple shear.

Then  $\det S = 1$  and

$$\Delta_{11} = 1 \quad \Delta_{12} = 0 \quad \Delta_{13} = 0$$
$$\Delta_{21} = -\gamma \quad \Delta_{22} = 1 \quad \Delta_{23} = 0$$
$$\Delta_{31} = 0 \quad \Delta_{32} = 0 \quad \Delta_{33} = 1$$

Hence

$$S^{-1} = \begin{pmatrix} \Delta_{11} & \Delta_{21} & \Delta_{31} \\ \Delta_{12} & \Delta_{22} & \Delta_{32} \\ \Delta_{13} & \Delta_{23} & \Delta_{33} \end{pmatrix} = \begin{pmatrix} 1 & -\gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(Effect of shear is reversed by changing the sign of  $\gamma$ .)

## 5.4 Solving linear equations: Gaussian elimination

One approach to solving equations  $A\mathbf{x} = \mathbf{d}$  (with  $A \ n \times n$  matrix,  $\mathbf{x}$  and  $\mathbf{d} \ n \times 1$  column vectors of unknowns and right-hand sides respectively) numerically would be to calculate  $A^{-1}$  using the method given previously (extended to  $n \times n$ ), and then  $A^{-1}\mathbf{d}$ . This is actually very inefficient.

Alternative is Gaussian elimination, illustrated here for  $3 \times 3$  case.

We have

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = d_1 \tag{1}$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = d_2 \tag{2}$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = d_3 \tag{3}$$

Assume  $a_{11} \neq 0$ , otherwise re-order, otherwise stop (since no unique solution). Then (1) may be used to eliminate  $x_1$ :

$$x_1 = (d_1 - a_{12}x_2 - a_{13}x_3)/a_{11}$$

Now (2) becomes:

$$(a_{22} - \frac{a_{21}}{a_{11}}a_{12})x_2 + (a_{23} - \frac{a_{21}}{a_{11}}a_{13})x_3 = d_2 - \frac{a_{21}}{a_{11}}d_1$$
$$a'_{22}x_2 + a'_{23}x_3 = d'_2 \qquad (2')$$

and (3) becomes

$$(a_{32} - \frac{a_{31}}{a_{11}}a_{12})x_2 + (a_{33} - \frac{a_{31}}{a_{11}}a_{13})x_3 = d_3 - \frac{a_{31}}{a_{11}}d_1$$
$$a'_{32}x_2 + a'_{33}x_3 = d'_3 \qquad (3')$$

Assume  $a'_{22} \neq 0$ , otherwise reorder, otherwise stop. Use (2') to eliminate  $x_2$  from (3') to give

$$(a'_{33} - \frac{a'_{32}}{a'_{22}}a'_{23})x_3 = a''_{33}x_3 = d'_3 - \frac{a'_{32}}{a'_{22}}d'_2 \qquad (3'')$$

Now, providing  $a_{33}' \neq 0$ , (3'') gives  $x_3$ , then (2') gives  $x_2$ , then (1) gives  $x_1$ . This method fails only if A is not invertible, i.e. only if det A = 0.

### 5.5 Solving linear equations

If det  $A \neq 0$  then the equations  $A\mathbf{x} = \mathbf{d}$  have a unique solution  $\mathbf{x} = A^{-1}\mathbf{d}$ . (This is a corollary to Theorem 5.5.).

What can we say about the solution if det A = 0? (As usual we consider A to be  $3 \times 3$ .)  $A\mathbf{x} = \mathbf{d} \ (d \neq \mathbf{0})$  is a set of inhomogeneous equations.

 $A\mathbf{x} = \mathbf{0}$  is the corresponding set of homogeneous equations (with the unique solution  $A^{-1}\mathbf{0} = \mathbf{0}$  if det  $A \neq 0$ .

We first consider the homogeneous equations and then return to the inhomogeneous equations.

#### (a) geometrical view

Write  $\mathbf{r}_i$  as the vector with components equal to the elements of the *i*th row of A, for i = 1, 2, 3. Then the above equations may be expressed as

 $\mathbf{r}_{i} \cdot \mathbf{x} = d_{i}$  (i = 1, 2, 3) Inhomogeneous equations  $\mathbf{r}_{i} \cdot \mathbf{x} = 0$  (i = 1, 2, 3) Homogeneous equations

Each individual equation represents a plane in  $\mathbb{R}^3$ . The solution of each set of 3 equations is the intersection of 3 planes.

For the homogeneous equations the three planes each pass through O. There are three possibilities:

- (i). intersection only at O.
- (ii). three planes have a common line (including O).
- (iii). three planes coincide.

