A1a Vectors and Matrices: Example Sheet 1 Michaelmas 2014

A * denotes a question, or part of a question, that should not be done at the expense of questions on later sheets. Starred questions are not necessarily harder than unstarred questions.

Corrections and suggestions should be emailed to N.Peake@damtp.cam.ac.uk.

1. Let S be the interior of the circle $|z - 1 - i| = 1$. Show, by using suitable inequalities for $|z_1 \pm z_2|$, that if $z \in S$ then

$$\sqrt{5} - 1 < |z - 3| < \sqrt{5} + 1.$$

Obtain the same result geometrically by considering the line containing the centre of the circle and the point 3.

2. Given $|z| = 1$ and $\arg z = \theta$, find both algebraically and geometrically the modulus-argument forms of

(i) $1 + z$, (ii) $1 - z$.

Show that the locus of w as z varies with $|z| = 1$, where w is given by

$$w^2 = \left(\frac{1 - z}{1 + z}\right),$$

is a pair of straight lines.

3. Use complex numbers to show that the medians of a triangle are concurrent.

Hint: represent the vertices of the triangle by complex numbers z_1, z_2 and z_3 (or 0, z_1 and z_2 if you prefer), then write down equations for two of the medians and find their intersection.

*4. Express

$$I = \frac{z^5 - 1}{z - 1}$$

as a polynomial in z. By considering the complex fifth root of unity ω, obtain the four factors of I linear in z. Hence write I as the product of two real quadratic factors. By considering the term in z^2 in the identity so obtained for I, show that

$$4 \cos \frac{\pi}{5} \sin \frac{\pi}{10} = 1.$$

5. Show the equation $\sin z = 2$ has infinitely many solutions.

6. (a) Let $z, a, b \in \mathbb{C} (a \neq b)$ correspond to the points P, A, B of the Argand plane. Let C_λ be the locus of P defined by

$$PA/PB = \lambda,$$

where λ is a fixed real positive constant. Show that C_λ is a circle, unless $\lambda = 1$, and find its centre and radius. What if $\lambda = 1$?

*(b) For the case $a = -b = p$, $p \in \mathbb{R}$, and for each fixed $\mu \in \mathbb{R}$, show that the curve

$$S_\mu = \left\{ z \in \mathbb{C} : |z - i\mu| = \sqrt{p^2 + \mu^2} \right\}$$

is a circle passing through A and B with its centre on the perpendicular bisector of AB.

Show that the circles C_λ and S_μ are orthogonal for all λ, μ.

7. Show by vector methods that the altitudes of a triangle are concurrent.

Hint: let the altitudes AD, BE of $\triangle ABC$ meet at H, and show that CH is perpendicular to AB.

8. Given that vectors x and y satisfy

$$x + y(x \cdot y) = a,$$

for fixed vector a, show that

$$(x \cdot y)^2 = \frac{|a|^2 - |x|^2}{2 + |y|^2}.$$
Deduce using the Schwarz inequality (or otherwise) that

\[|x|(1 + |y|^2) \geq |a| \geq |x| . \]

Explain the circumstances under which either of the inequalities can be replaced by equalities, and describe the relation between \(x, y \) and \(a \) in these circumstances.

9. (a) In \(\triangle ABC \), let \(\overrightarrow{AB}, \overrightarrow{BC} \) and \(\overrightarrow{CA} \) be denoted by \(u, v \) and \(w \). Show that

\[u \times v = v \times w = w \times u, \]

and hence obtain the sine rule for \(\triangle ABC \).

(b) Given any three vectors \(p, q, r \) such that

\[p \times q = q \times r = r \times p, \]

with \(|p \times q| \neq 0 \), show that

\[p + q + r = 0. \]

10. (a) Using the identity \(a \times (b \times c) = (a \cdot c)b - (a \cdot b)c \), deduce that

\[
\begin{align*}
(i) & \quad (a \times b) \cdot (c \times d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c), \\
(ii) & \quad a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0.
\end{align*}
\]

Relate the case \(c = a, d = b \) of (i) to a well-known trigonometric identity.

Evaluate \((a \times b) \times (c \times d) \) in two distinct ways and use the result to display explicitly a linear dependence relation amongst the four vectors \(a, b, c \) and \(d \).

(b) Given \([a, b, c] = a \cdot (b \times c) \), show that

\[[a \times b, b \times c, c \times a] = [a, b, c]^2. \]

*11. For \(\phi, \theta \in \mathbb{R} \), let the vectors \(e_x, e_\theta \) and \(e_\phi \) in \(\mathbb{R}^3 \) be defined in terms of the Cartesian basis \((i, j, k)\) by

\[
\begin{align*}
e_x &= \cos \phi \sin \theta i + \sin \phi \sin \theta j + \cos \theta k, \\
e_\theta &= \cos \phi \cos \theta i + \sin \phi \cos \theta j - \sin \theta k, \\
e_\phi &= -\sin \phi i + \cos \phi j.
\end{align*}
\]

Show that \((e_x, e_\theta, e_\phi)\) constitute an orthonormal right-handed basis. Discuss the significance of this [local] basis.

12. The set \(X \) contains the six real vectors

\[(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1).\]

Find two different subsets \(Y \) of \(X \) whose members are linearly independent, each of which yields a linearly dependent subset of \(X \) whenever any element \(x \in X \) with \(x \notin Y \) is adjoined to \(Y \).

13. Let \(V \) be the set of all vectors \(x = (x_1, \ldots, x_n) \) in \(\mathbb{R}^n \) (\(n \geq 4 \)) such that their components satisfy

\[x_i + x_{i+1} + x_{i+2} + x_{i+3} = 0 \quad \text{for} \quad i = 1, 2, \ldots, n-3. \]

Find a basis for \(V \).

14. Let \(x \) and \(y \) be non-zero vectors in \(\mathbb{R}^n \) with scalar product denoted by \(x \cdot y \). Prove that

\[(x \cdot y)^2 \leq (x \cdot x)(y \cdot y), \]

and prove also that \((x \cdot y)^2 = (x \cdot x)(y \cdot y) \) if and only if \(x = \lambda y \) for some scalar \(\lambda \).

(a) By considering suitable vectors in \(\mathbb{R}^3 \), or otherwise, prove that the inequality

\[x^2 + y^2 + z^2 \geq yz + zx + xy \]

holds for any real numbers \(x, y \) and \(z \).

(b) By considering suitable vectors in \(\mathbb{R}^4 \), or otherwise, show that only one choice of real numbers \(x, y \) and \(z \) satisfies

\[3(x^2 + y^2 + z^2 + 4) - 2(yz + zx + xy) - 4(x + y + z) = 0, \]

and find these numbers.