1. In the following, the indices i,j,k,l take the values 1, 2, 3, and the summation convention applies. In particular, $n_in_i = 1$; i.e., n_i are the components of a unit vector \mathbf{n}.

 (a) Simplify the following expressions:

 \[\delta_{ij}a_i, \quad \delta_{ij}\delta_{kl}, \quad \delta_{ij}\delta_{jk}, \quad \varepsilon_{ijk}\delta_{jk}, \quad \varepsilon_{ijk}\varepsilon_{ijl}, \quad \varepsilon_{ijk}\varepsilon_{ikl}, \quad \varepsilon_{ij}(\mathbf{a} \times \mathbf{b})_k. \]

 (b) Given that $A_{ij} = \varepsilon_{ijk}a_k$ (for all i,j), show that $2a_k = \varepsilon_{kij}A_{ij}$ (for all k).

 (c) Show that $\varepsilon_{ijk}s_{ij} = 0$ (for all k) if and only if $s_{ij} = s_{ji}$ (for all i,j).

 (d) Given that $N_{ij} = \delta_{ij} - \varepsilon_{ijk}n_k + n_i n_j$ and $M_{ij} = \delta_{ij} + \varepsilon_{ijk}n_k$, show that $N_{ij}M_{jk} = 2\delta_{ik}$.

2. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} be fixed vectors in \mathbb{R}^3. In each case of (i) and (ii) find all vectors \mathbf{r} such that

 (i) $\mathbf{r} + \mathbf{r} \times \mathbf{d} = \mathbf{c}$,
 (ii) $\mathbf{r} + (\mathbf{r} \cdot \mathbf{a}) \mathbf{b} = \mathbf{c}$.

 In (ii) consider separately the $\mathbf{a} \cdot \mathbf{b} \neq -1$ and $\mathbf{a} \cdot \mathbf{b} = -1$ subcases.

 Hint: given \mathbf{r}_0 solving (ii) for $\mathbf{a} \cdot \mathbf{b} = -1$, show that $\mathbf{r}_0 + \lambda \mathbf{b}$ is another solution for an arbitrary scalar λ.

3. In \mathbb{R}^3 show that the straight line through the points \mathbf{a} and \mathbf{b} has equation

 \[\mathbf{r} = (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}, \]

 and that the plane through the points \mathbf{a}, \mathbf{b} and \mathbf{c} has the equation

 \[\mathbf{r} = (1 - \mu - \nu)\mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c}, \]

 where λ, μ and ν are scalars. Obtain forms of these equations that do not involve λ, μ, ν.

4. (a) Let λ be a scalar, and let \mathbf{m}, \mathbf{u} and \mathbf{a} be fixed vectors in \mathbb{R}^3 such that $\mathbf{m} \cdot \mathbf{u} = 0$ and $\mathbf{a} \cdot \mathbf{u} \neq 0$.

 Show that the straight line $\mathbf{r} \times \mathbf{u} = \mathbf{m}$ meets the plane $\mathbf{r} \cdot \mathbf{a} = \lambda$ in the point

 \[\mathbf{r} = \frac{\mathbf{a} \times \mathbf{m} + \lambda \mathbf{u}}{\mathbf{a} \cdot \mathbf{u}}. \]

 Explain in detail the geometrical meaning of the condition $\mathbf{a} \cdot \mathbf{u} \neq 0$.

 (b) In \mathbb{R}^3 show that if \mathbf{r} lies in the planes $\mathbf{r} \cdot \mathbf{a} = \lambda$ and $\mathbf{r} \cdot \mathbf{b} = \mu$, for fixed non-zero vectors \mathbf{a} and \mathbf{b}, and scalars λ and μ, show that

 \[\mathbf{r} \times (\mathbf{a} \times \mathbf{b}) = \mu \mathbf{a} - \lambda \mathbf{b}. \]

 Conversely, given $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$, show that (a) implies both $\mathbf{r} \cdot \mathbf{a} = \lambda$ and $\mathbf{r} \cdot \mathbf{b} = \mu$. Hence deduce that the intersection of two non-parallel planes is a line. Comment on the case in which $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

5. Let \mathbf{n} be a unit vector in \mathbb{R}^3. Identify the image and kernel (null space) of each of the following linear maps $\mathbb{R}^3 \to \mathbb{R}^3$:

 (a) $T : \mathbf{x} \mapsto \mathbf{x}' = \mathbf{x} - (\mathbf{x} \cdot \mathbf{n}) \mathbf{n}$,
 (b) $Q : \mathbf{x} \mapsto \mathbf{x}' = \mathbf{n} \times \mathbf{x}$.

 Show that $T^2 = T$ and interpret the map T geometrically. Interpret the maps Q^2 and $Q^3 + Q$, and show that $Q^4 = T$.

6. Give a geometrical description of the images and kernels of each of the linear maps of \mathbb{R}^3

 (a) $(x, y, z) \mapsto (x + 2y + z, x + 2y + 2z, 2x + 4y + 2z)$,
 (b) $(x, y, z) \mapsto (x + 2y + 3z, x - y + z, x + 5y + 5z)$.