If det  $A \neq 0$  then  $\mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3) \neq 0$  and the set  $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$  is linearly independent, with span  $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} = \mathbb{R}^3$ . The intersection of the planes  $\mathbf{r}_1 \cdot \mathbf{x} = 0$  and  $\mathbf{r}_2 \cdot \mathbf{x} = 0$  is the line  $\{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \lambda \mathbf{k}, \lambda \in \mathbb{R}, \mathbf{k} = \mathbf{r}_1 \times \mathbf{r}_2\}$ . Then  $\mathbf{r}_3 \cdot \mathbf{x} = 0$  implies  $\lambda = 0$ , hence  $\mathbf{x} = \mathbf{0}$  and the three planes intersect only at the origin, i.e. case (i).

If det A = 0 then the set  $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$  is linearly independent, with dim span  $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} = 2$  or 1. Assume 2. Then without loss of generality,  $\mathbf{r}_1$  and  $\mathbf{r}_2$  are linearly independent and the intersection of the planes  $\mathbf{r}_1 \cdot \mathbf{x} = 0$  and  $\mathbf{r}_2 \cdot \mathbf{x} = 0$  is the line  $\{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \lambda \mathbf{k}, \lambda \in \mathbb{R}, \mathbf{k} = \mathbf{r}_1 \times \mathbf{r}_2\}$ . Since  $\mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3) = 0$ , all points in this line satisfy  $\mathbf{r}_3 \cdot \mathbf{x} = 0$  and the intersection of the three planes is a line, i.e. case (ii).

Otherwise dim span  $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} = 1$ ,  $\mathbf{r}_1$ ,  $\mathbf{r}_2$  and  $\mathbf{r}_3$  are all parallel and  $\mathbf{r}_1 \cdot \mathbf{x} = 0$  implies  $\mathbf{r}_2 \cdot \mathbf{x} = 0$  and  $\mathbf{r}_3 \cdot \mathbf{x} = 0$ , so the intersection of the three planes is a plane, i.e. case (iii). (We may write the plane as  $\{\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \lambda \mathbf{k} + \mu \mathbf{l}, \lambda, \mu \in \mathbb{R}\}$ , for any two linearly independent vectors  $\mathbf{k}$  and  $\mathbf{l}$  such that  $\mathbf{k} \cdot \mathbf{r}_i = \mathbf{l} \cdot \mathbf{r}_i$ , i = 1, 2, 3.)

### (b) Linear mapping view

Consider the linear map  $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ , such that  $\mathbf{x} \mapsto \mathbf{x}' = A\mathbf{x}$ . (A is the matrix of  $T_A$  with respect to the standard basis.)

Kernel  $K(T_A) = {\mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{0}}$ , thus  $K(T_A)$  is the 'solution space' of  $A\mathbf{x} = \mathbf{0}$ , with dimension  $n(T_A)$ .

26

Case (i) applies if  $n(T_A) = 0$ . Case (ii) applies if  $n(T_A) = 1$ . Case (iii) applies if  $n(T_A) = 2$ .

We now use the fact that if  $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$  is basis for  $\mathbb{R}^3$ , then  $I(T_A) = \operatorname{span}\{T_A\mathbf{u}, T_A\mathbf{v}, T_A\mathbf{w}\}$ Consider the different cases:

- (i).  $\lambda T_A \mathbf{u} + \mu T_A \mathbf{v} + \nu T_A \mathbf{w} = \mathbf{0}$  implies that  $T_A(\lambda \mathbf{u} + \mu \mathbf{v} + \nu \mathbf{w}) = \mathbf{0}$ , which implies  $\lambda \mathbf{u} + \mu \mathbf{v} + \nu \mathbf{w} = \mathbf{0}$ , hence  $\lambda = \mu = \nu = 0$ . Hence  $\{T_A \mathbf{u}, T_A \mathbf{v}, T_A \mathbf{w}\}$  is linearly independent and  $r(T_A) = 3$ .
- (ii). Without loss of generality choose  $\mathbf{u} \in K(T_A)$ , then  $T_A \mathbf{u} = \mathbf{0}$ . Consider span $\{T_A \mathbf{v}, T_A \mathbf{w}\}$ .  $\mu T_A \mathbf{v} + \nu T_A \mathbf{w} = \mathbf{0}$  implies  $T_A(\mu \mathbf{v} + \nu \mathbf{w}) = \mathbf{0}$ , hence  $\exists \alpha \in \mathbb{R}$  such that  $\mu \mathbf{v} + \nu \mathbf{w} = \alpha \mathbf{u}$ , hence  $-\alpha \mathbf{u} + \mu \mathbf{v} + \nu \mathbf{w} = \mathbf{0}$  and hence  $\alpha = \mu = \nu = 0$  and  $T_A \mathbf{v}$  and  $T_A \mathbf{w}$  are linearly independent. Thus dim span  $\{T_A \mathbf{u}, T_A \mathbf{v}, T_A \mathbf{w}\} = r(T_A) = 2$ .
- (iii). Without loss of generality choose linearly independent  $\mathbf{u}, \mathbf{v} \in K(T_A)$ , then  $A\mathbf{w} \neq \mathbf{0}$ and dim span  $\{T_A\mathbf{u}, T_A\mathbf{v}, T_A\mathbf{w}\} = r(T_A) = 1$ .

**Remarks**: (a) In each of cases (i), (ii) and (iii) we have  $n(T_A) + r(T_A) = 3$  (an example of the 'rank-nullity' formula).

(b) In each case we also have  $r(T_A) = \dim \operatorname{span} \{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} = r(T_A) = \operatorname{number}$  of linearly independent rows of A ('row rank'). But  $r(T_A) = \dim \operatorname{span} \{A\mathbf{e}_1, A\mathbf{e}_2, A\mathbf{e}_3\}$  (choosing standard basis) = number of linearly independent columns of A ('column rank').

### Implication for inhomogeneous equation $A\mathbf{x} = \mathbf{d}$ .

If det  $A \neq 0$  then  $r(T_A) = 3$  and  $I(T_A) = \mathbb{R}^3$ . Since  $\mathbf{d} \in \mathbb{R}^3$ ,  $\exists \mathbf{x} \in \mathbb{R}^3$  for which  $\mathbf{d}$  is image under  $T_A$ , i.e.  $\mathbf{x} = A^{-1}\mathbf{d}$  exists and unique.

If det A = 0 then  $r(T_A) < 3$  and  $I(T_A)$  is a proper subspace (of  $\mathbb{R}^3$ ). Then either  $\mathbf{d} \notin I(T_A)$ , in which there are no solutions and the equations are inconsistent or  $\mathbf{d} \in I(T_A)$ , in which case there is at least one solution and the equations are consistent. The latter case is described by Theorem 5.6 below.

**Theorem 5.6**: If  $\mathbf{d} \in I(T_A)$  then the general solution to  $A\mathbf{x} = \mathbf{d}$  can be written as  $\mathbf{x} = \mathbf{x}_0 + \mathbf{y}$  where  $\mathbf{x}_0$  is a particular fixed solution of  $A\mathbf{x} = \mathbf{d}$  and  $\mathbf{y}$  is the general solution of  $A\mathbf{x} = \mathbf{0}$ .

**Proof**:  $A\mathbf{x}_0 = \mathbf{d}$  and  $A\mathbf{y} = \mathbf{0}$ , hence  $A(\mathbf{x}_0 + \mathbf{y}) = \mathbf{d} + \mathbf{0} = \mathbf{d}$ . If

- (i).  $n(T_A) = 0$ ,  $r(T_A) = 3$ , then  $\mathbf{y} = \mathbf{0}$  and the solution is unique.
- (ii).  $n(T_A) = 1$ ,  $r(T_A) = 2$ , then  $\mathbf{y} = \lambda \mathbf{k}$  and  $\mathbf{x} = \mathbf{x}_0 + \lambda \mathbf{k}$  (representing a line).
- (iii).  $n(T_A) = 2$ ,  $r(T_A) = 1$ , then  $\mathbf{y} = \lambda \mathbf{k} + \mu \mathbf{l}$  and  $\mathbf{x} = \mathbf{x}_0 + \lambda \mathbf{k} + \mu \mathbf{l}$  (representing a plane).

28

**Example**:  $(2 \times 2)$  case.

$$A\mathbf{x} = \mathbf{d}$$

$$\begin{pmatrix} 1 & 1 \\ a & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

 $\det A = 1 - a.$ 

If  $a \neq 1$ , then det  $A \neq 0$  and so  $A^{-1}$  exists and is unique.

$$A^{-1} = \frac{1}{1-a} \begin{pmatrix} 1 & -1 \\ -a & 1 \end{pmatrix} \text{ and the unique solution is } A^{-1} \begin{pmatrix} 1 \\ b \end{pmatrix}$$

If a = 1, then det A = 0.

$$A\mathbf{x} = \begin{pmatrix} x_1 + x_2 \\ x_1 + x_2 \end{pmatrix}, \ I(T_A) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \text{ and } K(T_A) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$

so  $r(T_A) = 1$  and  $n(T_A) = 1$ . If  $b \neq 1$  then  $\begin{pmatrix} 1 \\ b \end{pmatrix} \notin I(T_A)$  and there are no solutions (equations inconsistent). If b = 1 then  $\begin{pmatrix} 1 \\ b \end{pmatrix} \in I(T_A)$  and solutions exist (equations consistent). A particular solution is  $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ . The general solution is  $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mathbf{y}$  where  $\mathbf{y}$  is any vector in  $K(T_A)$ . Hence the general solution is  $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix}$  where  $\lambda \in \mathbb{R}$ .