7. A linear map $A : \mathbb{R}^4 \to \mathbb{R}^4$ is defined by $\mathbf{x} \mapsto A\mathbf{x}$ where

 \[A = \begin{pmatrix} a & a & b & a \\ a & a & 0 & b \\ a & b & a & b \\ a & b & a & 0 \end{pmatrix}. \]

 Find the kernel and image of A for all real values of a and b.

A1b Vectors and Matrices: Example Sheet 2

Corrections and suggestions should be emailed to N.Peake@damtp.cam.ac.uk, Michaelmas 2014.

Mathematical Tripos IA: Vectors and Matrices

Copyright © 2014 University of Cambridge. Not to be quoted or reproduced without permission.
8. A linear map \(S : \mathbb{R}^2 \to \mathbb{R}^2 \) is defined by
\[
x \mapsto x' = x + \lambda (b \cdot x) a,
\]
where \(\lambda \) is a scalar, and \(a \) and \(b \) are fixed, orthogonal unit vectors. By considering its effect on the vectors \(a \) and \(b \), show that \(S \) describes a shear in the direction of \(a \). Let \(S(\lambda, a, b) \) be the matrix with entries \(S_{ij} \) such that \(x'_i = S_{ij}x_j \). Obtain an expression for \(S_{ij} \) in terms of the components of \(a \) and \(b \) and hence find the matrix \(S(\lambda, a, b) \). Evaluate its determinant, and hence deduce that \(S \) is an area-preserving map.

9. The linear map \(\mathbb{R}^3 \to \mathbb{R}^3 \) defined by
\[
x \mapsto x' = \cos \theta x + (x \cdot n) (1 - \cos \theta) n - \sin \theta (x \times n)
\]
describes a rotation by angle \(\theta \) in a positive sense about the unit vector \(n \). Verify this by considering the case of \(n = (0, 0, 1) \).

Show that (†) can be written in matrix form as
\[
x \mapsto x' = R(n, \theta) x
\]
where \(R(n, \theta) \) is a matrix with entries \(R_{ij} \) which you should find explicitly in terms of \(\delta_{ij}, \varepsilon_{ijk} \), etc.

Hence show that
\[R_{ii} = 2 \cos \theta + 1 \quad \varepsilon_{ijk} R_{jk} = -2n_i \sin \theta. \]

Given that \(R(n, \theta) \) is the matrix
\[
\frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix},
\]
determine \(\theta \) and \(n \).

10. Give examples of \(2 \times 2 \) real matrices representing the following transformations in \(\mathbb{R}^2 \): (a) reflection, (b) dilatation (enlargement), (c) shear, and (d) rotation. Which of these types of transformation are always represented by a \(2 \times 2 \) matrix with determinant +1?

If maps \(A \) and \(B \) are both shears, will \(AB \) be the same as \(BA \) in general? Justify your answer.

11. Suppose that \(A \) and \(B \) are both Hermitian matrices. Show that \(AB + BA \) is Hermitian. Also show that \(AB \) is Hermitian if and only if \(A \) and \(B \) commute.

12. Let \(R(n, \theta) \) be the matrix defined by the linear map (†) of question 9, and let \(i, j, k \) be the standard mutually orthogonal unit vectors in \(\mathbb{R}^3 \).

(a) Show that the matrix \(R(i, \frac{\pi}{2})R(j, \frac{\pi}{2}) \) is orthogonal, has determinant one, and is not equal to the matrix \(R(j, \frac{\pi}{2})R(i, \frac{\pi}{2}) \).

(b) Reflection in a plane through the origin in \(\mathbb{R}^3 \), with unit normal \(n \), is a linear map such that
\[
x \mapsto x' = x - 2(x \cdot n) n.
\]

In matrix notation \(x' = H(n)x \) for matrix \(H(n) \). Show by geometrical and algebraic means that the map \(x \mapsto x' = -H(n)x \), describes a rotation of angle \(\pi \) about \(n \).

(c) A vector \(x \) has components \((x, y, z)\) in a (Cartesian) coordinate system \(S \). It has components \((x', y', z')\) in a coordinate system \(S' \) obtained from \(S \) by anti-clockwise rotation through angle \(\alpha \) about axis \(k \). Show, geometrically, that the components in coordinate system \(S' \) are related to those in \(S \) by
\[
\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = R(k, -\alpha) \begin{pmatrix} x \\ y \\ z \end{pmatrix}.
\]

(d) Given that
\[
n_k = \cos (\frac{1}{2} \theta) i \pm \sin (\frac{1}{2} \theta) j,
\]
prove that
\[
H(i)H(n_-) = H(n_+)H(i) = R(k, \theta),
\]
and give diagrams to exhibit the geometrical meaning of this result.

\[\text{† You may need to return to this question if determinants have not been covered yet.} \]