# 6 Complex vector spaces $(\mathbb{C}^n)$

## 6.1 Introduction

We have considered vector spaces with scalars  $\in \mathbb{R}$ .

Now generalise to vector spaces with scalars  $\in \mathbb{C}$ .

**Definition**  $\mathbb{C}^n$  is set of *n*-tuples of complex numbers, i.e. for  $z \in \mathbb{C}^n$ ,  $z = (z_1, z_2, \ldots, z_n)$ ,  $z_i \in \mathbb{C}, i = 1, \ldots, n$ .

By extension from  $\mathbb{R}^n$ , define vector addition and scalar multiplication: for  $z = (z_1, \ldots, z_n)$ ,  $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$  and  $c \in \mathbb{C}$ .

$$z + \zeta = (z_1 + \zeta_1, z_2 + \zeta_2, \dots, z_n + \zeta_n),$$
  
 $cz = (cz_1, cz_2, \dots, cz_n).$ 

Check of A1-4, B1-4 from §3 shows that  $\mathbb{C}^n$  is a vector space over  $\mathbb{C}$ .

Note that  $\mathbb{R}^n$  is a subset of  $\mathbb{C}^n$ , but not a subspace of  $\mathbb{C}^n$  (as a vector space over  $\mathbb{C}$ ) since  $\mathbb{R}^n$  is not closed under multiplication by an arbitrary complex number.

 $\mathbb{C}^n$  has dimension n as a vector space over  $\mathbb{C}$  since the standard basis of  $\mathbb{R}^n$  (as a vector space over  $\mathbb{R}$ ) is also a basis of  $\mathbb{C}^n$  (as a vector space over  $\mathbb{C}$ ).

# 6.2 Linear mappings

Consider  $\mathcal{M}: \mathbb{C}^n \to \mathbb{C}^m$ .

Let  $\{\mathbf{e}_i\}$  be the standard basis of  $\mathbb{C}^n$  and  $\{\mathbf{f}_i\}$  be the standard basis of  $\mathbb{C}^m$ . Then under  $\mathcal{M}$ ,

$$\mathbf{e}_j \to \mathbf{e}'_j = \mathcal{M}\mathbf{e}_j = \sum_{i=1}^m M_{ij}\mathbf{f}_i,$$

where  $M_{ij} \in \mathbb{C}$ . As before this defines matrix of  $\mathcal{M}$  with respect to bases  $\{\mathbf{e}_i\}$  of  $\mathbb{C}^n$  and  $\{\mathbf{f}_i\}$  of  $\mathbb{C}^m$ . M is a complex  $(m \times n)$  matrix.

New definitions: square complex matrix M is Hermitian if  $\overline{M^T} = M$ , unitary if  $\overline{M^T} = M^{-1}$ .

## **6.3** Scalar product for $\mathbb{C}^n$

If we retain  $z.\zeta = \sum_{i=1}^{n} z_i \zeta_i$  for  $z, \zeta \in \mathbb{C}^n$  then we lose  $z.z \in \mathbb{R}$  and hence  $z.z \ge 0$ . Natural extension of scalar product is for  $z, \zeta \in \mathbb{C}^n$ ,

$$z.\zeta = (\text{new notation}) \langle z, \zeta \rangle = \sum_{i=1}^{n} \overline{z}_i \zeta_i$$

Note that  $\langle \zeta, z \rangle = \overline{\langle z, \zeta \rangle} \neq \langle z, \zeta \rangle$  (in general), but  $\langle z, z \rangle \in \mathbb{R}$  and  $\langle z, z \rangle > 0$  if  $z \neq 0$ .

Hence use this new scalar product as a definition of length or norm:

$$||z|| = \langle z, z \rangle^{1/2} = (\sum_{i=1}^{n} |z_i|^2)^{1/2} \text{ for } z \in \mathbb{C}^n.$$

[Exercise: Consider  $C^n$  as a vector space over  $\mathbb{R}$ . Note that  $\mathbb{R}^n$  is subspace and dim  $\mathbb{C}^n = 2n$ .]